engine.h 30.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <cstdint>
20
#include <map>
Y
Yan Chunwei 已提交
21
#include <memory>
22
#include <mutex>  // NOLINT
23
#include <string>
Y
Yan Chunwei 已提交
24
#include <unordered_map>
25
#include <unordered_set>
26
#include <utility>
27
#include <vector>
28 29
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
30
#include "paddle/fluid/framework/scope.h"
N
nhzlx 已提交
31
#include "paddle/fluid/framework/tensor.h"
32
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
33
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
34 35
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
36
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
38
#include "paddle/fluid/inference/utils/singleton.h"
39
#include "paddle/fluid/platform/enforce.h"
40
#include "paddle/phi/common/data_type.h"
41 42
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/stream.h"
43
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
44 45 46 47 48

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
49 50 51 52
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

53 54 55 56 57 58 59 60 61 62
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
63
    case FluidDT::VarType_Type_INT64:
64
      return TRT_DT::kINT32;
W
wenbin 已提交
65 66
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
67 68 69 70
#if IS_TRT_VERSION_GE(8400)
    case FluidDT::VarType_Type_BOOL:
      return TRT_DT::kBOOL;
#endif
71
    default:
72 73
      PADDLE_THROW(platform::errors::InvalidArgument(
          "unknown fluid datatype in TRT op converter"));
74 75 76 77 78 79
  }
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
80 81
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
82
                            bool with_dynamic_shape = false) {
83 84
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
85
                    platform::errors::InvalidArgument(
86
                        "TensorRT's tensor input requires at least 1 "
87
                        "dimensions, but input %s has %d dims.",
88 89
                        input,
                        shape.size()));
W
wenbin 已提交
90

91 92 93 94 95 96 97 98 99 100 101 102 103
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
104 105
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
106 107 108 109
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
110 111
            input,
            ShapeStr(shape)));
112
      }
113
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
114 115 116 117 118
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
119 120
            input,
            ShapeStr(shape)));
W
wenbin 已提交
121 122
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
123
    } else if (shape.size() == 3UL) {
124 125 126 127
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
128 129
            input,
            ShapeStr(shape)));
130
      }
131
      return nvinfer1::Dims2(shape[1], shape[2]);
132 133 134 135 136
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
137 138
            input,
            ShapeStr(shape)));
139 140 141 142 143
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
144
    }
145
    // static shape doesn't support 1D op so far.
146 147
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
148 149 150
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
151 152
                          input,
                          ShapeStr(shape)));
153 154 155 156 157 158 159

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
160 161
  } else {
    if (shape.size() == 4UL) {
162
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
163 164 165
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
166 167 168 169 170 171
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
172 173
  }
}
174
}  // namespace
175

N
nhzlx 已提交
176
class TRTInt8Calibrator;
W
wanghuancoder 已提交
177

Y
Yan Chunwei 已提交
178 179 180
/*
 * TensorRT Engine.
 *
181
 * There are two alternative ways to use it, one is to build from a paddle
182
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
183
 */
184 185
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
186
  using ShapeMapType = std::map<std::string, std::vector<int>>;
187
  using PredictorID = int;
188

Y
Yan Chunwei 已提交
189 190 191 192
 public:
  // Weight is model parameter.
  class Weight {
   public:
193
    Weight() = default;
194
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
195 196 197 198
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
199
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
200

201 202 203 204 205 206 207 208
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

209 210
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
211 212 213 214
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
215
  TensorRTEngine(
216
      int max_batch,
217
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
218
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
219 220
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
221 222 223
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
224 225 226
      const ShapeMapType min_shape_tensor = {},
      const ShapeMapType max_shape_tensor = {},
      const ShapeMapType optim_shape_tensor = {},
227
      bool disable_trt_plugin_fp16 = false,
228
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
229
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
230 231
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
232
        precision_(precision),
N
nhzlx 已提交
233
        calibrator_(calibrator),
N
nhzlx 已提交
234
        device_id_(device_id),
235 236 237
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
238 239 240
        min_shape_tensor_(min_shape_tensor),
        max_shape_tensor_(max_shape_tensor),
        optim_shape_tensor_(optim_shape_tensor),
241
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
242
        model_precision_(model_precision),
243 244 245 246
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
247 248
          min_input_shape_.size(),
          max_input_shape_.size(),
249 250 251
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
252 253
              min_input_shape_.size(),
              max_input_shape_.size()));
254
      PADDLE_ENFORCE_EQ(
255 256
          min_input_shape_.size(),
          optim_input_shape_.size(),
257 258 259
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
260 261
              min_input_shape_.size(),
              optim_input_shape_.size()));
262 263 264 265 266 267 268
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
269
    dy::initLibNvInferPlugins(&logger, "");
270
  }
Y
Yan Chunwei 已提交
271

272 273 274 275 276 277 278 279 280
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
281

282
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
283 284 285 286 287
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
288 289
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
290
                     const std::string& name);
L
Luo Tao 已提交
291 292
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
293
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
294

295
  void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
L
Luo Tao 已提交
296 297
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
298 299 300
  nvinfer1::ITensor* GetITensor(const std::string& name, bool scalar = false);
  nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name,
                                           bool scalar = false);
301
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
302 303

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
304
  nvinfer1::IExecutionContext* context();
W
wenbin 已提交
305 306 307 308

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
309
      return profile_index_[predictor_id_per_thread];
W
wenbin 已提交
310 311 312 313 314 315 316 317 318 319 320
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

321 322 323 324 325
  void ResetContext() {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
326 327 328
    std::unique_lock<std::mutex> lock(mutex_);
    infer_context_[predictor_id_per_thread].reset(nullptr);
    infer_context_.erase(predictor_id_per_thread);
329
    cur_profile_num_ = 0;
330
  }
N
nhzlx 已提交
331 332

  nvinfer1::IHostMemory* Serialize() {
333 334 335 336
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
337
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
338
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
339 340 341 342 343 344
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
345 346 347
    return ihost_memory_.get();
  }

348
  void Deserialize(const std::string& engine_serialized_data);
N
nhzlx 已提交
349

350 351
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
352 353 354 355 356 357 358

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
359
  int GetDeviceId() { return device_id_; }
360

361
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
362 363
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
364 365 366 367 368

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

369 370 371 372
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

373 374 375
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
376

377 378
  // Get fp16 trt weight. If src weight is not fp16, we will cast.
  Weight GetFp16TrtWeight(const std::string& name,
379
                          const phi::DenseTensor& weight_tensor);
380

381 382
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
383
                          const phi::DenseTensor& weight_tensor);
384 385 386

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
387
                      const phi::DenseTensor& weight_tensor);
388

389 390 391 392 393 394 395 396
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
397 398 399 400 401
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
402
  std::unordered_map<std::string /*name*/, std::unique_ptr<phi::DenseTensor>>
N
nhzlx 已提交
403
      weight_map;
Y
Yan Chunwei 已提交
404

405 406 407
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
408
                  std::unique_ptr<phi::DenseTensor> w_tensor) {
409 410
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
411
    std::string splitter = "__";
412 413 414 415 416 417 418 419
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
420 421 422
    suffix_counter += 1;
  }

423
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
424 425
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
426
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
427 428 429
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
430 431 432 433 434 435
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
436 437 438 439 440 441
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

442 443 444 445 446 447 448
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
449 450
  void Execute(int batch_size,
               std::vector<void*>* buffers,
451 452
               cudaStream_t stream = nullptr);

453
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
454 455 456 457

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
458 459 460
  ShapeMapType min_shape_tensor() { return min_shape_tensor_; }
  ShapeMapType max_shape_tensor() { return max_shape_tensor_; }
  ShapeMapType optim_shape_tensor() { return optim_shape_tensor_; }
461 462 463 464 465 466 467 468 469

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
470 471
          min_input_shape_.count(name),
          true,
472 473
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
474 475
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
476 477 478 479
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
480 481 482 483
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

515
  bool use_varseqlen() { return use_varseqlen_; }
516
  bool with_ernie() { return with_ernie_; }
517
  bool with_interleaved() { return with_interleaved_; }
518 519 520 521 522 523
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
524
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
525
  bool with_dynamic_shape() { return with_dynamic_shape_; }
526
  AnalysisConfig::Precision precision() { return precision_; }
527

528
#if IS_TRT_VERSION_GE(6000)
529
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
530 531
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
532
      plugin::DynamicPluginTensorRT* plugin) {
533 534 535 536 537
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
558 559
          attrs_.count(attr_name),
          0,
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
578 579
        attrs_.count(attr_name),
        0,
580 581 582 583 584 585 586 587
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
588 589
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
590 591 592
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
593 594
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
611 612
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
613 614 615 616 617
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
618
  void SetProfileNum(int num) { max_profile_num_ = num; }
619 620 621 622

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
623
  void SetScope(const framework::Scope& scope) { scope_ = &scope; }
624

625 626 627 628
  void SetContextMemorySharing(bool context_memory_sharing) {
    context_memory_sharing_ = context_memory_sharing;
  }

Y
Yan Chunwei 已提交
629
 private:
N
nhzlx 已提交
630 631 632 633
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
634 635
  // Used for convert weight into Itensor
  const framework::Scope* scope_;
N
nhzlx 已提交
636

Y
Yan Chunwei 已提交
637 638
  // the max batch size
  int max_batch_;
639 640
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
641
  // the max memory size the engine uses
642
  int64_t max_workspace_;
643

Z
Zhaolong Xing 已提交
644
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
645 646 647
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
648

649 650 651
  // use for engine context memory sharing
  bool context_memory_sharing_{false};

N
nhzlx 已提交
652
  int device_id_;
W
wenbin 已提交
653 654
  int max_profile_num_{1};
  int cur_profile_num_{0};
655
  std::unordered_map<PredictorID, int> profile_index_;
656 657 658
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
659 660 661
  ShapeMapType min_shape_tensor_;
  ShapeMapType max_shape_tensor_;
  ShapeMapType optim_shape_tensor_;
662
  bool disable_trt_plugin_fp16_{false};
663
  phi::DataType model_precision_{phi::DataType::FLOAT32};
664
  bool use_varseqlen_{false};
665 666
  bool use_dla_{false};
  int dla_core_{0};
667
  bool with_ernie_{false};
668
  bool with_interleaved_{false};
669 670
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
671 672 673
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
674 675
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
676

677
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
678
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
679
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
680 681 682 683

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
684 685 686 687 688
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
689 690 691 692 693 694
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
695
  std::unordered_map<PredictorID, infer_ptr<nvinfer1::IExecutionContext>>
696
      infer_context_;
N
nhzlx 已提交
697
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
698
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
699

700
  std::unordered_map<std::string, paddle::any> attrs_;
701 702
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

703 704 705
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
706
  int binding_num_;
707
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
708
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
709
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
710
#endif
711
  std::mutex mutex_;
712
  bool use_inspector_;
713 714 715

 public:
  thread_local static int predictor_id_per_thread;
Y
Yan Chunwei 已提交
716 717
};  // class TensorRTEngine

718
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
719 720 721 722 723 724 725 726 727
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
728
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
729
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
730

731
class TRTEngineManager {
732 733 734
  using PredictorID = int;
  using AllocationPtr = phi::Allocator::AllocationPtr;

735
 public:
736 737 738 739 740
  bool Empty() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return engines_.size() == 0;
  }

741
  bool Has(const std::string& name) const {
742
    std::lock_guard<std::mutex> lock(mutex_);
743 744 745 746 747
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
748
    std::lock_guard<std::mutex> lock(mutex_);
749 750 751
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
752
  TensorRTEngine* Create(
753 754
      std::string name,
      int max_batch,
755
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
756
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
757 758
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
759 760 761
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
762 763 764
      const std::map<std::string, std::vector<int>> min_shape_tensor = {},
      const std::map<std::string, std::vector<int>> max_shape_tensor = {},
      const std::map<std::string, std::vector<int>> optim_shape_tensor = {},
765
      bool disable_trt_plugin_fp16 = false,
766
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
767
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
768 769 770 771 772 773 774 775
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
776 777 778
                                 min_shape_tensor,
                                 max_shape_tensor,
                                 optim_shape_tensor,
779
                                 disable_trt_plugin_fp16,
780
                                 model_precision,
781
                                 logger);
782
    std::lock_guard<std::mutex> lock(mutex_);
783 784 785 786 787
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
788
    std::lock_guard<std::mutex> lock(mutex_);
789 790 791
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
792
    engines_.clear();
793 794
  }

W
Wilber 已提交
795
  void DeleteKey(const std::string& key) {
796
    std::lock_guard<std::mutex> lock(mutex_);
W
Wilber 已提交
797 798 799 800 801 802 803
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
  void updateContextMemorySize(size_t mem_size, PredictorID predictor_id) {
    bool size_updated{false};

    {
      std::lock_guard<std::mutex> lock(mutex_);
      if (max_ctx_mem_size_ < mem_size) {
        max_ctx_mem_size_ = mem_size;
        size_updated = true;
      }
    }

    if (size_updated) {
      releaseContextMemory(predictor_id);
    }
  }

  void* getContextMemory(PredictorID predictor_id,
                         const phi::GPUPlace& place,
                         const phi::Stream& stream) {
    std::lock_guard<std::mutex> lock(mutex_);
    static auto alignment = getAlignmentSize(place);
    if (context_memorys_.count(predictor_id) == 0) {
      auto context_memory =
          memory::Alloc(place, max_ctx_mem_size_ + alignment, stream);
      // context_memory_[predictor_id].reset(context_memory.release());
      context_memorys_[predictor_id] = std::move(context_memory);
    }
    return getAlignedMemory(context_memorys_[predictor_id]->ptr(), alignment);
  }

  void releaseContextMemory(PredictorID predictor_id) {
    std::lock_guard<std::mutex> lock(mutex_);
    if (context_memorys_.count(predictor_id)) {
      context_memorys_[predictor_id].reset(nullptr);
      context_memorys_.erase(predictor_id);
    }
  }

842
 private:
843 844 845 846 847 848 849 850 851 852 853 854
  size_t getAlignmentSize(const phi::GPUPlace& place) {
    const auto& prop = platform::GetDeviceProperties(place.GetDeviceId());
    return prop.textureAlignment;
  }

  void* getAlignedMemory(void* addr, size_t alignment) {
    return reinterpret_cast<void*>(uintptr_t(addr) & (~(alignment - 1)));
  }

  mutable std::mutex mutex_;
  size_t max_ctx_mem_size_{0};
  std::unordered_map<PredictorID, AllocationPtr> context_memorys_;
855
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
856 857 858 859 860 861 862 863 864
  // createInferBuilder loads trt kernels and take a few second
  // But as long as one IBuilder lives, trt kernel will not be unloaded
  // Hence, a persistent IBuilder to avoid TensorRT unload/reload kernels
  std::unique_ptr<nvinfer1::IBuilder, std::function<void(nvinfer1::IBuilder*)>>
      holder{createInferBuilder(&NaiveLogger::Global()), [](auto* ptr) {
               if (ptr) {
                 ptr->destroy();
               }
             }};
865 866
};

Y
Yan Chunwei 已提交
867 868 869
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle