operator.cc 136.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18
#include <unordered_set>
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/raw_tensor.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
29
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/var_type.h"
31
#include "paddle/fluid/operators/isfinite_op.h"
32
#include "paddle/fluid/operators/ops_extra_info.h"
33
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
34
#include "paddle/fluid/platform/enforce.h"
35
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
36
#include "paddle/fluid/platform/profiler/event_tracing.h"
37
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
38
#include "paddle/phi/common/int_array.h"
39
#include "paddle/phi/common/scalar.h"
40
#include "paddle/phi/core/compat/get_kerneltype_forvar_utils.h"
41
#include "paddle/phi/core/ddim.h"
42
#include "paddle/phi/core/flags.h"
43
#include "paddle/phi/core/kernel_context.h"
44 45
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
46

47
namespace phi {
48
class DenseTensor;
49
}  // namespace phi
50

51
#ifdef PADDLE_WITH_XPU
52 53
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
54
#endif
Q
Qiao Longfei 已提交
55

56 57
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
58
#include "paddle/fluid/platform/mkldnn_op_list.h"
59 60
#endif

61 62 63 64
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#endif

D
dzhwinter 已提交
65
DECLARE_bool(benchmark);
66
PHI_DECLARE_bool(check_nan_inf);
67
DECLARE_bool(enable_unused_var_check);
68 69
PHI_DECLARE_bool(run_kp_kernel);
PHI_DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
70

Q
Qiao Longfei 已提交
71 72 73
namespace paddle {
namespace framework {

74 75 76 77 78 79
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
80

81
static DDim GetDimsDebug(const Scope& scope,
82
                         const std::string& name,
83
                         bool get_actual_dim = false) {
84
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
85 86
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
87 88
  }

89 90
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
91
    return tensor.dims();
92
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
93
    if (get_actual_dim) {
94
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
95
    } else {
96
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
97
    }
S
Steffy-zxf 已提交
98 99
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
100 101 102 103 104
  } else {
    return DDim({-1});
  }
}

105
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
106 107 108 109 110
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

111
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
112 113 114 115
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
116

117 118
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
119
    if (UNLIKELY(!tensor.IsInitialized())) {
120 121
      return "";
    }
122
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
123 124
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
125 126 127
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
128
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
129
    }
S
Steffy-zxf 已提交
130 131
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
132 133 134 135 136
  } else {
    return "";
  }
}

137
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
138 139 140 141 142 143 144 145 146 147
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

148 149
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
150 151 152 153
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
154 155
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
156 157 158 159 160 161 162 163 164 165
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

166
static int GetRowSize(const Scope& scope, const std::string& name) {
167 168 169 170 171
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

172 173
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
174 175 176 177 178
  }

  return -1;
}

179
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
180 181 182 183 184 185 186
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

187 188
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
189
    return tensor.lod();
Q
Qiao Longfei 已提交
190 191 192 193 194
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
195 196 197 198 199
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
200
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
201 202 203 204 205 206
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
207
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
208 209 210 211 212 213
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

214 215 216 217 218 219 220 221 222 223 224 225
RuntimeInferShapeContext::RuntimeInferShapeContext(const OperatorBase& op,
                                                   const RuntimeContext& ctx)
    : op_(op), ctx_(ctx) {}

bool RuntimeInferShapeContext::HasInput(const std::string& name) const {
  // has only one input
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end()) {
    return false;
  }
  const auto& in = it->second;
226
  if (in.empty()) return false;
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  PADDLE_ENFORCE_EQ(
      in.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input %s should not contain more than one inputs.", name));
  return in[0] != nullptr;
}

bool RuntimeInferShapeContext::HasOutput(const std::string& name) const {
  // has only one output
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end()) {
    return false;
  }
  const auto& out = it->second;
243
  if (out.empty()) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    return false;
  }
  PADDLE_ENFORCE_EQ(
      out.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Output %s should not contain more than one outputs.", name));
  return out[0] != nullptr;
}

bool RuntimeInferShapeContext::HasAttr(const std::string& name) const {
  return op_.HasAttr(name);
}

bool RuntimeInferShapeContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (auto& input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

bool RuntimeInferShapeContext::HasOutputs(const std::string& name,
                                          bool allow_null) const {
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end() || it->second.empty()) {
    return false;
  }
  if (!allow_null) {
    for (auto& output : it->second) {
      if (output == nullptr) return false;
    }
  }
  return true;
}

AttrReader RuntimeInferShapeContext::Attrs() const {
  return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
}

std::vector<std::string> RuntimeInferShapeContext::Inputs(
    const std::string& name) const {
  return op_.Inputs(name);
}

std::vector<std::string> RuntimeInferShapeContext::Outputs(
    const std::string& name) const {
  return op_.Outputs(name);
}

std::string RuntimeInferShapeContext::GetInputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->inputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->inputs().size()));
  return op_proto->inputs()[idx].name();
}

std::string RuntimeInferShapeContext::GetOutputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->outputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of outputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->outputs().size()));
  return op_proto->outputs()[idx].name();
}

void RuntimeInferShapeContext::ShareDim(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second[i];
  Variable* out_var = out_it->second[j];

  PADDLE_ENFORCE_EQ(
      in_var->Type(),
      out_var->Type(),
      platform::errors::InvalidArgument(
          "The type of input (%s) and output (%s) are inconsistent.", in, out));

  if (in_var->IsType<phi::SelectedRows>()) {
    auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
    auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
    out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
    out_sele_rows->set_rows(in_sele_rows.rows());
    out_sele_rows->set_height(in_sele_rows.height());
  } else if (in_var->IsType<phi::DenseTensor>()) {
    auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_lod_tensor->Resize(in_lod_tensor.dims());
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Currently, the input type of ShareDim only can be phi::DenseTensor "
        "or SelectedRows."));
  }
}

void RuntimeInferShapeContext::ShareAllLoD(const std::string& in,
                                           const std::string& out) const {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound(
                        "Input [%s] found error in Op [%s]", in, op_.Type()));
  PADDLE_ENFORCE_NE(out_it,
                    ctx_.outputs.end(),
                    platform::errors::NotFound(
                        "Output [%s] found error in Op [%s]", out, op_.Type()));

  auto& in_var_list = in_it->second;
  auto& out_var_list = out_it->second;

  PADDLE_ENFORCE_EQ(
      in_var_list.size(),
      out_var_list.size(),
      platform::errors::PreconditionNotMet(
          "Op [%s]: Input var size should be equal with output var size",
          op_.Type()));

  auto& out_var_names = op_.Outputs(out);

  for (size_t i = 0; i < in_var_list.size(); ++i) {
    if (out_var_names[i] == framework::kEmptyVarName) {
      continue;
    }

    Variable* in_var = in_var_list[i];
    if (!in_var->IsType<phi::DenseTensor>()) return;
    Variable* out_var = out_var_list[i];
    PADDLE_ENFORCE_EQ(
        out_var->IsType<phi::DenseTensor>(),
        true,
        platform::errors::PreconditionNotMet(
            "The %d-th output of Output(%s) must be phi::DenseTensor.",
            i,
            out_var_names[i]));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
    if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
  }
}

void RuntimeInferShapeContext::ShareLoD(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) const {
  if (can_skip_lod_) {
    return;
  }
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second.at(i);
  if (!in_var->IsType<phi::DenseTensor>()) return;
  Variable* out_var = out_it->second.at(j);
  PADDLE_ENFORCE_EQ(
      out_var->IsType<phi::DenseTensor>(),
      true,
      platform::errors::InvalidArgument(
          "The %zu-th output of Output(%s) must be phi::DenseTensor.", j, out));
  auto& in_tensor = in_var->Get<phi::DenseTensor>();
  auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
  out_tensor->set_lod(in_tensor.lod());

// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out phi::DenseTensor?
#ifdef PADDLE_WITH_MKLDNN
  // Fix me: ugly workaround below
  // Correct solution:
  //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
  //    layout of output tensor should be set "manually" in Compute()
  //    of each OPKernel. The reason layout should NOT be shared between
  //    input and output "automatically" (now by InferShape()->ShareLoD())
  //    is that layout transform may occur after InferShape().
  // Workaround:
  //    Skip set_layout() when input layout is kMKLDNN
  //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
  //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
  //    in Compute()
  if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
    out_tensor->set_layout(in_tensor.layout());
}

int32_t RuntimeInferShapeContext::GetLoDLevel(const std::string& in,
                                              size_t i) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

void RuntimeInferShapeContext::SetLoDLevel(const std::string& out,
                                           int32_t lod_level,
                                           size_t j) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

bool RuntimeInferShapeContext::IsRuntime() const { return true; }

bool RuntimeInferShapeContext::IsRunMKLDNNKernel() const {
  try {
    auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
    return ((op_with_kernel.kernel_type()) &&
            (op_with_kernel.kernel_type()->data_layout_ ==
             phi::DataLayout::ONEDNN));
  } catch (std::bad_cast& exp) {
    return false;
  }
}

// TODO(paddle-dev): Can this be template?
paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
RuntimeInferShapeContext::GetInputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
RuntimeInferShapeContext::GetOutputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

DDim RuntimeInferShapeContext::GetInputDim(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input(%s) should hold one element, but now it holds %zu elements.",
          name,
          vars.size()));
  return this->GetDim(vars[0]);
}

std::vector<DDim> RuntimeInferShapeContext::GetInputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  return GetDims(vars);
}

proto::VarType::Type RuntimeInferShapeContext::GetInputVarType(
    const std::string& name) const {
  return GetVarType(InputVars(name).at(0));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetInputsVarType(
    const std::string& name) const {
  return GetVarTypes(InputVars(name));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetOutputsVarType(
    const std::string& name) const {
  return GetVarTypes(OutputVars(name));
}

void RuntimeInferShapeContext::SetOutputDim(const std::string& name,
                                            const DDim& dim) {
  auto& vars = OutputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                        "but now it holds %zu elements.",
                                        name,
                                        vars.size()));
  SetDim(vars[0], dim);
}

void RuntimeInferShapeContext::SetOutputsDim(const std::string& name,
                                             const std::vector<DDim>& dims) {
  auto& vars = OutputVars(name);
  SetDims(vars, dims);
}

const phi::ArgumentMappingFn*
RuntimeInferShapeContext::GetPhiArgumentMappingFn() const {
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
}

const phi::KernelSignature*
RuntimeInferShapeContext::GetPhiDefaultKernelSignature() const {
  return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
}

void RuntimeInferShapeContext::SetSkipLoD(bool skip) { can_skip_lod_ = skip; }

P
pangengzheng 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
std::vector<LoD> RuntimeInferShapeContext::GetOutputsLod(
    const std::string& out) const {
  auto out_it = ctx_.outputs.find(out);
  auto& out_var_list = out_it->second;

  std::vector<LoD> ret;
  for (size_t i = 0; i < out_var_list.size(); ++i) {
    Variable* out_var = out_var_list[i];
    if (out_var != nullptr) {
      auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
      ret.push_back(out_tensor->lod());
    }
  }
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetOutputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  std::vector<Variable*> vars_res;
  for (auto var : vars) {
    if (var != nullptr) {
      vars_res.push_back(var);
    }
  }
  return GetDims(vars_res);
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
DDim RuntimeInferShapeContext::GetDim(Variable* var) const {
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::InvalidArgument("Input variable is nullptr."));
  if (var->IsType<phi::DenseTensor>()) {
    return var->Get<phi::DenseTensor>().dims();
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().GetCompleteDims();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
        "Variable's type is %s.",
        ToTypeName(var->Type())));
  }
}

std::vector<DDim> RuntimeInferShapeContext::GetDims(
    const std::vector<Variable*>& vars) const {
  std::vector<DDim> ret;
  ret.reserve(vars.size());
  std::transform(
      vars.begin(), vars.end(), std::back_inserter(ret), [this](Variable* var) {
        return this->GetDim(var);
      });
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetRepeatedDims(
    const std::string& name) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetRepeatedDims method only ban be used in compile time."));
}

void RuntimeInferShapeContext::SetDim(Variable* var, const DDim& dim) {
  if (var->IsType<phi::DenseTensor>()) {
    var->GetMutable<phi::DenseTensor>()->Resize(dim);
  } else if (var->IsType<phi::SelectedRows>()) {
    var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Variable type error, expect phi::DenseTensor or SelectedRows, but "
        "received "
        "(%s).",
        ToTypeName(var->Type())));
  }
}

void RuntimeInferShapeContext::SetDims(const std::vector<Variable*>& vars,
                                       const std::vector<DDim>& dims) {
  size_t length = vars.size();
  PADDLE_ENFORCE_EQ(length,
                    dims.size(),
                    platform::errors::InvalidArgument(
                        "The number of input variables do not match the "
                        "number of input dimensions, the number of variables "
                        "is %zu, the number of dimensions is %zu.",
                        length,
                        dims.size()));
  for (size_t i = 0; i < length; ++i) {
    if (vars[i] == nullptr) {
      continue;
    }
    SetDim(vars[i], dims[i]);
  }
}

void RuntimeInferShapeContext::SetRepeatedDims(const std::string& name,
                                               const std::vector<DDim>& dims) {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetRepeatedDims method only can be used in compile time."));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetVarTypes(
    const std::vector<Variable*>& vars) const {
  std::vector<proto::VarType::Type> retv;
  retv.resize(vars.size());
  std::transform(vars.begin(),
                 vars.end(),
                 retv.begin(),
                 std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                           this,
                           std::placeholders::_1));
  return retv;
}

proto::VarType::Type RuntimeInferShapeContext::GetVarType(Variable* var) const {
  return ToVarType(var->Type());
}

const std::vector<Variable*>& RuntimeInferShapeContext::InputVars(
    const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.inputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the input (%s).", op_.Type(), name));
  return it->second;
}

const std::vector<Variable*>& RuntimeInferShapeContext::OutputVars(
    const std::string& name) const {
  auto it = ctx_.outputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.outputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
  return it->second;
}

748
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
749 750 751
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
752
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
753 754 755 756
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
757
#else
758
      auto dev_id = place.device;
P
peizhilin 已提交
759
      platform::SetDeviceId(dev_id);
760 761 762
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
763 764 765 766
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
767
#else
768
      auto dev_id = place.device;
769
      platform::SetXPUDeviceId(dev_id);
770 771 772 773 774 775 776 777
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
778
      phi::DeviceManager::SetDevice(place);
779
#endif
P
peizhilin 已提交
780
    }
P
peizhilin 已提交
781

782
    {
783 784 785
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
786
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
787
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
788 789
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
790 791
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
792
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
793
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
794 795
      RunImpl(scope, place);
    }
796

Z
Zhang Ting 已提交
797
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
798
  } catch (platform::EnforceNotMet& exception) {
799
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
800
    throw std::move(exception);
801 802 803 804 805 806
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
807
  } catch (...) {
808
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
809
    std::rethrow_exception(std::current_exception());
810
  }
811 812
}

813
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
814
  return inputs_.find(name) != inputs_.end();
815 816
}

817
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
818
  auto& ins = Inputs(name);
819
  PADDLE_ENFORCE_LE(
820 821
      ins.size(),
      1UL,
822
      platform::errors::InvalidArgument(
823 824
          "Operator %s's input %s should contain only one variable.",
          type_,
825
          name));
Y
Yu Yang 已提交
826
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
827 828
}

Y
Yu Yang 已提交
829 830
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
831
  auto it = inputs_.find(name);
832
  PADDLE_ENFORCE_NE(
833 834 835 836
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
837
  return it->second;
Y
Yan Chunwei 已提交
838 839
}

840
bool OperatorBase::HasOutputs(const std::string& name) const {
841
  if (outputs_.find(name) != outputs_.end()) {
842 843 844 845 846 847
    return true;
  } else {
    return false;
  }
}

848
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
849
  auto& outs = Outputs(name);
850
  PADDLE_ENFORCE_LE(
851 852
      outs.size(),
      1UL,
853
      platform::errors::InvalidArgument(
854 855
          "Operator %s's output %s should contain only one variable.",
          type_,
856
          name));
Y
Yu Yang 已提交
857
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
858 859
}

Y
Yu Yang 已提交
860 861
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
862
  auto it = outputs_.find(name);
863
  PADDLE_ENFORCE_NE(
864 865
      it,
      outputs_.end(),
866 867
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
868
  return it->second;
Y
Yan Chunwei 已提交
869 870
}

871
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
872
  std::stringstream ss;
Y
Yu Yang 已提交
873
  ss << "Op(" << type_ << "), inputs:{";
874

875
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
876 877
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
878 879
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
880 881
  }

Y
Yu Yang 已提交
882 883
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
884 885
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
886 887
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
888 889
      auto var_name = input.second[i];
      ss << var_name;
890
      if (scope) {
Q
Qiao Longfei 已提交
891 892 893 894 895 896 897
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
898 899 900
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
901 902 903
          std::string place = is_no_need_buffer_var
                                  ? "unknown_place"
                                  : GetPlace(*scope, var_name);
Q
Qiao Longfei 已提交
904
          ss << ":" << dtype;
905 906
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
907
          ss << "(" << place << ")";
908
        }
909
      }
Y
Yu Yang 已提交
910 911 912
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
913
    }
Y
Yu Yang 已提交
914
    ss << "]";
Y
Yu Yang 已提交
915 916
    ++it;
    if (it != inputs_.end()) {
917 918
      ss << ", ";
    }
Q
Qiao Longfei 已提交
919
  }
Y
Yu Yang 已提交
920
  ss << "}, outputs:{";
Y
Yu Yang 已提交
921 922
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
923 924
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
925 926
      auto var_name = output.second[i];
      ss << var_name;
927
      if (scope) {
Q
Qiao Longfei 已提交
928 929 930 931 932 933 934
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
935 936
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
937 938
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
939
          ss << "(" << GetPlace(*scope, var_name) << ")";
940
        }
941
      }
Y
Yu Yang 已提交
942 943 944
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
945
    }
Y
Yu Yang 已提交
946
    ss << "]";
Y
Yu Yang 已提交
947 948
    ++it;
    if (it != outputs_.end()) {
949 950
      ss << ", ";
    }
Q
Qiao Longfei 已提交
951
  }
Y
Yu Yang 已提交
952
  ss << "}.";
Q
Qiao Longfei 已提交
953 954 955
  return ss.str();
}

Y
Yu Yang 已提交
956
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
957 958
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
959
                           const AttributeMap& attrs)
S
sneaxiy 已提交
960 961 962 963 964 965
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
966 967 968 969
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
970
  if (!inputs_.empty() || !outputs_.empty()) {
H
hong 已提交
971 972 973
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
974 975 976 977 978

  // canonicalize attrs
  if (info_ && info_->proto_) {
    CanonicalizeScalarAttrs(*info_->proto_, &attrs_);
  }
979
  // In OperatorBase level, all attributes with VarDesc type will be considered
980 981 982 983 984 985
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
986
}
987

Q
qijun 已提交
988 989
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
990
  for (auto& o : inputs_) {
Q
qijun 已提交
991 992 993 994 995 996
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
1007
  auto& info = Info();
Y
Yu Yang 已提交
1008 1009

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
1010
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
1020 1021
}

1022
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
1023
  if (info_ == nullptr || info_->proto_ == nullptr) return;
1024

S
sneaxiy 已提交
1025
  for (auto& in : info_->Proto().inputs()) {
1026
    if (!in.dispensable() && !in.extra()) {
1027
      PADDLE_ENFORCE_NE(
1028 1029 1030 1031
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
1032
    }
1033 1034
  }

S
sneaxiy 已提交
1035
  for (auto& out : info_->Proto().outputs()) {
1036
    if (!out.dispensable() && !out.extra() && !out.intermediate()) {
1037
      PADDLE_ENFORCE_NE(
1038 1039 1040 1041
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
1042
    }
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
1058

1059 1060
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
1061 1062
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
1063 1064
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
1065
  } else {
1066
    PADDLE_THROW(platform::errors::InvalidArgument(
1067
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1068
        ToTypeName(var.Type())));
Q
QI JUN 已提交
1069 1070 1071
  }
}

1072
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
1073 1074
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
1075 1076
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
1077
  } else {
1078
    PADDLE_THROW(platform::errors::InvalidArgument(
1079
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1080
        ToTypeName(var->Type())));
Q
QI JUN 已提交
1081 1082 1083
  }
}

1084 1085 1086 1087 1088 1089 1090 1091
OperatorWithKernel::OperatorWithKernel(const std::string& type,
                                       const VariableNameMap& inputs,
                                       const VariableNameMap& outputs,
                                       const AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

OperatorWithKernel::~OperatorWithKernel() = default;

1092
bool ExecutionContext::HasInput(const std::string& name) const {
1093
  auto* var = InputVar(name);
1094 1095 1096
  return var != nullptr;
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

1111
bool ExecutionContext::HasOutput(const std::string& name) const {
1112
  auto* var = OutputVar(name);
1113 1114 1115
  return var != nullptr;
}

X
Xin Pan 已提交
1116
const Variable* ExecutionContext::InputVar(const std::string& name) const {
1117 1118
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
1119 1120 1121
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

1122
  PADDLE_ENFORCE_LE(
1123 1124
      it->second.size(),
      1UL,
1125
      platform::errors::InvalidArgument(
1126
          "Operator %s's input %s should contain only one variable.",
1127 1128
          op_.Type(),
          name));
X
Xin Pan 已提交
1129 1130 1131
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
1132
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
1133 1134 1135
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

1136
  PADDLE_ENFORCE_LE(
1137 1138
      it->second.size(),
      1UL,
1139 1140
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
1141 1142
          op_.Type(),
          name));
X
Xin Pan 已提交
1143 1144 1145
  return it->second.empty() ? nullptr : it->second[0];
}

1146
template <>
1147 1148
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
1149 1150
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
1151
  auto vars = MultiInputVar(name);
1152
  if (vars.empty()) {
X
Xin Pan 已提交
1153 1154
    return {};
  }
1155
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
1156
  res.reserve(vars.size());
1157 1158 1159
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1160
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
1161
                   if (var == nullptr) return nullptr;
1162 1163 1164 1165 1166 1167 1168 1169
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
1170 1171 1172 1173
                 });
  return res;
}

1174
template <>
1175
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
1176
    const std::string& name) const {
H
hong 已提交
1177 1178
  auto vars = MultiOutputVar(name);

1179
  if (vars.empty()) {
1180 1181
    return {};
  }
1182
  std::vector<phi::DenseTensor*> res;
1183
  res.reserve(vars.size());
1184 1185 1186
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1187
                 [&](Variable* var) -> phi::DenseTensor* {
1188
                   return var == nullptr ? nullptr
1189
                                         : var->GetMutable<phi::DenseTensor>();
1190
                 });
1191 1192 1193
  return res;
}

Y
Yu Yang 已提交
1194
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
1195
  // check in new Function kernel first
1196
  bool has_phi_kernel = false;
1197
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
1198
  auto kernel_key_map =
1199
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
1200
  for (auto& kernel : kernel_key_map) {
1201
    has_phi_kernel = true;
1202
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
1203 1204 1205 1206
      return true;
    }
  }

Y
Yu Yang 已提交
1207 1208
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
1222 1223 1224
      return true;
    }
  }
H
hong 已提交
1225

Y
Yu Yang 已提交
1226 1227 1228
  return false;
}

1229
struct OperatorWithKernel::CacheImpl {
1230
  static const char kNotAllowInferShapeCahce[];
1231
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
1232 1233 1234 1235 1236 1237 1238
                     RuntimeInferShapeContext* infer_shape_ctx,
                     const std::vector<phi::DenseTensor*>& tensors,
                     bool not_allow_infer_shape_cache)
      : kernel_ctx_(kernel_ctx),
        infer_shape_ctx_(infer_shape_ctx),
        tensors_(tensors),
        not_allow_infer_shape_cache_(not_allow_infer_shape_cache) {}
1239 1240 1241 1242 1243 1244

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
  bool NeedInferShape() {
    if (not_allow_infer_shape_cache_) return true;

    bool ret{false};
    if (last_ddims_.empty() || tensors_.empty()) ret = true;
    if (!ret) {
      CHECK_EQ(last_ddims_.size(), tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        if (tensors_[i]->dims() != last_ddims_[i]) {
          ret = true;
          break;
        }
      }
    }
    if (ret) {
      last_ddims_.resize(tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        last_ddims_[i] = tensors_[i]->dims();
      }
    }
    VLOG(3) << "need infer shape is " << ret;
    return ret;
  }

1269 1270 1271
 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
1272 1273 1274
  std::vector<phi::DenseTensor*> tensors_;
  bool not_allow_infer_shape_cache_;
  std::vector<phi::DDim> last_ddims_;
1275
};
1276 1277
const char OperatorWithKernel::CacheImpl::kNotAllowInferShapeCahce[] =
    "@NOT_ALLOW_INFERSHAPE_CACHE@";
1278

1279 1280
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1281
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1282 1283 1284
  if (tensor.memory_size() == 0) {
    return;
  }
1285 1286
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1287 1288
    return;
  }
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1301 1302
}

1303 1304 1305 1306
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1307 1308
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1321 1322
          op_kernels.begin(),
          op_kernels.end(),
1323 1324 1325 1326 1327 1328 1329
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
Q
QingshuChen 已提交
1353 1354 1355 1356
                   paddle::platform::is_xpu_support_op(
                       type_,
                       framework::TransToPhiDataType(
                           kern_pair.first.data_type_));
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
bool OperatorWithKernel::SupportCustomDevice() const {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return platform::is_custom_place(
                        phi::TransToPhiPlace(kern_pair.first.backend()));
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_custom_place(kern_pair.first.place_);
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportCustomDevice() when not "
      "compiled with "
      "CustomDevice support."));
  return false;
#endif
}

1404
bool OperatorWithKernel::SupportsMKLDNN(const phi::DataType data_type) const {
1405 1406 1407 1408 1409
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1410 1411
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
1412
                           kern_pair.first.dtype() == data_type;
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
1428 1429
                   kern_pair.first.data_type_ ==
                       paddle::framework::TransToProtoVarType(data_type);
1430 1431
          });
    }
1432
  }
1433 1434
}

1435
bool OperatorWithKernel::SupportsCUDNN(const phi::DataType data_type) const {
1436 1437
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
1438 1439 1440 1441 1442 1443 1444
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPUDNN &&
                           kern_pair.first.dtype() == data_type;
                  });
1445 1446 1447 1448 1449 1450 1451 1452
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
1453 1454
      proto::VarType::Type fluid_data_type =
          framework::TransToProtoVarType(data_type);
1455 1456 1457
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
1458
          [fluid_data_type](OpKernelMap::const_reference kern_pair) {
1459 1460
            return platform::is_gpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kCUDNN &&
1461
                   kern_pair.first.data_type_ == fluid_data_type;
1462 1463 1464 1465 1466
          });
    }
  }
}

1467
bool OperatorWithKernel::SupportsKernelType(
1468
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1469 1470
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1471 1472 1473 1474 1475
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1476
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1477
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1478 1479
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1480 1481
  }
#endif
1482 1483 1484 1485 1486

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
1487
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1488
            type_, framework::TransToPhiDataType(kernel_type.data_type_));
1489 1490 1491 1492 1493 1494 1495 1496 1497
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1498 1499
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1500 1501 1502
  }
#endif

1503
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1504 1505 1506 1507 1508
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1509
#ifdef PADDLE_WITH_MKLDNN
1510
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1511 1512 1513
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
1514
    tmp_kernel_type.data_layout_ = framework::DataLayout::ONEDNN;
1515 1516 1517 1518
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1519 1520 1521 1522 1523 1524 1525 1526
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kCUDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1527
  return kernel_iter != kernels.end();
1528 1529
}

1530
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
1531
                                         phi::DataType data_type) const {
1532
  return ctx.HasAttr("use_mkldnn") && ctx.Attr<bool>("use_mkldnn") &&
1533 1534
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1535 1536
}

1537 1538 1539 1540 1541
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
  return this->CanMKLDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1542
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
1543
                                        phi::DataType data_type) const {
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
  bool use_cudnn = ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn") &&
                   paddle::platform::is_gpu_place(ctx.GetPlace());

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
    use_cudnn &= (dev_ctx.cudnn_handle() != nullptr);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#if defined(PADDLE_WITH_CUDA)
1555
  if (use_cudnn && data_type == phi::DataType::BFLOAT16) {
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
    PADDLE_ENFORCE_GE(
        platform::DnnVersion(),
        8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA

  return use_cudnn && this->SupportsCUDNN(data_type);
}

1567 1568 1569 1570 1571
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                                        proto::VarType::Type data_type) const {
  return this->CanCUDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1572 1573 1574 1575 1576 1577 1578
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1579
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1580 1581
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1582
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1583
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
template <typename T>
bool HasSameTensorType(phi::TensorBase* phi_tensor, Variable* var) {
  if (phi_tensor == nullptr && var == nullptr) {
    return true;
  } else if (phi_tensor != nullptr && var != nullptr) {
    if (T::classof(phi_tensor) && var->IsType<T>()) {
      return true;
    }
  }
  return false;
}

// TODO(YuanRisheng): We need collect all `need_prepare_phi_data_`
// into this function.
void OperatorWithKernel::CheckWhetherPreparePhiData(
    const VariableNameMap& innames,
    const VariableNameMap& outnames,
    const Scope& scope) const {
  if (run_phi_kernel_ && impl_ != nullptr) {
1605 1606 1607 1608 1609 1610 1611 1612
    const auto& phi_kernel_context = impl_->getKernelContext();
    size_t phi_tensor_index = 0;
    // Check each tensor in KernelContext, if there is a tensor that has
    // different type with variable. The PhiKernelContext need be reconstructed.
    // We use kernel_signature_'s output to retrieve tensor. Because the tensor
    // in phi_kernel_context stored in the order of kernel_signature_'s output.
    if (phi_kernel_context->OutputsSize() >= phi_tensor_index ||
        kernel_signature_ == nullptr) {
1613 1614 1615
      need_prepare_phi_data_ = true;
      return;
    }
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639

    const auto& phi_output_names = kernel_signature_->output_names;
    for (auto& phi_output_name : phi_output_names) {
      const auto& iter = outnames.find(phi_output_name);
      if (iter != outnames.end()) {
        for (auto& var_name : iter->second) {
          auto var_output = scope.FindVar(var_name);
          auto phi_output =
              phi_kernel_context->MutableOutputAt<phi::TensorBase>(
                  phi_tensor_index);
          if (phi_output == nullptr) {
            continue;
          }
          if (!(HasSameTensorType<phi::DenseTensor>(phi_output, var_output) ||
                HasSameTensorType<phi::SparseCooTensor>(phi_output,
                                                        var_output) ||
                HasSameTensorType<framework::Strings>(phi_output,
                                                      var_output))) {
            need_prepare_phi_data_ = true;
          }
          phi_tensor_index++;
        }
      }
    }
1640 1641 1642
  }
}

L
luotao1 已提交
1643 1644
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1645 1646
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1647 1648 1649
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1650
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1651
    all_kernels_must_compute_runtime_shape_ = true;
C
csy0225 已提交
1652
  const Scope* cur_scope = &scope;
1653
  CheckWhetherPreparePhiData(Inputs(), Outputs(), scope);
1654
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1655 1656
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1657 1658
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
1659
    if (!all_kernels_must_compute_runtime_shape_ && impl_->NeedInferShape()) {
1660
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
1661
    }
1662
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1663
  } else {
C
csy0225 已提交
1664
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
1665
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
C
csy0225 已提交
1666 1667 1668 1669
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1670
    }
1671
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1672 1673 1674 1675 1676 1677
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1678
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1679
  bool fallback_to_cpu = false;
1680
  phi::KernelKey phi_cpu_kernel_key;
1681
  auto* dev_ctx = pool.Get(place);
1682 1683 1684 1685
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
H
HongyuJia 已提交
1686
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1687

1688 1689 1690 1691 1692 1693
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1694 1695 1696 1697 1698
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1699 1700
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1701
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1702
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1703 1704 1705 1706 1707 1708
      if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
        kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
      } else {
        kernel_signature_.reset(new phi::KernelSignature(
            std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      }
1709

1710 1711
      VLOG(6) << *kernel_signature_.get();
      phi_kernel_name = kernel_signature_->name;
1712 1713 1714
      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);
1715 1716 1717 1718 1719 1720 1721
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1722
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1723
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1738
                  << phi_kernel_name
1739
                  << ", using_kernel_key:" << *kernel_type_.get();
1740
          auto try_phi_kernel_key =
1741
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1742 1743
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1744 1745
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1746
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1747 1748 1749
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1750
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1751 1752 1753 1754
          }
        }
      }
#endif
1755 1756
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1757
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1758
              phi_kernel_name, phi_kernel_key)));
1759

1760
      if (phi_kernel_->IsValid()) {
1761
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
1762 1763
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1764
      } else {
1765 1766
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `"
                << phi_kernel_name << "` not found.";
1767
      }
1768
    } else {
1769
      phi_kernel_name = kernel_signature_->name;
1770
// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
1771
// LibraryType::kMKLDNN and data_layout_ = DataLayout::ONEDNN. But the default
1772
// values are kPlain, so we need to modify the library_type and data_layout_
1773 1774 1775 1776
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1777
#ifdef PADDLE_WITH_MKLDNN
1778 1779
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1780 1781
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
1782
        kernel_type_->data_layout_ = framework::DataLayout::ONEDNN;
1783 1784 1785
      }
#endif

1786 1787 1788 1789 1790 1791
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (this->CanCUDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kCUDNN;
      }
#endif

1792 1793 1794
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1795 1796 1797 1798
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1799
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1800
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1814
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1815
                  << phi_kernel_name
1816
                  << ", using_kernel_key:" << *kernel_type_.get();
1817
          auto try_phi_kernel_key =
1818
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1819 1820
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1821
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1822
            VLOG(3) << "modify XPU KP kernel in static graph: "
1823
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1824 1825 1826
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1827
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1828 1829 1830 1831
          }
        }
      }
#endif
1832
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1833
    }
1834 1835 1836 1837

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1838
#if defined(PADDLE_WITH_XPU)
1839 1840
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
Q
QingshuChen 已提交
1841 1842
        !paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1843
#endif
1844 1845 1846 1847
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
1848
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1849
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1850 1851 1852 1853 1854 1855
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1856 1857 1858 1859 1860 1861
    bool in_custom_back_list = false;
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    in_custom_back_list =
        phi::backends::custom_device::is_in_custom_black_list(phi_kernel_name);
#endif
    if (phi_kernel_->IsValid() && !in_custom_back_list
1862
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1863 1864
        && !is_xpu_unsupport
#endif
1865 1866 1867
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1868
    ) {
1869
      run_phi_kernel_ = true;
1870 1871 1872
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1873 1874 1875 1876 1877 1878 1879 1880 1881

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif
1882 1883 1884
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1885
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1886
          || is_xpu_unsupport
1887
#endif
1888 1889
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
1890 1891 1892
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
          || in_custom_back_list
1893
#endif
1894
      ) {
1895
        fallback_to_cpu = true;
1896 1897 1898
        if (in_custom_back_list) {
          VLOG(3) << "fluid in black list: " << phi_kernel_name;
        }
1899
        phi_cpu_kernel_key = FallBackToCpu(phi_kernel_key, *this);
1900
        phi_kernel_.reset(
1901
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1902
                phi_kernel_name, phi_cpu_kernel_key)));
1903 1904

        dev_ctx = pool.Get(platform::CPUPlace());
1905
        if (phi_kernel_->IsValid()) {
1906
          VLOG(6) << "Static graph mode PrepareImpl - kernel name: "
1907 1908
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1909
          run_phi_kernel_ = true;
1910 1911
        }
      }
1912 1913
    }
  }
1914
  if (!run_phi_kernel_) {
1915 1916
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1917
      dev_ctx = pool.Get(kernel_type_->place_);
1918
    }
1919 1920
  }

Y
yuyang18 已提交
1921 1922
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1923 1924
  Scope* transfer_scope = nullptr;
  {
1925
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1926
                                       platform::TracerEventType::OperatorInner,
1927 1928
                                       1,
                                       platform::EventRole::kInnerOp);
1929
    if (need_prepare_data_) {
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
      if (fallback_to_cpu) {
        transfer_scope = PrepareData(scope,
                                     phi_cpu_kernel_key,
                                     &transfered_inplace_vars,
                                     runtime_ctx,
                                     dev_ctx->GetPlace());
      } else {
        transfer_scope = PrepareData(
            scope,
            framework::TransOpKernelTypeToPhiKernelKey(*kernel_type_),
            &transfered_inplace_vars,
            runtime_ctx,
            dev_ctx->GetPlace());
      }
1944
    }
1945
  }
Y
yuyang18 已提交
1946 1947 1948 1949
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1950
  if (!all_kernels_must_compute_runtime_shape_) {
1951
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1952
                                       platform::TracerEventType::OperatorInner,
1953 1954
                                       1,
                                       platform::EventRole::kInnerOp);
1955
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1956
    this->Info().infer_shape_(&infer_shape_ctx);
1957 1958
    record_event.End();
    platform::RecordOpInfoSupplement(
1959
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx, Id());
1960
  }
1961 1962 1963 1964 1965

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1966 1967
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1968
  {
1969
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1970
                                       platform::TracerEventType::OperatorInner,
1971 1972
                                       1,
                                       platform::EventRole::kInnerOp);
1973 1974
    if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                               phi::KernelRegisteredType::FUNCTION) {
1975
      phi::KernelContext phi_kernel_context;
1976 1977
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
        // TODO(inference): Now we only suppor dense_tensor cache, we may be
        // support ScalarTensor, SparseTensor in future.
        bool all_dense_tensor_input_{true};
        for (auto& iter : Inputs()) {
          for (auto& name : iter.second) {
            all_dense_tensor_input_ &=
                scope.FindVar(name)->IsType<phi::DenseTensor>();
          }
        }

        std::vector<phi::DenseTensor*> tensors;
        if (all_dense_tensor_input_) {
          for (auto& iter : Inputs()) {
            for (auto& name : iter.second) {
              auto* t = scope.FindVar(name)->GetMutable<phi::DenseTensor>();
              tensors.push_back(t);
            }
          }
        }

        impl_.reset(
1999
            new CacheImpl(new phi::KernelContext(),
2000 2001 2002
                          new RuntimeInferShapeContext(*this, *runtime_ctx),
                          tensors,
                          HasAttr(CacheImpl::kNotAllowInferShapeCahce)));
2003
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
2004
        (*phi_kernel_)(impl_->getKernelContext());
2005
      } else {
2006
        phi::KernelContext phi_kernel_context;
2007 2008
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
2009 2010
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
2011
      }
2012 2013 2014 2015 2016
    } else if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                                      phi::KernelRegisteredType::STRUCTURE) {
      ExecutionContext execution_context(
          *this, exec_scope, *dev_ctx, *runtime_ctx);
      (*phi_kernel_)(&execution_context);
2017 2018 2019 2020
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
2021 2022 2023
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
2024
  }
D
dzhwinter 已提交
2025

Y
yuyang18 已提交
2026
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
2027
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
2028
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
2029
  }
2030 2031 2032 2033 2034 2035 2036

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

2037 2038 2039 2040 2041 2042 2043 2044
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
2045

D
dzhwinter 已提交
2046
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
2047
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
2048
    dev_ctx->Wait();
2049 2050
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
2051 2052
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
2053
  }
C
chengduoZH 已提交
2054 2055

  if (FLAGS_check_nan_inf) {
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
    try {
      framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
    } catch (...) {
      const std::vector<std::string>* callstack = nullptr;
      auto attrs = Attrs();
      auto iter =
          attrs.find(OpProtoAndCheckerMaker::OpCreationCallstackAttrName());
      if (iter != attrs.end()) {
        callstack = &PADDLE_GET_CONST(std::vector<std::string>, iter->second);
        if (callstack->empty()) callstack = nullptr;
      }
      std::ostringstream sout;
      if (callstack) {
        if (FLAGS_call_stack_level > 1) {
          sout << "\n\n  Compile Traceback (most recent call last):";
        } else {
          sout << "In user code:\n";
        }
        for (auto& line : *callstack) {
          sout << "\n  " << line;
        }
      }
      std::cout << sout.str() << std::endl;
      std::rethrow_exception(std::current_exception());
    }
C
chengduoZH 已提交
2081
  }
2082 2083 2084 2085

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
C
csy0225 已提交
2086 2087
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
2088
  }
Q
Qiao Longfei 已提交
2089
}
X
Xin Pan 已提交
2090

2091 2092
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
2093 2094 2095
  phi::KernelKey phi_kernel_key = this->GetExpectedKernelType(ctx);
  auto expected_kernel_key =
      framework::TransPhiKernelKeyToOpKernelType(phi_kernel_key);
2096 2097 2098

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
2099
// data_layout_ of expected_kernel_key need to be adjusted. There are three
2100
// statements in if condition:
2101 2102 2103
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
2104
#ifdef PADDLE_WITH_MKLDNN
2105
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
2106 2107
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
2108
    expected_kernel_key.data_layout_ = framework::DataLayout::ONEDNN;
2109 2110 2111
  }
#endif

2112 2113 2114 2115 2116 2117
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN;
  }
#endif

2118 2119 2120
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
2131 2132 2133
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
2134 2135
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2136
      if (SupportGPU()) {
2137
        auto& dev_ctx = ctx.device_context();
2138
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2139 2140
      }
#endif
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
2160 2161 2162 2163 2164 2165
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      if (SupportCustomDevice()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
2166
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
2167 2168
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
2195 2196 2197
      }
    }
  }
2198 2199 2200 2201 2202 2203

  if (platform::places_are_same_class(expected_kernel_key.place_,
                                      ctx.GetPlace())) {
    expected_kernel_key.place_ = ctx.GetPlace();
  }

C
cc 已提交
2204 2205
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
2206 2207 2208
  return expected_kernel_key;
}

2209
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2210
    const ExecutionContext& ctx) const {
2211 2212 2213 2214 2215 2216 2217
  std::string phi_kernel_name;
  if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
    kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
  } else {
    kernel_signature_.reset(
        new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  }
2218
  VLOG(6) << *kernel_signature_.get();
2219
  phi_kernel_name = kernel_signature_->name;
2220 2221 2222
  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2223 2224 2225
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2226

2227
  if (phi_kernel_->IsValid()) {
2228 2229
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
            << phi_kernel_name << " | kernel key: " << phi_kernel_key
2230
            << " | kernel: " << *phi_kernel_;
2231
  } else {
2232
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `" << phi_kernel_name
2233 2234
            << "` not found.";
  }
2235
  return phi_kernel_key;
2236 2237 2238 2239 2240 2241 2242
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2243 2244
      kernels_iter,
      all_op_kernels.end(),
2245
      platform::errors::Unimplemented(
2246 2247 2248 2249 2250 2251
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2252 2253

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2254

L
Liu Yiqun 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2264
#endif
2265 2266

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2267
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2268
      (kernel_iter == kernels.end() ||
Q
QingshuChen 已提交
2269 2270 2271
       !paddle::platform::is_xpu_support_op(
           type_,
           framework::TransToPhiDataType(expected_kernel_key.data_type_)))) {
2272
    VLOG(3) << "fluid missing XPU kernel: " << type_
2273 2274 2275 2276 2277
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2278
#endif
L
Liu-xiandong 已提交
2279 2280

#ifdef PADDLE_WITH_XPU_KP
2281 2282 2283
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
2284
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
2285 2286
            type_,
            framework::TransToPhiDataType(expected_kernel_key.data_type_));
2287 2288 2289
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2290
      VLOG(3) << "fluid xpu_kp using rt mode ";
2291 2292
    }
    if (use_xpu_kp_kernel_debug) {
2293
      VLOG(3) << "fluid xpu_kp using debug mode ";
2294 2295 2296
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2297 2298
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2299 2300
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2301
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2302
      // if the fluid do not register related kernel, it can't work and have
2303 2304 2305 2306 2307 2308 2309
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2310
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2311 2312
                << ", using_kernel_key:" << expected_kernel_key;
      }
2313
    }
Q
QingshuChen 已提交
2314 2315
    bool is_xpu_unsupport = (!paddle::platform::is_xpu_support_op(
        type_, framework::TransToPhiDataType(expected_kernel_key.data_type_)));
2316 2317
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2318
      VLOG(3) << "fluid missing XPU kernel: " << type_
2319 2320 2321 2322 2323
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2324 2325 2326
  }
#endif

A
Allen Guo 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
张春乔 已提交
2337

2338 2339 2340 2341 2342 2343 2344
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2345 2346 2347
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2348
#endif
2349 2350 2351 2352 2353 2354
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2355

2356 2357 2358 2359 2360
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2361 2362
}

Y
yuyang18 已提交
2363
void OperatorWithKernel::TransferInplaceVarsBack(
2364 2365
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2366 2367
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2368
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2369
    auto* origin_var = scope.FindVar(var_name);
2370 2371 2372
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2373
    auto* original_tensor =
C
chengduo 已提交
2374
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2375
    auto* var = transfer_scope.FindVar(var_name);
2376 2377 2378
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2379
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
2380 2381 2382 2383
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2413
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2433
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2444
      phi::DenseTensor out;
2445 2446 2447 2448 2449 2450
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2451
Scope* OperatorWithKernel::PrepareData(
2452
    const Scope& scope,
2453
    const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
2454
    std::vector<std::string>* transfered_inplace_vars,
2455 2456
    RuntimeContext* ctx,
    const phi::Place& place) const {
Y
yuyang18 已提交
2457
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2458

2459
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2460 2461 2462 2463
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2464 2465
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2466 2467 2468
    }
  }

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
  auto has_infer_varkernel_fn =
      (run_phi_kernel_ && phi_kernel_->get_kerneltype_forvar_fn_ != nullptr);
  phi::AttributeMap infer_attrs{};
  auto fluid_attrs = Attrs();
  phi::GetKernelTypeForVarContext infer_varkernel_context =
      BuildGetKernelTypeForVarContext(expected_kernel_key,
                                      fluid_attrs,
                                      &infer_attrs,
                                      has_infer_varkernel_fn);

2479 2480 2481 2482 2483 2484 2485 2486 2487
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2488

Y
yuyang18 已提交
2489
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2490
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2491 2492 2493
        continue;
      }

C
chengduo 已提交
2494
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2495

2496
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2497 2498 2499 2500 2501 2502 2503
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
2504
        // oneDNN shape of Var may differ from kNHWC Var
2505 2506
        // In such situation corressponding resized Var
        // has to be created and registered
2507
        if ((tensor_in->layout() == DataLayout::ONEDNN) &&
2508
            (var->IsType<phi::DenseTensor>() == true) &&
2509
            (expected_kernel_key.layout() != DataLayout::ONEDNN) &&
2510 2511
            (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
             DataLayout::kNHWC) &&
2512
            (tensor_in->dims().size() >= 3)) {
2513
          // Mixed execution : oneDNN and GPU is not supported!
2514 2515 2516 2517
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2518
          in_vars->at(i) = trans_var;
2519
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2520
          out->Resize(tensor_in->dims());
2521
          phi::funcs::MatchShapeToLayout(
2522
              out, tensor_in->layout(), DataLayout::kNHWC);
2523
          VLOG(7) << "Created reshaped dummy input based on oneDNN "
2524
                     "phi::DenseTensor , "
2525
                     "but kNHWC layout"
2526
                  << in_name << " in Operator " << type_;
2527
        } else {
2528 2529
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2530 2531 2532 2533 2534
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2535 2536 2537 2538
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2539 2540
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
2541 2542 2543 2544 2545 2546 2547
      if (has_infer_varkernel_fn) {
        infer_varkernel_context.SetVarName(const_cast<std::string*>(&in_name));
        infer_varkernel_context.SetDenseTensor(
            const_cast<phi::DenseTensor*>(tensor_in));
        kernel_type_for_var =
            phi_kernel_->get_kerneltype_forvar_fn_(&infer_varkernel_context);
      }
2548
      bool need_trans_dtype =
2549
          NeedTransformDataType(expected_kernel_key, kernel_type_for_var);
2550
      bool need_trans_layout = NeedTransformLayout(
2551
          kernel_type_for_var.layout(), expected_kernel_key.layout());
2552 2553
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
2554 2555
            backends_are_same_class(kernel_type_for_var.backend(),
                                    expected_kernel_key.backend())) {
2556 2557 2558
          continue;
        }
      }
Y
yuyang18 已提交
2559

2560
      std::unique_ptr<phi::KernelKey> new_expected_kernel_key = nullptr;
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
      if (run_phi_kernel_) {
        if (phi_kernel_->GetKernelRegisteredType() ==
            phi::KernelRegisteredType::STRUCTURE) {
          if (!backends_are_same_class(kernel_type_for_var.backend(),
                                       expected_kernel_key.backend())) {
            new_expected_kernel_key =
                std::make_unique<phi::KernelKey>(expected_kernel_key.backend(),
                                                 expected_kernel_key.layout(),
                                                 expected_kernel_key.dtype());
          }
2571
        } else if (in_def != nullptr &&  // KernelRegisteredType is Function
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
                   in_def->backend != phi::Backend::ALL_BACKEND) {
          auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
          if ((in_def->backend != tensor_backend &&
               !(in_def->backend == phi::Backend::GPUDNN &&
                 tensor_backend == phi::Backend::GPU) &&
               !(in_def->backend == phi::Backend::KPS &&
                 tensor_backend == phi::Backend::XPU) &&
               !(in_def->backend == phi::Backend::ONEDNN &&
                 tensor_backend == phi::Backend::CPU)) ||
              tensor_in->place().GetType() == AllocationType::GPUPINNED) {
            new_expected_kernel_key =
                std::make_unique<phi::KernelKey>(in_def->backend,
                                                 expected_kernel_key.layout(),
                                                 expected_kernel_key.dtype());
          }
2587 2588 2589 2590 2591 2592 2593
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2594 2595
      }

M
minqiyang 已提交
2596
      VLOG(3) << "Transform Variable " << var_name << " from "
2597 2598 2599
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2600

H
HongyuJia 已提交
2601 2602 2603
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2604
      // We use a thread_local cache to fix that issue, the key in the cache is
2605 2606 2607 2608 2609
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2610 2611
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2612
      // variables, that behavior a lot different.
2613 2614 2615 2616 2617 2618
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2619 2620
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
2621 2622 2623
          if (kernel_type_for_var.backend() == phi::Backend::GPU ||
              kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
              new_expected_kernel_key->backend() == phi::Backend::GPU ||
2624 2625 2626
              new_expected_kernel_key->backend() == phi::Backend::GPUDNN ||
              kernel_type_for_var.backend() == phi::Backend::XPU ||
              new_expected_kernel_key->backend() == phi::Backend::XPU) {
C
csy0225 已提交
2627
            new_scope = TryCreateTransferScope(
2628 2629 2630
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
2631 2632 2633
        } else if (kernel_type_for_var.backend() == phi::Backend::GPU ||
                   kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
                   expected_kernel_key.backend() == phi::Backend::GPU ||
2634 2635 2636
                   expected_kernel_key.backend() == phi::Backend::GPUDNN ||
                   kernel_type_for_var.backend() == phi::Backend::XPU ||
                   expected_kernel_key.backend() == phi::Backend::XPU) {
C
csy0225 已提交
2637
          new_scope = TryCreateTransferScope(
2638 2639 2640
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2641
      }
2642

2643
      if (!new_scope) {
Y
yuyang18 已提交
2644 2645
        new_scope = &scope.NewScope();
      }
C
csy0225 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2656 2657

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2658
      auto* trans_var = new_scope->Var(var_name);
2659
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2660 2661 2662 2663 2664 2665 2666

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2667
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2668 2669 2670 2671 2672 2673 2674 2675 2676
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2677
      phi::DenseTensor out;
2678 2679 2680 2681 2682 2683 2684 2685 2686
      TransformData(
          new_expected_kernel_key ? *new_expected_kernel_key
                                  : expected_kernel_key,
          kernel_type_for_var,
          *tensor_in,
          &out,
          new_expected_kernel_key
              ? phi::TransToPhiPlace(new_expected_kernel_key->backend())
              : place);
Y
yuyang18 已提交
2687 2688
      SetTensorToVariable(*var, out, trans_var);
    }
2689 2690
  };

2691 2692
  if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                             phi::KernelRegisteredType::FUNCTION) {
2693
    const auto& input_names = kernel_signature_->input_names;
2694
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
2711 2712 2713 2714 2715 2716 2717 2718 2719

      phi::TensorArgDef in_def = input_defs.at(i);
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      // When the backend of input tensor arg_def is CUSTOM, we need to set it
      // to the actual backend by expected_kernel_key.
      if (in_def.backend == phi::Backend::CUSTOM) {
        in_def.SetBackend(expected_kernel_key.backend());
      }
#endif
2720 2721
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2738 2739 2740 2741 2742 2743 2744 2745 2746
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2747
  }
L
Leo Chen 已提交
2748

C
csy0225 已提交
2749 2750 2751 2752
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
2753 2754
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
C
csy0225 已提交
2755

W
wenbin 已提交
2756 2757 2758 2759
  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
C
csy0225 已提交
2760
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2761 2762
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2763 2764 2765

  return new_scope;
}
Q
Qiao Longfei 已提交
2766

2767
void OperatorWithKernel::ParseInputDataType(
2768 2769
    const Variable* var,
    const std::string& name,
2770 2771
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2772 2773 2774
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2775 2776
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2777 2778
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2779 2780 2781 2782
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2798 2799
    const std::vector<Variable*>& vars,
    const std::string& name,
2800
    proto::VarType::Type* data_type) const {
2801
  proto::VarType::Type default_data_type =
2802 2803 2804 2805
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2806 2807 2808
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2809 2810
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
R
RedContritio 已提交
2826
                           "consistent or register GetExpectedKernelType. The "
2827 2828 2829 2830 2831 2832 2833
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2834
      } else if (var->IsType<LoDTensorArray>()) {
2835 2836 2837 2838
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2839 2840
          }
        }
2841 2842
      }
      if (t != nullptr) {
2843 2844 2845 2846 2847 2848 2849
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2850 2851
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2852 2853 2854 2855
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
R
RedContritio 已提交
2856
                           "consistent or register GetExpectedKernelType. The "
2857 2858
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2859 2860 2861
                           Type(),
                           name,
                           DataTypeToString(tmp),
2862
                           DataTypeToString(*data_type)));
2863 2864 2865 2866 2867 2868
        *data_type = tmp;
      }
    }
  }
}

2869
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2870
    const ExecutionContext& ctx) const {
2871 2872 2873
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2874

2875
  for (auto* name : ctx.InNameList()) {
2876 2877 2878 2879 2880
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2881
  }
2882
  PADDLE_ENFORCE_NE(
2883 2884
      data_type,
      dafault_data_type,
2885 2886
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2887 2888 2889 2890 2891 2892 2893 2894
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2895 2896 2897 2898 2899
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2900
  PADDLE_ENFORCE_NE(
2901 2902
      data_type,
      dafault_data_type,
2903 2904
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2905
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2906
          "LoDTensorArray.",
2907 2908
          name,
          Type()));
2909
  return data_type;
Y
Yu Yang 已提交
2910
}
2911

2912
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2925 2926 2927
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2928 2929
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2930 2931 2932 2933
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2934 2935 2936 2937 2938 2939 2940
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2941
      platform::errors::InvalidArgument(
2942 2943 2944 2945 2946
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2958 2959
    const ExecutionContext& ctx,
    const std::string& name1,
2960 2961 2962 2963 2964 2965
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2966 2967
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2968 2969 2970 2971 2972 2973 2974

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2975
phi::KernelKey OperatorWithKernel::GetExpectedKernelType(
2976
    const ExecutionContext& ctx) const {
2977
  return phi::KernelKey(IndicateDataType(ctx), ctx.GetPlace());
2978 2979
}

2980
phi::KernelKey OperatorWithKernel::GetKernelTypeForVar(
2981
    const std::string& var_name,
2982
    const phi::DenseTensor& tensor,
2983
    const phi::KernelKey& expected_kernel_type) const {
2984 2985 2986 2987
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
2988
  if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
2989
      (tensor.layout() != phi::DataLayout::ONEDNN) &&
2990 2991
      phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
          phi::DataLayout::kNHWC) {
2992 2993
    return phi::KernelKey(
        tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
2994 2995
  }
#endif
2996 2997
  return phi::KernelKey(
      tensor.place(), tensor.layout(), expected_kernel_type.dtype());
2998 2999
}

3000
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
3001
    const ExecutionContext& ctx) const {
3002
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
3003
  if (arg_map_fn_ == nullptr) {
3004 3005 3006 3007
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
3008 3009 3010
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
3011 3012 3013 3014
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
3015 3016
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
3017 3018
}

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

3078
void OperatorWithKernel::BuildPhiKernelContext(
3079 3080
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
3081 3082
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
3083

3084 3085 3086
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
3087

3088 3089 3090
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
3091

3092 3093 3094 3095 3096 3097 3098 3099 3100
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

3101 3102
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
3103 3104 3105
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
3106 3107
                        input_names.size(),
                        input_defs.size()));
3108

3109 3110
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
3111 3112 3113
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
3114 3115
                        output_names.size(),
                        output_defs.size()));
3116

3117 3118
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
3119 3120 3121
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
3122 3123
                        attr_names.size(),
                        attr_defs.size()));
3124
  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
3125
    auto it = ctx.inputs.find(input_names[i]);
3126 3127 3128

    // calcute the start and end index of the input tensors
    size_t start_idx =
3129
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
3130
    // deal with optional here
3131
    if ((it == ctx.inputs.end() || it->second.empty()) &&
H
hong 已提交
3132
        (input_defs[i].type_index ==
3133
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
3134
         input_defs[i].type_index ==
3135
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
3136
         input_defs[i].type_index ==
3137 3138
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
3139
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
3140
      auto end_idx = start_idx + 1;
3141 3142
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
3143

H
hong 已提交
3144 3145 3146 3147
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
3148
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
3149
      const phi::TensorBase* tensor_in = nullptr;
3150
      auto* var = ins_vector[offset];
3151 3152
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
3153
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3154 3155
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
3156
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3157 3158 3159
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3160
      } else if (var->IsType<framework::LoDTensorArray>()) {
3161
        need_prepare_phi_data_ = true;
3162 3163
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3164 3165 3166
      } else if (var->IsType<framework::Vocab>()) {
        tensor_in = &(var->Get<framework::Vocab>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3167 3168 3169
      } else if (var->IsType<framework::FeedList>()) {
        tensor_in = &(var->Get<framework::FeedList>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3170 3171 3172 3173
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
3174
      }
3175
    }
3176
    // Note: here cannot deal with vector<LoDTensorArray> input
3177
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
3178
  }
3179
  VLOG(4) << "Done inputs";
3180
  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
3181
    auto it = ctx.outputs.find(output_names[i]);
3182
    size_t start_idx =
3183
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
3184 3185

    if (it == ctx.outputs.end() || it->second.empty()) {
3186
      VLOG(4) << "Output " << output_names[i] << " not found";
H
hong 已提交
3187 3188 3189 3190
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
3191
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
3192
      auto end_idx = start_idx + 1;
3193 3194
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
3195 3196 3197 3198
      continue;
    }
    auto& outs_vector = it->second;

3199
    size_t end_idx = start_idx + outs_vector.size();
3200 3201

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
3202
      phi::TensorBase* tensor_out = nullptr;
3203
      auto* var = outs_vector[offset];
3204
      if (var) {
3205 3206
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
3207
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3208 3209
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
3210
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3211 3212 3213
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3214
        } else if (var->template IsType<framework::LoDTensorArray>()) {
3215
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
3216 3217
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
3218
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3219 3220 3221
        } else if (var->template IsType<framework::Strings>()) {
          tensor_out = var->template GetMutable<framework::Strings>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3222 3223 3224 3225 3226 3227 3228
        } else if (var->template IsType<paddle::framework::RawTensor>()) {
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (!var->IsInitialized()) {
          // The following is for RAW type of var
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3229 3230 3231 3232 3233
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
3234
      } else {
3235
        VLOG(4) << "Output " << output_names[i] << " is nullptr";
3236
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3237
      }
3238
    }
3239 3240
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
3241
  }
3242
  VLOG(4) << "Done outputs";
3243
  for (size_t i = 0; i < attr_names.size(); ++i) {
3244 3245
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
3246 3247
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
3248 3249 3250 3251 3252 3253 3254
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
3255
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3256
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
3257
              break;
3258 3259 3260 3261
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
3262
            case proto::AttrType::INT:
3263
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3264
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
3265
              break;
3266 3267 3268 3269
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
3270
            case proto::AttrType::STRING:
3271
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
3272
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
3273
              break;
3274 3275 3276 3277
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
3278 3279 3280 3281 3282
            case proto::AttrType::SCALAR:
              phi_kernel_context->EmplaceBackAttr(
                  std::move(phi::Scalar(PADDLE_GET_CONST(
                      paddle::experimental::Scalar, attr_iter->second))));
              break;
3283 3284 3285 3286 3287 3288 3289
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
3290
          need_prepare_phi_data_ = true;
3291
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
3292 3293
          phi_kernel_context->EmplaceBackAttr(
              std::move(framework::MakePhiScalarFromVar(*ins_vector.front())));
3294
        }
3295 3296 3297 3298 3299
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
3300
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3301
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
3302 3303
              break;
            case proto::AttrType::LONGS:
3304
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3305
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
3306 3307
              break;
            case proto::AttrType::INT:
3308
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3309
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
3310 3311
              break;
            case proto::AttrType::LONG:
3312
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3313
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
3314 3315 3316 3317 3318 3319 3320 3321
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
3322
          need_prepare_phi_data_ = true;
3323 3324
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
3325
            phi_kernel_context->EmplaceBackAttr(std::move(
3326
                framework::MakePhiIntArrayFromVar(*ins_vector.front())));
3327
          } else {  // ShapeTensorList
3328 3329
            phi_kernel_context->EmplaceBackAttr(
                std::move(framework::MakePhiIntArrayFromVarList(ins_vector)));
3330
          }
3331
        }
3332
        break;
3333

3334 3335
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3336 3337
            attr_iter,
            Attrs().end(),
3338 3339 3340 3341 3342 3343
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3344
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3345 3346 3347 3348 3349
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3350
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3351 3352 3353
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3354
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3355 3356 3357 3358 3359
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3360
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3361 3362 3363
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3364
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3365 3366 3367 3368 3369
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3370
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3371 3372 3373
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3374
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3375 3376 3377 3378 3379
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3380
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3381 3382 3383
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3384
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3385 3386 3387 3388 3389
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3390
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3391
          } break;
3392 3393 3394 3395 3396 3397
          case proto::AttrType::SCALARS: {
            const auto& vec = PADDLE_GET_CONST(
                std::vector<paddle::experimental::Scalar>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list{vec.begin(), vec.end()};
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
3398 3399 3400 3401
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3402 3403
                attr_names[i]));
        }
3404 3405
      } break;
      default: {
3406
        if (attr_iter == Attrs().end()) {
3407
          // TODO(chenweihang): remove this backup searching later
3408 3409 3410 3411 3412 3413 3414 3415 3416
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3417 3418
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3419
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3420
                PADDLE_GET_CONST(float, attr_iter->second));
3421
            break;
3422 3423 3424 3425
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3426
          case phi::AttributeType::INT32:
3427
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3428
                PADDLE_GET_CONST(int, attr_iter->second));
3429 3430
            break;
          case phi::AttributeType::BOOL:
3431
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3432
                PADDLE_GET_CONST(bool, attr_iter->second));
3433 3434
            break;
          case phi::AttributeType::INT64:
3435
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3436
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3437 3438
            break;
          case phi::AttributeType::INT32S:
3439
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3440
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3441
            break;
3442 3443 3444 3445
          case phi::AttributeType::BOOLS:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second));
            break;
3446 3447 3448
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3449
                    PADDLE_GET_CONST(int, attr_iter->second)));
3450
            phi_kernel_context->EmplaceBackAttr(data_type);
3451 3452
          } break;
          case phi::AttributeType::STRING:
3453
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3454
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3455 3456 3457 3458
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3459
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3460
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3461 3462 3463
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3464
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3465 3466
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3467
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3478
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3479
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3480 3481
            break;
          case phi::AttributeType::STRINGS:
3482
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3483
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3484 3485 3486 3487 3488 3489
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3490
        }
3491 3492 3493
      }
    }
  }
3494
  VLOG(4) << "Done attributes";
3495

3496 3497 3498 3499 3500 3501
// Clear All old attrs before add new attrs,
// because sometimes old attrs may be misused.
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->ClearDnnAttr();
3502
    if (!RuntimeAttrs().empty()) need_prepare_phi_data_ = true;
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
  }
#endif

  // Note(YuanRisheng): Now, we can't open code below.
  // Because some unittest run OLD dygraph and ExtraAttr is not supported in OLD
  // dygraph. So, here we use trick that dev_ctx is a global object. We can
  // store ExtraAttr in static graph and when unittest run OLD dygraph, it can
  // obtain these ExtraAttr. We can open this code when OLD dygraph is no longer
  // used.
  /*
  #if defined(PADDLE_WITH_CUDA)
    if(phi::GPUContext::classof(dev_ctx)) {
      phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
      gpu_dnn_ctx->ClearDnnAttr();
    }
  #endif
  */
3520 3521 3522 3523 3524 3525
  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3526
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3527 3528 3529 3530 3531 3532
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
S
Shuangchi He 已提交
3533
  // which increases the cost of development and understanding, so we
3534 3535 3536 3537 3538 3539 3540
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3541
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
3556
      if (it == ctx.inputs.end() || it->second.empty()) {
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3576 3577
}

Q
Qiao Longfei 已提交
3578
}  // namespace framework
L
liaogang 已提交
3579
}  // namespace paddle