framework.py 85.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
S
rename  
sneaxiy 已提交
19
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24

Y
Yu Yang 已提交
25
import numpy as np
26
import subprocess
Q
qiaolongfei 已提交
27

M
minqiyang 已提交
28
from .. import compat as cpt
29
from .proto import framework_pb2
30
try:
P
peizhilin 已提交
31
    if os.name == 'nt':
P
peizhilin 已提交
32
        import sys
P
peizhilin 已提交
33 34 35 36 37
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

38
    from . import core
39
except ImportError as e:
P
peizhilin 已提交
40
    if os.name == 'nt':
41
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
42
        raise ImportError(
43 44 45 46 47
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
48 49 50 51 52 53
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
54
except Exception as e:
55
    raise e
56
from . import unique_name
Y
Yu Yang 已提交
57

58
__all__ = [
59 60 61 62
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
63
    'name_scope',
64
]
Y
Yu Yang 已提交
65

Q
qiaolongfei 已提交
66 67 68 69
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
70 71
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

72
_imperative_tracer_ = None
M
minqiyang 已提交
73
_imperative_current_expected_place_ = None
74 75 76 77 78 79 80 81 82


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
83

M
minqiyang 已提交
84
def _current_expected_place():
M
minqiyang 已提交
85
    return _imperative_current_expected_place_
M
minqiyang 已提交
86 87


88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
114
@signature_safe_contextmanager
115 116 117 118 119 120 121 122 123 124 125 126
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
127

128 129 130 131
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
132 133
          with name_scope("attention"):
             ...
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
153 154 155
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
156 157 158 159


def grad_var_name(var_name):
    """
160 161
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
162 163 164
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
165

166
def convert_np_dtype_to_dtype_(np_dtype):
167 168
    """
    Convert the data type in numpy to the data type in Paddle
169

170
    Args:
171
        np_dtype(np.dtype): the data type in numpy.
172

173 174
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
175 176

    """
177 178
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
179
        return core.VarDesc.VarType.FP32
180
    elif dtype == np.float64:
181
        return core.VarDesc.VarType.FP64
182
    elif dtype == np.float16:
183
        return core.VarDesc.VarType.FP16
184
    elif dtype == np.int32:
185
        return core.VarDesc.VarType.INT32
186
    elif dtype == np.int16:
187
        return core.VarDesc.VarType.INT16
188
    elif dtype == np.int64:
189
        return core.VarDesc.VarType.INT64
190
    elif dtype == np.bool:
191
        return core.VarDesc.VarType.BOOL
192 193
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
194 195
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
196 197
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
198
    else:
M
minqiyang 已提交
199
        raise ValueError("Not supported numpy dtype %s" % dtype)
200 201 202


def dtype_is_floating(dtype):
203 204 205
    """
    Check the data type is floating or not.
    Args:
206
        dtype(np.dtype|core.VarDesc.VarType): data type.
207 208 209 210 211
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
212
    if not isinstance(dtype, core.VarDesc.VarType):
213 214
        dtype = convert_np_dtype_to_dtype_(dtype)

215 216 217 218
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
219 220


Y
Yang Yang(Tony) 已提交
221
def _debug_string_(proto, throw_on_error=True):
222 223 224 225 226 227 228 229 230 231 232
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
233
    error_fields = list()
Y
Yang Yang(Tony) 已提交
234
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
235 236
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
237 238 239
    return proto.__str__()


X
Xin Pan 已提交
240
class Variable(object):
241
    """
242 243 244
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
245
    two variables in different blocks could have the same name.
246

247 248
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
249

250
    Most of a Variable's member variables can be setted to be None. It mean
251
    it is not available or will be specified later.
252 253

    Args:
254
        block(Block): The block that the variable belongs to.
255 256
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
257 258
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
259
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
260
            Some kinds of variable do not contain shape, just set it to None.
261 262 263
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
264
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
265
            series data.
266
            Default: None
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
289 290
    """

Y
Yu Yang 已提交
291 292
    def __init__(self,
                 block,
Y
Yu Yang 已提交
293
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
294 295 296 297
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
298
                 capacity=None,
Q
QI JUN 已提交
299
                 persistable=None,
F
fengjiayi 已提交
300
                 error_clip=None,
Y
Yu Yang 已提交
301
                 stop_gradient=False,
F
fengjiayi 已提交
302
                 is_data=False,
Y
Yu Yang 已提交
303
                 **kwargs):
Y
Yu Yang 已提交
304
        self.block = block
F
fengjiayi 已提交
305
        self.error_clip = error_clip
Y
Yu Yang 已提交
306 307

        if name is None:
Y
Yu Yang 已提交
308
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
309
        is_new_var = False
M
minqiyang 已提交
310
        name = cpt.to_text(name)
M
minqiyang 已提交
311
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
312 313

        if self.desc is None:
M
minqiyang 已提交
314
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
315
            is_new_var = True
Y
Yu Yang 已提交
316

Y
Yu Yang 已提交
317 318 319 320 321 322 323 324
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
325
        if shape is not None:
Y
Yu Yang 已提交
326
            if is_new_var:
327
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
328 329 330 331 332 333 334 335
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
336
        if dtype is not None:
337
            if not isinstance(dtype, core.VarDesc.VarType):
338
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
339
            if is_new_var:
F
fengjiayi 已提交
340
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
341
            else:
F
fengjiayi 已提交
342
                old_dtype = self.dtype
Q
QI JUN 已提交
343
                if dtype != old_dtype:
Y
Yu Yang 已提交
344 345 346 347 348
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
349 350

        if lod_level is not None:
Y
Yu Yang 已提交
351
            if is_new_var:
352
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
353 354 355 356 357 358 359
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
360 361 362 363 364 365 366 367 368 369 370
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

371 372 373 374 375 376 377 378
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

X
Xin Pan 已提交
379
        if _in_imperative_mode():
M
minqiyang 已提交
380
            # record vars in tracer rather than blocks
M
minqiyang 已提交
381 382
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
M
minqiyang 已提交
383
                self._ivar = core.VarBase(stop_gradient)
X
Xin Pan 已提交
384
            self._ivar.desc = self.desc
M
minqiyang 已提交
385 386
            if persistable:
                self.block.vars[name] = self
M
minqiyang 已提交
387 388 389 390 391
        else:
            self.block.vars[name] = self
        self.op = None
        self.stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
392

393
    def _numpy(self):
M
minqiyang 已提交
394
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
395
        return np.array(new_ivar.value().get_tensor())
396 397

    def _backward(self):
X
Xin Pan 已提交
398
        self._ivar._run_backward()
399 400

    def _gradient(self):
M
minqiyang 已提交
401
        return np.array(self._ivar._grad_value())
402

X
Xin Pan 已提交
403 404
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
405

406
    def __str__(self):
Y
Yang Yang(Tony) 已提交
407 408
        return self.to_string(True)

F
update  
fengjiayi 已提交
409
    def to_string(self, throw_on_error, with_details=False):
410 411 412 413
        """
        Get debug string.

        Args:
414 415
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
416
            with_details(bool): more details about variables and parameters
417 418
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
419

420 421
        Returns:
            str: The debug string.
422
        """
F
update  
fengjiayi 已提交
423 424
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
425
        protostr = self.desc.serialize_to_string()
426
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
427 428 429 430
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
431 432
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
433
        return res_str
434 435 436

    __repr__ = __str__

W
Wu Yi 已提交
437
    def _set_desc(self, input):
438 439 440 441 442 443 444 445 446
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
447 448
        self.desc = input

449 450
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
451 452 453 454
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
455 456 457

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
458 459 460
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
461

462 463 464 465
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
466 467 468 469
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
470 471
    @property
    def name(self):
M
minqiyang 已提交
472
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
473

T
typhoonzero 已提交
474 475 476 477
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
478 479 480
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
481
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
482 483

    @property
F
fengjiayi 已提交
484 485
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
486 487 488

    @property
    def lod_level(self):
489
        return self.desc.lod_level()
Y
Yu Yang 已提交
490

Y
Yu Yang 已提交
491 492 493 494
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
495
    def _set_error_clip(self, error_clip):
496 497 498 499 500 501 502 503 504
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
505 506
        self.error_clip = error_clip

Y
Yu Yang 已提交
507

F
fengjiayi 已提交
508 509 510
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
511

512 513
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
514 515 516 517
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
518
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
519 520 521 522 523
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
524 525 526 527
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
528 529 530 531 532 533 534 535 536
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
537
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
538 539 540 541 542 543
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
544 545 546 547 548 549 550 551
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
552 553
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
554 555
        return self.op_proto_map[type]

556 557 558 559
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
560
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
561
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
562 563
        }

F
fengjiayi 已提交
564

X
Xin Pan 已提交
565
class Operator(object):
566
    """
567 568 569 570 571 572 573
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
574
        type(str): The type of operator. Default None.
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
595
        Block.append_op or Block._prepend_op instead.
596 597 598 599 600 601 602 603 604 605

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
606
    """
607 608 609
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
610 611
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
612
    }
613

Y
Yu Yang 已提交
614 615
    def __init__(self,
                 block,
Y
Yu Yang 已提交
616
                 desc,
Y
Yu Yang 已提交
617 618 619
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
620
                 attrs=None):
Y
Yu Yang 已提交
621
        self.block = block
Y
Yu Yang 已提交
622
        self.desc = desc
G
gongweibao 已提交
623 624 625 626 627
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
628 629 630 631
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
632 633
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
634 635 636

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
637 638
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
639

G
gongweibao 已提交
640 641
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
642

F
fengjiayi 已提交
643 644 645 646 647
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
648 649 650 651 652
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
653
        self.desc.set_type(type)
F
fengjiayi 已提交
654
        proto = OpProtoHolder.instance().get_op_proto(type)
655

656 657 658
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
659 660
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
661
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
662 663
                    return True
            return False
Q
QI JUN 已提交
664

Y
Yang Yang(Tony) 已提交
665 666 667 668 669 670 671
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
672 673 674 675
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
676 677
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
678 679 680
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
681
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
682
                            in_arg_names.append(arg)
683 684
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
685
                        else:
M
minqiyang 已提交
686
                            in_arg_names.append(cpt.to_text(arg.name))
687
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
688 689
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
690

Y
Yu Yang 已提交
691
        if outputs is not None:
692
            for m in proto.outputs:
Q
qingqing01 已提交
693 694 695 696 697 698
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
699
            for out_proto in proto.outputs:
Q
qingqing01 已提交
700 701
                if out_proto.name not in outputs:
                    continue
702 703 704 705
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
706 707
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
708 709 710
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
711
                    out_arg_names.append(cpt.to_text(arg.name))
712 713
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
714

G
gongweibao 已提交
715 716
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
717
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
718
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
719
                attr_name = attr.name
G
gongweibao 已提交
720
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
721
                    continue
G
gongweibao 已提交
722
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
723 724
                self._update_desc_attr(attr_name, attr_val)

725
        self.desc.check_attrs()
M
minqiyang 已提交
726

W
Wu Yi 已提交
727
        if self._has_kernel(type):
Q
QI JUN 已提交
728
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
729
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
730

X
Xin Pan 已提交
731 732 733
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
M
minqiyang 已提交
734

X
Xin Pan 已提交
735
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
736
            if inputs is not None:
X
Xin Pan 已提交
737 738 739 740 741
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
742

X
Xin Pan 已提交
743
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
744
            if outputs is not None:
X
Xin Pan 已提交
745 746 747 748 749
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
750

W
Wu Yi 已提交
751
    def _has_kernel(self, op_type):
752 753
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
754
    def to_string(self, throw_on_error):
755
        """
756 757
        Get debug string.

758
        Args:
759 760
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
761

762 763
        Returns:
            str: The debug string.
764 765

        """
766
        protostr = self.desc.serialize_to_string()
767
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
768 769 770 771
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
772 773 774

    __repr__ = __str__

F
fengjiayi 已提交
775 776 777 778 779
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
780
        """
781
        Get the input arguments according to the input parameter name.
782

783 784
        Args:
            name(str): The input parameter name.
785

786 787 788
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
789
        """
F
fengjiayi 已提交
790 791
        return self.desc.input(name)

W
Wu Yi 已提交
792
    def _rename_input(self, old_name, new_name):
793 794 795 796 797 798 799 800 801 802
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
803
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
804

W
Wu Yi 已提交
805
    def _rename_output(self, old_name, new_name):
806 807 808 809 810 811 812 813 814 815
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
816
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
817

F
fengjiayi 已提交
818 819 820 821
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
822 823 824 825 826 827 828 829
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
830
    def output(self, name):
831
        """
832
        Get output arguments by the output parameter name.
833

834 835
        Args:
            name(str): The output parameter name.
836

837 838 839
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
840
        """
F
fengjiayi 已提交
841 842 843 844 845 846
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

847 848 849 850 851 852 853 854
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
855
    def has_attr(self, name):
856
        """
857 858
        Whether this Operator has the attribute with name or not.

859
        Args:
860
            name(str): the attribute name.
861

862 863
        Returns:
            bool: True if has this attribute.
864 865

        """
F
fengjiayi 已提交
866 867 868
        return self.desc.has_attr(name)

    def attr_type(self, name):
869
        """
870
        Get the type of attribute by attribute's name.
871

872 873
        Args:
            name(str): the attribute name.
874

875 876
        Returns:
            core.AttrType: the attribute type.
877
        """
F
fengjiayi 已提交
878 879
        return self.desc.attr_type(name)

W
Wu Yi 已提交
880
    def _set_attr(self, name, val):
881 882 883 884 885 886 887 888 889 890
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
904 905
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
906 907
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
908
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
909 910 911 912
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
913
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
914

F
fengjiayi 已提交
915 916 917 918 919
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
920
        """
921 922
        Get the attribute by name.

923
        Args:
924
            name(str): the attribute name.
925

926 927
        Returns:
            bool|int|str|float|list: The attribute value. The return value
928 929
            can be any valid attribute type.
        """
F
fengjiayi 已提交
930
        return self.desc.attr(name)
Y
Yu Yang 已提交
931

W
Wu Yi 已提交
932
    def _block_attr_id(self, name):
933
        """
G
gongweibao 已提交
934
        Get the block attribute's id by name.
935

936 937
        Args:
            name(str): the attribute name.
938

939 940
        Returns:
            int: the block index.
941
        """
W
Wu Yi 已提交
942
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
943

W
Wu Yi 已提交
944
    def _block_attr(self, name):
G
gongweibao 已提交
945 946 947 948 949 950 951 952 953 954
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
955
        id = self._block_attr_id(name)
G
gongweibao 已提交
956 957 958
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
959
    def _blocks_attr(self, name):
G
gongweibao 已提交
960 961 962 963 964 965 966 967 968 969
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
970
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
971 972 973 974 975
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
976
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
977 978 979 980 981 982 983 984 985 986
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
987
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
988

J
JiayiFeng 已提交
989
    def all_attrs(self):
F
fengjiayi 已提交
990
        """
991 992 993
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
994
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
995 996 997 998
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
999 1000
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1001
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1002 1003 1004
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1005
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1006 1007 1008 1009
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1010 1011
        return attr_map

Y
Yu Yang 已提交
1012

Y
Yu Yang 已提交
1013
class Block(object):
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1028
        use `Program._create_block()` to create a block.
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1043
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1044
        self.desc = program.desc.block(idx)
1045
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1046
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1047
        self.program = program
1048
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1049

1050
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1051 1052
        return self.to_string(True)

F
fengjiayi 已提交
1053 1054
    def to_string(self, throw_on_error, with_details=False):
        """
1055 1056
        Get debug string.

F
fengjiayi 已提交
1057 1058
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1059
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1060
            with_details(bool): more details about variables and parameters
1061 1062
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1063

1064 1065
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1066 1067 1068 1069
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1070
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1071 1072
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1073
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1074
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1075
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1076
            for op in self.ops:
F
fengjiayi 已提交
1077 1078
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1079 1080 1081
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1082 1083
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1084 1085
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1086 1087 1088

    __repr__ = __str__

Y
Yu Yang 已提交
1089 1090
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1091
        return self.desc.parent
Y
Yu Yang 已提交
1092

Y
Yu Yang 已提交
1093 1094 1095 1096
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1097
    def _set_forward_block_idx(self, idx):
1098 1099 1100 1101 1102 1103 1104 1105 1106
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1107
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1108

Y
Yu Yang 已提交
1109 1110
    @property
    def idx(self):
Y
Yu Yang 已提交
1111
        return self.desc.id
Y
Yu Yang 已提交
1112

Q
Qiao Longfei 已提交
1113
    def var(self, name):
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1127
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1128 1129 1130
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1131 1132
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1133
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1134
        return v
Q
Qiao Longfei 已提交
1135

X
Xin Pan 已提交
1136
    def _find_var_recursive(self, name):
1137 1138 1139 1140 1141 1142 1143
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1144
            Variable: the Variable with the giving name. Or None if not found.
1145
        """
Y
Yu Yang 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1170
        return None
Y
Yu Yang 已提交
1171

X
Xin Pan 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1191

M
minqiyang 已提交
1192
    def _clear_block(self):
M
minqiyang 已提交
1193
        # TODO(minqiyang): move this to backward_hooks
M
minqiyang 已提交
1194 1195
        self.desc._clear_block()

M
minqiyang 已提交
1196
        for name in self.vars.keys():
M
minqiyang 已提交
1197
            assert self.vars[name].persistable
M
minqiyang 已提交
1198

M
minqiyang 已提交
1199
        del self.ops[:]
M
minqiyang 已提交
1200

Q
Qiao Longfei 已提交
1201
    def all_parameters(self):
1202
        return list(self.iter_parameters())
1203

1204
    def iter_parameters(self):
M
minqiyang 已提交
1205
        return (item[1] for item in six.iteritems(self.vars)
1206
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1207

Y
Yu Yang 已提交
1208
    def create_var(self, *args, **kwargs):
1209
        var = Variable(block=self, *args, **kwargs)
1210 1211
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1212
        return var
Y
Yu Yang 已提交
1213

Q
Qiao Longfei 已提交
1214 1215 1216
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1217
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1218 1219
        """
        Rename variable in vars and ops' inputs and outputs
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1232
        """
M
minqiyang 已提交
1233 1234
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1235

T
typhoonzero 已提交
1236
        if not self.has_var(name):
1237
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1238 1239
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1240
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1241 1242 1243 1244 1245 1246 1247
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1248
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1249 1250 1251 1252
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1253
        orig_var_type = v.type
M
minqiyang 已提交
1254
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1255
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1256
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1257
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1258 1259 1260 1261
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1262
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1263 1264 1265 1266 1267 1268 1269
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1270
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1271 1272
            var = Variable(
                self,
T
typhoonzero 已提交
1273
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1274 1275 1276 1277
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1278
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1279 1280 1281
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1282
        self._sync_with_cpp()
1283
        return var
T
typhoonzero 已提交
1284

W
Wu Yi 已提交
1285
    def _remove_var(self, name):
M
minqiyang 已提交
1286
        self._sync_with_cpp()
M
minqiyang 已提交
1287
        self.desc._remove_var(cpt.to_bytes(name))
1288 1289
        del self.vars[name]

Y
Yu Yang 已提交
1290 1291
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1292
        param = Parameter(global_block, *args, **kwargs)
1293
        if 'initializer' in kwargs:
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1314
        return param
Y
Yu Yang 已提交
1315

Y
Yu Yang 已提交
1316
    def append_op(self, *args, **kwargs):
1317 1318 1319 1320 1321 1322
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1323
        op_desc = self.desc.append_op()
1324 1325 1326 1327 1328 1329 1330
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1331 1332 1333 1334 1335 1336 1337

        if _in_imperative_mode():
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
            self._trace_op(op, kwargs.get("stop_gradient", False))
1338
        self.ops.append(op)
M
minqiyang 已提交
1339

1340 1341 1342
        return op

    def _trace_op(self, op, stop_gradient=False):
M
minqiyang 已提交
1343 1344 1345 1346
        backward_refs = _imperative_tracer().trace(
            op.iop, op.inputs, op.outputs, self.desc,
            _imperative_current_expected_place_, stop_gradient)

M
minqiyang 已提交
1347
        # TODO(minqiyang): support backward_hooks to eager remove backward_refs
M
minqiyang 已提交
1348 1349 1350 1351 1352 1353 1354 1355
        op.backward_refs = defaultdict(list)
        for k, v in six.iteritems(op.inputs):
            if k in backward_refs:
                op.backward_refs[k] = op.inputs[k]

        for k, v in six.iteritems(op.outputs):
            if k in backward_refs:
                op.backward_refs[k] = op.outputs[k]
Y
Yu Yang 已提交
1356

W
Wu Yi 已提交
1357
    def _insert_op(self, index, *args, **kwargs):
1358 1359 1360 1361 1362 1363 1364 1365 1366
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1367 1368
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1369 1370 1371 1372
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1373
    def _remove_op(self, index):
1374 1375 1376 1377 1378 1379 1380 1381 1382
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
M
minqiyang 已提交
1383
        self._sync_with_cpp()
W
Wu Yi 已提交
1384
        self.desc._remove_op(index, index + 1)
1385 1386
        del self.ops[index]

W
Wu Yi 已提交
1387
    def _slice_ops(self, start, end):
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1398
        return self.ops[start:end]
Y
Yancey1989 已提交
1399

W
Wu Yi 已提交
1400 1401
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1402 1403 1404 1405 1406 1407 1408
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1409
        self.ops.insert(0, op)
M
minqiyang 已提交
1410 1411
        if _in_imperative_mode():
            self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1412 1413
        return op

W
Wu Yi 已提交
1414
    def _sync_with_cpp(self):
1415
        """
1416 1417
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1418
        """
Q
Qiao Longfei 已提交
1419 1420 1421 1422 1423
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1424
        # sync variables removed from c++ end
1425
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1426
            if not self.desc.find_var(cpt.to_bytes(var)):
1427 1428
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1429
        # sync operators from cpp
1430 1431 1432 1433
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1450 1451 1452 1453 1454

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1455
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1456 1457 1458 1459 1460 1461 1462

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1476 1477 1478 1479
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1480
    def _copy_param_info_from(self, other):
1481
        """
1482 1483
        Copy the information of parameters from the other block.

1484
        Args:
1485 1486 1487 1488 1489
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1490 1491 1492 1493 1494

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1495 1496
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1497
        for p in other.iter_parameters():
1498 1499 1500
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1501
                raise ValueError("_copy_param_info_from should be invoked with "
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1514
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1515
                error_clip=p.error_clip,
1516 1517 1518
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1519
    def _clone_variable(self, var):
1520 1521
        """
        Clone a variable into current block.
1522

1523 1524 1525 1526
        Args:
            var: the variable to be cloned.

        Returns:
1527
            Variable: the new  variable cloned from 'var' in current block.
1528 1529
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1530 1531 1532 1533 1534
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1535 1536
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1537
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1538 1539 1540 1541 1542 1543
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1544 1545
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1546 1547 1548 1549 1550 1551 1552
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1553 1554
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1555
        return ret_var
1556

Y
Yu Yang 已提交
1557

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
class IrGraph(object):
    """
    IrGraph uses core.Graph as the delegation to accomplish the manipulation.
    """

    def __init__(self, graph, for_test=False):
        """
        Construct the IrGraph using core.Graph.
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
        return self._for_test

    def all_parameters(self):
        param_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                param_nodes.add(node)
        return param_nodes

    def all_vars(self):
        return {node for node in self.graph.nodes() if node.is_var()}

    def all_ops(self):
        return {node for node in self.graph.nodes() if node.is_op()}

    def create_param_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
        for attr, value in attrs.iteritems():
            self._update_desc_attr(op_desc, attr, value)
        for input_name, var_nodes in inputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
        for output_name, var_nodes in outputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
        assert old_input_node in self.graph.nodes() and new_input_node in self.graph.nodes() and \
            op_node in self.graph.nodes(), 'Th three arguments must be in the graph nodes.'
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
            'Th two arguments must be in the graph nodes.'
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
        if not isinstance(remove_nodes, set):
            remove_nodes = set(remove_nodes)
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

    def draw(self, save_path, name, marked_nodes=None):
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

        remove_ctr_vars = set()
        ops_num = 0
        for node in self.graph.nodes():
            if node.is_ctrl_var():
                remove_ctr_vars.add(node)
            elif node.is_op():
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        self.safe_remove_nodes(remove_ctr_vars)
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
        convert_pass = core.get_pass('graph_to_program_pass')
        convert_pass.set('program', Program().desc)
        convert_pass.apply(self.graph)
        desc = convert_pass.get_program('program')
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1706
class Program(object):
D
dzhwinter 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1718
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1719 1720

    Returns:
Y
yuyang18 已提交
1721
        A empty program.
D
dzhwinter 已提交
1722 1723

    Examples:
Y
yuyang18 已提交
1724 1725 1726 1727 1728 1729
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1730 1731 1732

    """

1733 1734
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1735 1736
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1737
        self._seed = 0
Y
yuyang18 已提交
1738
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1739
        self._op_role_var = []
T
tangwei12 已提交
1740

1741 1742
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1743
        self._is_distributed = False
1744
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1745
        self._is_chief = False
1746 1747 1748
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1749
        self._endpoints = []
1750 1751 1752
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1753
        self._trainers_endpoints = []
1754
        # the distributed lookup table names
T
tangwei12 已提交
1755
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1756
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1757
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1758
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1759 1760

    @property
D
dzhwinter 已提交
1761
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1762 1763
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1764
        return self.__is_mem_optimized
D
dzhwinter 已提交
1765

D
dzhwinter 已提交
1766 1767 1768
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1769 1770 1771

    @property
    def op_role(self):
Y
yuyang18 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1785 1786 1787
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1788
    def op_role(self, role):
Y
yuyang18 已提交
1789 1790 1791 1792
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1793 1794 1795 1796 1797 1798 1799
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1800 1801 1802 1803
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1804
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1805

S
rename  
sneaxiy 已提交
1806
    @signature_safe_contextmanager
W
Wu Yi 已提交
1807
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1808 1809 1810 1811 1812 1813 1814
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1815
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1816 1817 1818 1819

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1820
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1821 1822
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1823 1824 1825
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1826 1827
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1828 1829 1830 1831
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1832
        yield
X
Xin Pan 已提交
1833 1834
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1835

S
rename  
sneaxiy 已提交
1836
    @signature_safe_contextmanager
X
Xin Pan 已提交
1837
    def _lr_schedule_guard(self, is_with_opt=False):
1838 1839 1840 1841 1842 1843 1844
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1845 1846 1847 1848
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1849 1850 1851 1852 1853 1854 1855

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1856 1857 1858 1859

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1860 1861
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1862 1863
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1864 1865 1866
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1867 1868
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1869

1870
    def __str__(self):
Y
yuyang18 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1880 1881
        return self.to_string(True)

F
fengjiayi 已提交
1882 1883 1884
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1885

F
fengjiayi 已提交
1886
        Args:
Y
yuyang18 已提交
1887 1888
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1889

Y
yuyang18 已提交
1890 1891 1892 1893
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1894 1895
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1896 1897 1898 1899

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1910 1911
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1912 1913
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1914

W
Wu Yi 已提交
1915
    def _get_desc(self):
Y
yuyang18 已提交
1916 1917 1918 1919 1920 1921 1922
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1923 1924
        return self.desc

X
version  
Xin Pan 已提交
1925 1926 1927
    def _version(self):
        return self.desc._version()

1928
    def clone(self, for_test=False):
Y
yuyang18 已提交
1929 1930 1931
        """
        Create a new, duplicated program.

1932

Y
yuyang18 已提交
1933 1934 1935 1936
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1937

Y
yuyang18 已提交
1938 1939 1940 1941
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1942 1943 1944 1945 1946
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1947 1948

        Args:
Y
yuyang18 已提交
1949 1950
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1951

D
dzhwinter 已提交
1952
        Returns:
Y
yuyang18 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2006 2007
        """
        if for_test:
X
Xin Pan 已提交
2008
            p = self._inference_optimize(prune_read_op=False)
2009
        else:
2010
            p = Program()
G
gongweibao 已提交
2011 2012
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2013
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2014 2015 2016
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2017 2018 2019 2020

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2021
            p._sync_with_cpp()
2022

W
Wu Yi 已提交
2023
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2024
        p._copy_data_info_from(self)
2025
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2026
        return p
2027

W
Wu Yi 已提交
2028
    def _prune(self, targets):
Y
yuyang18 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2044 2045 2046 2047 2048 2049
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2050 2051
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2052
                    # and we need to find the current op that generate this
2053 2054 2055 2056 2057 2058 2059 2060
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2061
                    t = t.op
2062 2063 2064 2065
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2066
                else:
2067 2068
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2069 2070 2071 2072

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2073 2074 2075
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2076
        res._sync_with_cpp()
2077 2078
        return res

X
Xin Pan 已提交
2079
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2080
        """
F
fengjiayi 已提交
2081 2082 2083 2084 2085
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2086
        3. change the :code:`is_test`
Y
yuyang18 已提交
2087 2088 2089
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2090
        Args:
X
Xin Pan 已提交
2091 2092
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2093

Y
yuyang18 已提交
2094 2095 2096 2097 2098 2099
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2100
        res = Program()
2101
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2102 2103 2104 2105

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2106
        if prune_read_op:
2107 2108 2109 2110 2111 2112 2113 2114 2115
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2116
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2117 2118

        # change all `is_test` attributes to True
M
minqiyang 已提交
2119
        for i in six.moves.range(res.desc.num_blocks()):
2120
            block = res.desc.block(i)
M
minqiyang 已提交
2121
            for j in six.moves.range(block.op_size()):
2122 2123
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2124
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2125 2126 2127
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2128
        res._sync_with_cpp()
2129 2130
        return res

2131 2132
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2133 2134 2135 2136 2137 2138 2139
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2140
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2141 2142 2143 2144

        Returns:
            Program: A deserialized program desc.
        """
2145 2146
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2147
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2148
        p._sync_with_cpp()
2149
        return p
Y
Yu Yang 已提交
2150

2151
    @staticmethod
2152
    def _construct_from_desc(desc):
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2168 2169
    @property
    def random_seed(self):
Y
yuyang18 已提交
2170 2171 2172 2173 2174 2175
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2176 2177
        return self._seed

Q
qiaolongfei 已提交
2178 2179
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2180 2181 2182
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2183 2184
        return self.desc.num_blocks()

D
dzhwinter 已提交
2185 2186 2187 2188 2189 2190
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2191
    def __repr__(self):
2192
        return self.__str__()
2193

Y
Yu Yang 已提交
2194
    def global_block(self):
Y
yuyang18 已提交
2195 2196 2197
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2198 2199
        return self.blocks[0]

Q
Qiao Longfei 已提交
2200
    def block(self, index):
Y
yuyang18 已提交
2201 2202 2203 2204 2205 2206 2207 2208
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2209 2210
        return self.blocks[index]

Y
Yu Yang 已提交
2211
    def current_block(self):
Y
yuyang18 已提交
2212 2213 2214 2215
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2216 2217
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2218
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2229
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2230 2231 2232
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2233 2234 2235 2236
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2237
    def _rollback(self):
Y
yuyang18 已提交
2238 2239 2240 2241 2242
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2243 2244
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2245
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2256 2257 2258
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2259
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2260

W
Wu Yi 已提交
2261
    def _copy_param_info_from(self, other):
2262
        """
2263
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2264

Y
yuyang18 已提交
2265 2266 2267
        Notes: This is a very low level API. Users should not invoke it
        directly.

2268 2269 2270 2271 2272 2273 2274
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2275
            raise TypeError("_copy_param_info_from should be invoked with "
2276 2277 2278
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2279
            raise ValueError("_copy_param_info_from should be invoked with two "
2280
                             "program, with represent the same topology")
W
Wu Yi 已提交
2281
        self.global_block()._copy_param_info_from(other.global_block())
2282

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2298
        self._parameters_on_pservers = other._parameters_on_pservers
2299
        self._endpoints = other._endpoints
2300
        self._ps_endpoint = other._ps_endpoint
2301 2302
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2303
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2304 2305
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2306

Y
yuyang18 已提交
2307 2308 2309
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2310 2311 2312 2313 2314 2315 2316
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2317
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2318 2319 2320
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2321
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2322
                             "program, with represent the same topology")
2323
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2324 2325 2326
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2327
    def list_vars(self):
Y
yuyang18 已提交
2328 2329 2330 2331 2332 2333
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2334
        for each_block in self.blocks:
2335
            for each_var in list(each_block.vars.values()):
2336 2337
                yield each_var

Y
Yu Yang 已提交
2338

Y
Yu Yang 已提交
2339
class Parameter(Variable):
2340
    """
2341
    Parameter is derived from Variable. A parameter is a persistable
2342
    Variable, and will be updated by optimizers after each iteration.
2343
    The training of a neural network is essentially the updating of
2344 2345
    its parameters.

2346
    Relative to a general Variable, a Parameter has several its own
2347 2348
    member variables:

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2361 2362
    """

Y
Yu Yang 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2373 2374 2375

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2376 2377 2378 2379
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2380 2381
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2382
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2383

W
wanghaoshuang 已提交
2384
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2385

F
fengjiayi 已提交
2386 2387 2388
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2389 2390 2391
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2392

F
update  
fengjiayi 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2407
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2408
            for attr_name in additional_attr:
2409 2410
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2411 2412
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2413 2414 2415 2416
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2417

Y
Yu Yang 已提交
2418
# program is a global instance.
Y
Yu Yang 已提交
2419 2420
_main_program_ = Program()
_startup_program_ = Program()
2421

2422

2423
def default_startup_program():
Y
Yu Yang 已提交
2424
    """
Y
yuyang18 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2434

Y
Yu Yang 已提交
2435 2436 2437
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2438
    return _startup_program_
2439

2440

2441
def default_main_program():
Y
Yu Yang 已提交
2442
    """
Y
yuyang18 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2452

Y
Yu Yang 已提交
2453 2454 2455
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2456
    return _main_program_
Y
Yu Yang 已提交
2457 2458 2459 2460 2461


def switch_main_program(program):
    """
    Switch the main program to a new program.
2462

Y
Yu Yang 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2477
    Switch the startup program to a new program
Y
Yu Yang 已提交
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2490
@signature_safe_contextmanager
Y
Yu Yang 已提交
2491 2492
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2493 2494 2495
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2496

Y
Yu Yang 已提交
2497
    Examples:
Y
yuyang18 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2508

Y
Yu Yang 已提交
2509
    Examples:
Y
yuyang18 已提交
2510 2511 2512 2513 2514 2515

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2516

Y
Yu Yang 已提交
2517
    Args:
Y
yuyang18 已提交
2518
        main_program(Program): New main program inside `with` statement.
2519
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2533 2534


W
Wu Yi 已提交
2535
def _get_var(name, program=None):
X
xuwei06 已提交
2536
    """
Y
yuyang18 已提交
2537
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2538

X
xuwei06 已提交
2539 2540 2541
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2542
        If None, default_global_program() will be used.
X
xuwei06 已提交
2543 2544 2545 2546 2547 2548 2549

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2550
    assert isinstance(program, Program)
X
xuwei06 已提交
2551 2552

    return program.global_block().var(name)
2553 2554


S
rename  
sneaxiy 已提交
2555
@signature_safe_contextmanager
P
Paddle CI 已提交
2556
def _imperative_guard(tracer):
2557 2558 2559
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2560

P
Paddle CI 已提交
2561 2562 2563 2564 2565
    yield

    _imperative_tracer_ = tmp_trace


S
rename  
sneaxiy 已提交
2566
@signature_safe_contextmanager
P
Paddle CI 已提交
2567
def _imperative_place_guard(place):
M
minqiyang 已提交
2568 2569 2570
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2571

2572
    yield
M
minqiyang 已提交
2573

M
minqiyang 已提交
2574
    _imperative_current_expected_place_ = tmp_place