trainer.py 28.4 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24
import numpy as np
25
from PIL import Image, ImageOps
K
Kaipeng Deng 已提交
26 27

import paddle
W
wangguanzhong 已提交
28 29
import paddle.distributed as dist
from paddle.distributed import fleet
30
from paddle import amp
K
Kaipeng Deng 已提交
31
from paddle.static import InputSpec
32
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
33 34 35

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
36
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
37
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
38 39
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
40
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
41
import ppdet.utils.stats as stats
42
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
43

44
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
45
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
46 47

from ppdet.utils.logger import setup_logger
48
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
49 50 51

__all__ = ['Trainer']

52 53
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
54 55 56 57 58 59 60

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
61
        self.optimizer = None
62
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
63

G
George Ni 已提交
64
        # build data loader
65 66 67 68 69 70 71 72 73
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
74 75 76 77 78 79
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
80 81
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
82

F
FlyingQianMM 已提交
83
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
84 85
            cfg['FairMOTEmbeddingHead']['num_identities_dict'] = self.dataset.num_identities_dict
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
86

K
Kaipeng Deng 已提交
87
        # build model
88 89 90 91 92
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
93

94 95 96
        #normalize params for deploy
        self.model.load_meanstd(cfg['TestReader']['sample_transforms'])

97 98
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
99 100
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
101
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
102 103 104 105
                self.model,
                decay=ema_decay,
                use_thres_step=True,
                cycle_epoch=cycle_epoch)
106

K
Kaipeng Deng 已提交
107 108 109 110 111 112 113 114
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
115 116 117 118 119

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
120
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
121

W
wangguanzhong 已提交
122 123
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
124

K
Kaipeng Deng 已提交
125 126 127
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
128
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
129 130 131 132 133 134 135 136 137 138 139

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
140
            if self.cfg.get('use_vdl', False):
141
                self._callbacks.append(VisualDLWriter(self))
142 143
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
144 145 146
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
147 148
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
149
            self._compose_callback = ComposeCallback(self._callbacks)
150
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
151 152
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
153 154 155 156
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
157 158
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
159 160
            self._metrics = []
            return
161
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
162
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
163
            # TODO: bias should be unified
164
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
165 166
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
167
            save_prediction_only = self.cfg.get('save_prediction_only', False)
168 169 170

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
171 172
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
173 174 175 176

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
177
            dataset = self.dataset
178 179 180 181
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
182
                dataset = eval_dataset
183

184
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
185 186 187 188 189 190 191 192 193 194 195
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
196
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
197 198 199 200 201 202 203 204 205
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
206
                        save_prediction_only=save_prediction_only)
207
                ]
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
237 238 239
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
240
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
241
                    class_num=self.cfg.num_classes,
242 243
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
244
            ]
245 246 247 248 249 250 251 252 253
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
254 255 256 257
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
258
            save_prediction_only = self.cfg.get('save_prediction_only', False)
259
            self._metrics = [
260 261 262 263 264 265
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
266
            ]
Z
zhiboniu 已提交
267 268 269 270
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
271
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
272
            self._metrics = [
273 274 275 276 277 278
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
279
            ]
G
George Ni 已提交
280 281
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
282
        else:
283
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
284
                self.cfg.metric))
K
Kaipeng Deng 已提交
285 286 287 288 289 290 291
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
292
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
306
    def load_weights(self, weights):
307 308
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
309
        self.start_epoch = 0
310
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
311 312
        logger.debug("Load weights {} to start training".format(weights))

313 314 315 316 317 318 319
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
320
    def resume_weights(self, weights):
321 322 323 324 325 326
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
327
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
328

K
Kaipeng Deng 已提交
329
    def train(self, validate=False):
K
Kaipeng Deng 已提交
330
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
331
        Init_mark = False
K
Kaipeng Deng 已提交
332

333
        model = self.model
334
        if self.cfg.get('fleet', False):
335
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
336
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
337
        elif self._nranks > 1:
G
George Ni 已提交
338 339 340 341
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
342 343

        # initial fp16
344
        if self.cfg.get('fp16', False):
345 346
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
347

K
Kaipeng Deng 已提交
348 349 350 351 352 353 354 355 356 357 358 359
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
360 361
        if self.cfg.get('print_flops', False):
            self._flops(self.loader)
362
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
363

364 365
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
366
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
367
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
368 369 370
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
371
            model.train()
K
Kaipeng Deng 已提交
372 373 374 375
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
376
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
377
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
378
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
379

380
                if self.cfg.get('fp16', False):
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
398 399 400 401 402 403

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
404
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
405 406 407 408
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
409 410
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
411
                iter_tic = time.time()
K
Kaipeng Deng 已提交
412

413 414
            # apply ema weight on model
            if self.use_ema:
415
                weight = copy.deepcopy(self.model.state_dict())
416 417
                self.model.set_dict(self.ema.apply())

K
Kaipeng Deng 已提交
418 419
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
420
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
421
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
422 423 424 425 426 427 428 429 430 431 432 433
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
434 435 436 437 438 439
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
440
                with paddle.no_grad():
441
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
442 443
                    self._eval_with_loader(self._eval_loader)

444 445 446 447
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

448 449
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
450
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
451 452 453
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
454 455
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
456 457
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
458
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
478
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
479 480 481
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
482
    def evaluate(self):
483 484
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
485

C
cnn 已提交
486 487 488 489 490
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
491 492 493 494 495 496
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
497 498
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
499

K
Kaipeng Deng 已提交
500 501 502
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
503 504
        if self.cfg.get('print_flops', False):
            self._flops(loader)
505
        results = []
K
Kaipeng Deng 已提交
506 507 508 509
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
510

K
Kaipeng Deng 已提交
511 512
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
513
            for key, value in outs.items():
514 515
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
516 517 518
            results.append(outs)
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
519 520
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
521

522
        for outs in results:
K
Kaipeng Deng 已提交
523 524
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
525

K
Kaipeng Deng 已提交
526 527 528 529
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
530
                image = ImageOps.exif_transpose(image)
531
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
532

533
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
534 535 536 537
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
538 539
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
540 541 542 543
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
544
                    int(im_id), catid2name, draw_threshold)
545
                self.status['result_image'] = np.array(image.copy())
546 547
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
548 549 550 551 552
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
553 554
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
555 556 557 558 559 560 561
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
562 563 564 565 566 567 568 569 570 571 572 573
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
574
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
575
        image_shape = None
576 577
        im_shape = [None, 2]
        scale_factor = [None, 2]
578 579 580 581 582 583
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
584
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
585
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
586
        if image_shape is None:
G
Guanghua Yu 已提交
587
            image_shape = [None, 3, -1, -1]
588

G
Guanghua Yu 已提交
589 590
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
591 592 593
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
594

595 596 597 598 599
        if hasattr(self.model, 'deploy'):
            self.model.deploy = True
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
K
Kaipeng Deng 已提交
600

K
Kaipeng Deng 已提交
601 602 603 604 605 606 607
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
608
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
609
            "im_shape": InputSpec(
610
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
611
            "scale_factor": InputSpec(
612
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
613
        }]
G
George Ni 已提交
614 615 616 617 618
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
619 620 621 622 623 624 625 626 627 628 629 630
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
631 632 633 634 635 636 637
        # TODO: Hard code, delete it when support prune input_spec.
        if self.cfg.architecture == 'PicoDet':
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
638 639 640 641 642 643 644 645
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
646

G
Guanghua Yu 已提交
647 648
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
649 650 651

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
652 653 654 655 656
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
657
            self.cfg.slim.save_quantized_model(
658 659
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
660 661
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
662

G
Guanghua Yu 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))