operator.cc 135.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18
#include <unordered_set>
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/raw_tensor.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
29
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/var_type.h"
31
#include "paddle/fluid/operators/isfinite_op.h"
32
#include "paddle/fluid/operators/ops_extra_info.h"
33
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
34
#include "paddle/fluid/platform/enforce.h"
35
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
36
#include "paddle/fluid/platform/profiler/event_tracing.h"
37
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
38
#include "paddle/phi/common/int_array.h"
39
#include "paddle/phi/common/scalar.h"
40
#include "paddle/phi/core/compat/get_kerneltype_forvar_utils.h"
41
#include "paddle/phi/core/ddim.h"
42
#include "paddle/phi/core/kernel_context.h"
43 44
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
45

46
namespace phi {
47
class DenseTensor;
48
}  // namespace phi
49

50
#ifdef PADDLE_WITH_XPU
51 52
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
53
#endif
Q
Qiao Longfei 已提交
54

55 56
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
57
#include "paddle/fluid/platform/mkldnn_op_list.h"
58 59
#endif

F
fwenguang 已提交
60 61 62 63
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

64 65 66 67
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#endif

D
dzhwinter 已提交
68
DECLARE_bool(benchmark);
69
DECLARE_bool(check_nan_inf);
70
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
71
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
72
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
73

Q
Qiao Longfei 已提交
74 75 76
namespace paddle {
namespace framework {

77 78 79 80 81 82
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
83

84
static DDim GetDimsDebug(const Scope& scope,
85
                         const std::string& name,
86
                         bool get_actual_dim = false) {
87
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
88 89
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
90 91
  }

92 93
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
94
    return tensor.dims();
95
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
96
    if (get_actual_dim) {
97
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
98
    } else {
99
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
100
    }
S
Steffy-zxf 已提交
101 102
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
103 104 105 106 107
  } else {
    return DDim({-1});
  }
}

108
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
109 110 111 112 113
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

114
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
115 116 117 118
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
119

120 121
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
122
    if (UNLIKELY(!tensor.IsInitialized())) {
123 124
      return "";
    }
125
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
126 127
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
128 129 130
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
131
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
132
    }
S
Steffy-zxf 已提交
133 134
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
135 136 137 138 139
  } else {
    return "";
  }
}

140
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
141 142 143 144 145 146 147 148 149 150
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

151 152
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
153 154 155 156
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
157 158
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
159 160 161 162 163 164 165 166 167 168
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

169
static int GetRowSize(const Scope& scope, const std::string& name) {
170 171 172 173 174
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

175 176
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
177 178 179 180 181
  }

  return -1;
}

182
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
183 184 185 186 187 188 189
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

190 191
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
192
    return tensor.lod();
Q
Qiao Longfei 已提交
193 194 195 196 197
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
198 199 200 201 202
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
203
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
204 205 206 207 208 209
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
210
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
211 212 213 214 215 216
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
RuntimeInferShapeContext::RuntimeInferShapeContext(const OperatorBase& op,
                                                   const RuntimeContext& ctx)
    : op_(op), ctx_(ctx) {}

bool RuntimeInferShapeContext::HasInput(const std::string& name) const {
  // has only one input
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end()) {
    return false;
  }
  const auto& in = it->second;
  if (in.size() == 0) return false;
  PADDLE_ENFORCE_EQ(
      in.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input %s should not contain more than one inputs.", name));
  return in[0] != nullptr;
}

bool RuntimeInferShapeContext::HasOutput(const std::string& name) const {
  // has only one output
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end()) {
    return false;
  }
  const auto& out = it->second;
  if (out.size() == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(
      out.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Output %s should not contain more than one outputs.", name));
  return out[0] != nullptr;
}

bool RuntimeInferShapeContext::HasAttr(const std::string& name) const {
  return op_.HasAttr(name);
}

bool RuntimeInferShapeContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (auto& input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

bool RuntimeInferShapeContext::HasOutputs(const std::string& name,
                                          bool allow_null) const {
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end() || it->second.empty()) {
    return false;
  }
  if (!allow_null) {
    for (auto& output : it->second) {
      if (output == nullptr) return false;
    }
  }
  return true;
}

AttrReader RuntimeInferShapeContext::Attrs() const {
  return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
}

std::vector<std::string> RuntimeInferShapeContext::Inputs(
    const std::string& name) const {
  return op_.Inputs(name);
}

std::vector<std::string> RuntimeInferShapeContext::Outputs(
    const std::string& name) const {
  return op_.Outputs(name);
}

std::string RuntimeInferShapeContext::GetInputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->inputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->inputs().size()));
  return op_proto->inputs()[idx].name();
}

std::string RuntimeInferShapeContext::GetOutputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->outputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of outputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->outputs().size()));
  return op_proto->outputs()[idx].name();
}

void RuntimeInferShapeContext::ShareDim(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second[i];
  Variable* out_var = out_it->second[j];

  PADDLE_ENFORCE_EQ(
      in_var->Type(),
      out_var->Type(),
      platform::errors::InvalidArgument(
          "The type of input (%s) and output (%s) are inconsistent.", in, out));

  if (in_var->IsType<phi::SelectedRows>()) {
    auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
    auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
    out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
    out_sele_rows->set_rows(in_sele_rows.rows());
    out_sele_rows->set_height(in_sele_rows.height());
  } else if (in_var->IsType<phi::DenseTensor>()) {
    auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_lod_tensor->Resize(in_lod_tensor.dims());
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Currently, the input type of ShareDim only can be phi::DenseTensor "
        "or SelectedRows."));
  }
}

void RuntimeInferShapeContext::ShareAllLoD(const std::string& in,
                                           const std::string& out) const {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound(
                        "Input [%s] found error in Op [%s]", in, op_.Type()));
  PADDLE_ENFORCE_NE(out_it,
                    ctx_.outputs.end(),
                    platform::errors::NotFound(
                        "Output [%s] found error in Op [%s]", out, op_.Type()));

  auto& in_var_list = in_it->second;
  auto& out_var_list = out_it->second;

  PADDLE_ENFORCE_EQ(
      in_var_list.size(),
      out_var_list.size(),
      platform::errors::PreconditionNotMet(
          "Op [%s]: Input var size should be equal with output var size",
          op_.Type()));

  auto& out_var_names = op_.Outputs(out);

  for (size_t i = 0; i < in_var_list.size(); ++i) {
    if (out_var_names[i] == framework::kEmptyVarName) {
      continue;
    }

    Variable* in_var = in_var_list[i];
    if (!in_var->IsType<phi::DenseTensor>()) return;
    Variable* out_var = out_var_list[i];
    PADDLE_ENFORCE_EQ(
        out_var->IsType<phi::DenseTensor>(),
        true,
        platform::errors::PreconditionNotMet(
            "The %d-th output of Output(%s) must be phi::DenseTensor.",
            i,
            out_var_names[i]));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
    if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
  }
}

void RuntimeInferShapeContext::ShareLoD(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) const {
  if (can_skip_lod_) {
    return;
  }
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second.at(i);
  if (!in_var->IsType<phi::DenseTensor>()) return;
  Variable* out_var = out_it->second.at(j);
  PADDLE_ENFORCE_EQ(
      out_var->IsType<phi::DenseTensor>(),
      true,
      platform::errors::InvalidArgument(
          "The %zu-th output of Output(%s) must be phi::DenseTensor.", j, out));
  auto& in_tensor = in_var->Get<phi::DenseTensor>();
  auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
  out_tensor->set_lod(in_tensor.lod());

// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out phi::DenseTensor?
#ifdef PADDLE_WITH_MKLDNN
  // Fix me: ugly workaround below
  // Correct solution:
  //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
  //    layout of output tensor should be set "manually" in Compute()
  //    of each OPKernel. The reason layout should NOT be shared between
  //    input and output "automatically" (now by InferShape()->ShareLoD())
  //    is that layout transform may occur after InferShape().
  // Workaround:
  //    Skip set_layout() when input layout is kMKLDNN
  //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
  //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
  //    in Compute()
  if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
    out_tensor->set_layout(in_tensor.layout());
}

int32_t RuntimeInferShapeContext::GetLoDLevel(const std::string& in,
                                              size_t i) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

void RuntimeInferShapeContext::SetLoDLevel(const std::string& out,
                                           int32_t lod_level,
                                           size_t j) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

bool RuntimeInferShapeContext::IsRuntime() const { return true; }

bool RuntimeInferShapeContext::IsRunMKLDNNKernel() const {
  try {
    auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
    return ((op_with_kernel.kernel_type()) &&
            (op_with_kernel.kernel_type()->data_layout_ ==
             phi::DataLayout::ONEDNN));
  } catch (std::bad_cast& exp) {
    return false;
  }
}

// TODO(paddle-dev): Can this be template?
paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
RuntimeInferShapeContext::GetInputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
RuntimeInferShapeContext::GetOutputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

DDim RuntimeInferShapeContext::GetInputDim(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input(%s) should hold one element, but now it holds %zu elements.",
          name,
          vars.size()));
  return this->GetDim(vars[0]);
}

std::vector<DDim> RuntimeInferShapeContext::GetInputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  return GetDims(vars);
}

proto::VarType::Type RuntimeInferShapeContext::GetInputVarType(
    const std::string& name) const {
  return GetVarType(InputVars(name).at(0));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetInputsVarType(
    const std::string& name) const {
  return GetVarTypes(InputVars(name));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetOutputsVarType(
    const std::string& name) const {
  return GetVarTypes(OutputVars(name));
}

void RuntimeInferShapeContext::SetOutputDim(const std::string& name,
                                            const DDim& dim) {
  auto& vars = OutputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                        "but now it holds %zu elements.",
                                        name,
                                        vars.size()));
  SetDim(vars[0], dim);
}

void RuntimeInferShapeContext::SetOutputsDim(const std::string& name,
                                             const std::vector<DDim>& dims) {
  auto& vars = OutputVars(name);
  SetDims(vars, dims);
}

const phi::ArgumentMappingFn*
RuntimeInferShapeContext::GetPhiArgumentMappingFn() const {
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
}

const phi::KernelSignature*
RuntimeInferShapeContext::GetPhiDefaultKernelSignature() const {
  return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
}

void RuntimeInferShapeContext::SetSkipLoD(bool skip) { can_skip_lod_ = skip; }

P
pangengzheng 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
std::vector<LoD> RuntimeInferShapeContext::GetOutputsLod(
    const std::string& out) const {
  auto out_it = ctx_.outputs.find(out);
  auto& out_var_list = out_it->second;

  std::vector<LoD> ret;
  for (size_t i = 0; i < out_var_list.size(); ++i) {
    Variable* out_var = out_var_list[i];
    if (out_var != nullptr) {
      auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
      ret.push_back(out_tensor->lod());
    }
  }
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetOutputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  std::vector<Variable*> vars_res;
  for (auto var : vars) {
    if (var != nullptr) {
      vars_res.push_back(var);
    }
  }
  return GetDims(vars_res);
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
DDim RuntimeInferShapeContext::GetDim(Variable* var) const {
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::InvalidArgument("Input variable is nullptr."));
  if (var->IsType<phi::DenseTensor>()) {
    return var->Get<phi::DenseTensor>().dims();
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().GetCompleteDims();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
        "Variable's type is %s.",
        ToTypeName(var->Type())));
  }
}

std::vector<DDim> RuntimeInferShapeContext::GetDims(
    const std::vector<Variable*>& vars) const {
  std::vector<DDim> ret;
  ret.reserve(vars.size());
  std::transform(
      vars.begin(), vars.end(), std::back_inserter(ret), [this](Variable* var) {
        return this->GetDim(var);
      });
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetRepeatedDims(
    const std::string& name) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetRepeatedDims method only ban be used in compile time."));
}

void RuntimeInferShapeContext::SetDim(Variable* var, const DDim& dim) {
  if (var->IsType<phi::DenseTensor>()) {
    var->GetMutable<phi::DenseTensor>()->Resize(dim);
  } else if (var->IsType<phi::SelectedRows>()) {
    var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Variable type error, expect phi::DenseTensor or SelectedRows, but "
        "received "
        "(%s).",
        ToTypeName(var->Type())));
  }
}

void RuntimeInferShapeContext::SetDims(const std::vector<Variable*>& vars,
                                       const std::vector<DDim>& dims) {
  size_t length = vars.size();
  PADDLE_ENFORCE_EQ(length,
                    dims.size(),
                    platform::errors::InvalidArgument(
                        "The number of input variables do not match the "
                        "number of input dimensions, the number of variables "
                        "is %zu, the number of dimensions is %zu.",
                        length,
                        dims.size()));
  for (size_t i = 0; i < length; ++i) {
    if (vars[i] == nullptr) {
      continue;
    }
    SetDim(vars[i], dims[i]);
  }
}

void RuntimeInferShapeContext::SetRepeatedDims(const std::string& name,
                                               const std::vector<DDim>& dims) {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetRepeatedDims method only can be used in compile time."));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetVarTypes(
    const std::vector<Variable*>& vars) const {
  std::vector<proto::VarType::Type> retv;
  retv.resize(vars.size());
  std::transform(vars.begin(),
                 vars.end(),
                 retv.begin(),
                 std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                           this,
                           std::placeholders::_1));
  return retv;
}

proto::VarType::Type RuntimeInferShapeContext::GetVarType(Variable* var) const {
  return ToVarType(var->Type());
}

const std::vector<Variable*>& RuntimeInferShapeContext::InputVars(
    const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.inputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the input (%s).", op_.Type(), name));
  return it->second;
}

const std::vector<Variable*>& RuntimeInferShapeContext::OutputVars(
    const std::string& name) const {
  auto it = ctx_.outputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.outputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
  return it->second;
}

751
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
752 753 754
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
755
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
756 757 758 759
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
760
#else
761
      auto dev_id = place.device;
P
peizhilin 已提交
762
      platform::SetDeviceId(dev_id);
763 764 765
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
766 767 768 769
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
770
#else
771
      auto dev_id = place.device;
772
      platform::SetXPUDeviceId(dev_id);
F
fwenguang 已提交
773 774 775 776 777 778 779 780
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
781
      auto dev_id = place.device;
F
fwenguang 已提交
782
      platform::SetMLUDeviceId(dev_id);
783 784 785 786 787 788 789 790
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
791
      phi::DeviceManager::SetDevice(place);
792
#endif
P
peizhilin 已提交
793
    }
P
peizhilin 已提交
794

795
    {
796 797 798
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
799
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
800
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
801 802
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
803 804
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
805
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
806
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
807 808
      RunImpl(scope, place);
    }
809

Z
Zhang Ting 已提交
810
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
811
  } catch (platform::EnforceNotMet& exception) {
812
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
813
    throw std::move(exception);
814 815 816 817 818 819
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
820
  } catch (...) {
821
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
822
    std::rethrow_exception(std::current_exception());
823
  }
824 825
}

826
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
827
  return inputs_.find(name) != inputs_.end();
828 829
}

830
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
831
  auto& ins = Inputs(name);
832
  PADDLE_ENFORCE_LE(
833 834
      ins.size(),
      1UL,
835
      platform::errors::InvalidArgument(
836 837
          "Operator %s's input %s should contain only one variable.",
          type_,
838
          name));
Y
Yu Yang 已提交
839
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
840 841
}

Y
Yu Yang 已提交
842 843
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
844
  auto it = inputs_.find(name);
845
  PADDLE_ENFORCE_NE(
846 847 848 849
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
850
  return it->second;
Y
Yan Chunwei 已提交
851 852
}

853
bool OperatorBase::HasOutputs(const std::string& name) const {
854
  if (outputs_.find(name) != outputs_.end()) {
855 856 857 858 859 860
    return true;
  } else {
    return false;
  }
}

861
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
862
  auto& outs = Outputs(name);
863
  PADDLE_ENFORCE_LE(
864 865
      outs.size(),
      1UL,
866
      platform::errors::InvalidArgument(
867 868
          "Operator %s's output %s should contain only one variable.",
          type_,
869
          name));
Y
Yu Yang 已提交
870
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
871 872
}

Y
Yu Yang 已提交
873 874
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
875
  auto it = outputs_.find(name);
876
  PADDLE_ENFORCE_NE(
877 878
      it,
      outputs_.end(),
879 880
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
881
  return it->second;
Y
Yan Chunwei 已提交
882 883
}

884
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
885
  std::stringstream ss;
Y
Yu Yang 已提交
886
  ss << "Op(" << type_ << "), inputs:{";
887

888
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
889 890
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
891 892
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
893 894
  }

Y
Yu Yang 已提交
895 896
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
897 898
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
899 900
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
901 902
      auto var_name = input.second[i];
      ss << var_name;
903
      if (scope) {
Q
Qiao Longfei 已提交
904 905 906 907 908 909 910
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
911 912 913
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
914 915 916
          std::string place = is_no_need_buffer_var
                                  ? "unknown_place"
                                  : GetPlace(*scope, var_name);
Q
Qiao Longfei 已提交
917
          ss << ":" << dtype;
918 919
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
920
          ss << "(" << place << ")";
921
        }
922
      }
Y
Yu Yang 已提交
923 924 925
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
926
    }
Y
Yu Yang 已提交
927
    ss << "]";
Y
Yu Yang 已提交
928 929
    ++it;
    if (it != inputs_.end()) {
930 931
      ss << ", ";
    }
Q
Qiao Longfei 已提交
932
  }
Y
Yu Yang 已提交
933
  ss << "}, outputs:{";
Y
Yu Yang 已提交
934 935
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
936 937
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
938 939
      auto var_name = output.second[i];
      ss << var_name;
940
      if (scope) {
Q
Qiao Longfei 已提交
941 942 943 944 945 946 947
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
948 949
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
950 951
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
952
          ss << "(" << GetPlace(*scope, var_name) << ")";
953
        }
954
      }
Y
Yu Yang 已提交
955 956 957
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
958
    }
Y
Yu Yang 已提交
959
    ss << "]";
Y
Yu Yang 已提交
960 961
    ++it;
    if (it != outputs_.end()) {
962 963
      ss << ", ";
    }
Q
Qiao Longfei 已提交
964
  }
Y
Yu Yang 已提交
965
  ss << "}.";
Q
Qiao Longfei 已提交
966 967 968
  return ss.str();
}

Y
Yu Yang 已提交
969
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
970 971
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
972
                           const AttributeMap& attrs)
S
sneaxiy 已提交
973 974 975 976 977 978
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
979 980 981 982 983 984 985 986
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
987 988 989 990 991

  // canonicalize attrs
  if (info_ && info_->proto_) {
    CanonicalizeScalarAttrs(*info_->proto_, &attrs_);
  }
992
  // In OperatorBase level, all attributes with VarDesc type will be considered
993 994 995 996 997 998
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
999
}
1000

Q
qijun 已提交
1001 1002
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
1003
  for (auto& o : inputs_) {
Q
qijun 已提交
1004 1005 1006 1007 1008 1009
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
1020
  auto& info = Info();
Y
Yu Yang 已提交
1021 1022

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
1023
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
1033 1034
}

1035
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
1036
  if (info_ == nullptr || info_->proto_ == nullptr) return;
1037

S
sneaxiy 已提交
1038
  for (auto& in : info_->Proto().inputs()) {
1039
    if (!in.dispensable() && !in.extra()) {
1040
      PADDLE_ENFORCE_NE(
1041 1042 1043 1044
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
1045
    }
1046 1047
  }

S
sneaxiy 已提交
1048
  for (auto& out : info_->Proto().outputs()) {
1049
    if (!out.dispensable() && !out.extra() && !out.intermediate()) {
1050
      PADDLE_ENFORCE_NE(
1051 1052 1053 1054
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
1055
    }
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
1071

1072 1073
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
1074 1075
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
1076 1077
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
1078
  } else {
1079
    PADDLE_THROW(platform::errors::InvalidArgument(
1080
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1081
        ToTypeName(var.Type())));
Q
QI JUN 已提交
1082 1083 1084
  }
}

1085
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
1086 1087
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
1088 1089
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
1090
  } else {
1091
    PADDLE_THROW(platform::errors::InvalidArgument(
1092
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1093
        ToTypeName(var->Type())));
Q
QI JUN 已提交
1094 1095 1096
  }
}

1097 1098 1099 1100 1101 1102 1103 1104
OperatorWithKernel::OperatorWithKernel(const std::string& type,
                                       const VariableNameMap& inputs,
                                       const VariableNameMap& outputs,
                                       const AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

OperatorWithKernel::~OperatorWithKernel() = default;

1105
bool ExecutionContext::HasInput(const std::string& name) const {
1106
  auto* var = InputVar(name);
1107 1108 1109
  return var != nullptr;
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

1124
bool ExecutionContext::HasOutput(const std::string& name) const {
1125
  auto* var = OutputVar(name);
1126 1127 1128
  return var != nullptr;
}

X
Xin Pan 已提交
1129
const Variable* ExecutionContext::InputVar(const std::string& name) const {
1130 1131
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
1132 1133 1134
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

1135
  PADDLE_ENFORCE_LE(
1136 1137
      it->second.size(),
      1UL,
1138
      platform::errors::InvalidArgument(
1139
          "Operator %s's input %s should contain only one variable.",
1140 1141
          op_.Type(),
          name));
X
Xin Pan 已提交
1142 1143 1144
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
1145
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
1146 1147 1148
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

1149
  PADDLE_ENFORCE_LE(
1150 1151
      it->second.size(),
      1UL,
1152 1153
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
1154 1155
          op_.Type(),
          name));
X
Xin Pan 已提交
1156 1157 1158
  return it->second.empty() ? nullptr : it->second[0];
}

1159
template <>
1160 1161
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
1162 1163
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
1164 1165
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
1166 1167
    return {};
  }
1168
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
1169
  res.reserve(vars.size());
1170 1171 1172
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1173
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
1174
                   if (var == nullptr) return nullptr;
1175 1176 1177 1178 1179 1180 1181 1182
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
1183 1184 1185 1186
                 });
  return res;
}

1187
template <>
1188
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
1189
    const std::string& name) const {
H
hong 已提交
1190 1191 1192
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
1193 1194
    return {};
  }
1195
  std::vector<phi::DenseTensor*> res;
1196
  res.reserve(vars.size());
1197 1198 1199
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1200
                 [&](Variable* var) -> phi::DenseTensor* {
1201
                   return var == nullptr ? nullptr
1202
                                         : var->GetMutable<phi::DenseTensor>();
1203
                 });
1204 1205 1206
  return res;
}

Y
Yu Yang 已提交
1207
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
1208
  // check in new Function kernel first
1209
  bool has_phi_kernel = false;
1210
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
1211
  auto kernel_key_map =
1212
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
1213
  for (auto& kernel : kernel_key_map) {
1214
    has_phi_kernel = true;
1215
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
1216 1217 1218 1219
      return true;
    }
  }

Y
Yu Yang 已提交
1220 1221
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
1235 1236 1237
      return true;
    }
  }
H
hong 已提交
1238

Y
Yu Yang 已提交
1239 1240 1241
  return false;
}

1242
struct OperatorWithKernel::CacheImpl {
1243
  static const char kNotAllowInferShapeCahce[];
1244
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
1245 1246 1247 1248 1249 1250 1251
                     RuntimeInferShapeContext* infer_shape_ctx,
                     const std::vector<phi::DenseTensor*>& tensors,
                     bool not_allow_infer_shape_cache)
      : kernel_ctx_(kernel_ctx),
        infer_shape_ctx_(infer_shape_ctx),
        tensors_(tensors),
        not_allow_infer_shape_cache_(not_allow_infer_shape_cache) {}
1252 1253 1254 1255 1256 1257

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
  bool NeedInferShape() {
    if (not_allow_infer_shape_cache_) return true;

    bool ret{false};
    if (last_ddims_.empty() || tensors_.empty()) ret = true;
    if (!ret) {
      CHECK_EQ(last_ddims_.size(), tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        if (tensors_[i]->dims() != last_ddims_[i]) {
          ret = true;
          break;
        }
      }
    }
    if (ret) {
      last_ddims_.resize(tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        last_ddims_[i] = tensors_[i]->dims();
      }
    }
    VLOG(3) << "need infer shape is " << ret;
    return ret;
  }

1282 1283 1284
 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
1285 1286 1287
  std::vector<phi::DenseTensor*> tensors_;
  bool not_allow_infer_shape_cache_;
  std::vector<phi::DDim> last_ddims_;
1288
};
1289 1290
const char OperatorWithKernel::CacheImpl::kNotAllowInferShapeCahce[] =
    "@NOT_ALLOW_INFERSHAPE_CACHE@";
1291

1292 1293
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1294
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1295 1296 1297
  if (tensor.memory_size() == 0) {
    return;
  }
1298 1299
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1300 1301
    return;
  }
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1314 1315
}

1316 1317 1318 1319
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1320 1321
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1334 1335
          op_kernels.begin(),
          op_kernels.end(),
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1347 1348
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1361 1362
          op_kernels.begin(),
          op_kernels.end(),
1363 1364 1365 1366 1367 1368 1369
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
Q
QingshuChen 已提交
1393 1394 1395 1396
                   paddle::platform::is_xpu_support_op(
                       type_,
                       framework::TransToPhiDataType(
                           kern_pair.first.data_type_));
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1408
bool OperatorWithKernel::SupportsMKLDNN(const phi::DataType data_type) const {
1409 1410 1411 1412 1413
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1414 1415
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
1416
                           kern_pair.first.dtype() == data_type;
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
1432 1433
                   kern_pair.first.data_type_ ==
                       paddle::framework::TransToProtoVarType(data_type);
1434 1435
          });
    }
1436
  }
1437 1438
}

1439
bool OperatorWithKernel::SupportsCUDNN(const phi::DataType data_type) const {
1440 1441
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
1442 1443 1444 1445 1446 1447 1448
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPUDNN &&
                           kern_pair.first.dtype() == data_type;
                  });
1449 1450 1451 1452 1453 1454 1455 1456
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
1457 1458
      proto::VarType::Type fluid_data_type =
          framework::TransToProtoVarType(data_type);
1459 1460 1461
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
1462
          [fluid_data_type](OpKernelMap::const_reference kern_pair) {
1463 1464
            return platform::is_gpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kCUDNN &&
1465
                   kern_pair.first.data_type_ == fluid_data_type;
1466 1467 1468 1469 1470
          });
    }
  }
}

1471
bool OperatorWithKernel::SupportsKernelType(
1472
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1473 1474
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1475 1476 1477 1478 1479
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1480
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1481
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1482 1483
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1484 1485
  }
#endif
1486 1487 1488 1489 1490

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
1491
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1492
            type_, framework::TransToPhiDataType(kernel_type.data_type_));
1493 1494 1495 1496 1497 1498 1499 1500 1501
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1502 1503
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1504 1505 1506
  }
#endif

1507
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1508 1509 1510 1511 1512
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1513
#ifdef PADDLE_WITH_MKLDNN
1514
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1515 1516 1517
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
1518
    tmp_kernel_type.data_layout_ = framework::DataLayout::ONEDNN;
1519 1520 1521 1522
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1523 1524 1525 1526 1527 1528 1529 1530
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kCUDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1531
  return kernel_iter != kernels.end();
1532 1533
}

1534
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
1535
                                         phi::DataType data_type) const {
1536
  return ctx.HasAttr("use_mkldnn") && ctx.Attr<bool>("use_mkldnn") &&
1537 1538
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1539 1540
}

1541 1542 1543 1544 1545
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
  return this->CanMKLDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1546
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
1547
                                        phi::DataType data_type) const {
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
  bool use_cudnn = ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn") &&
                   paddle::platform::is_gpu_place(ctx.GetPlace());

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
    use_cudnn &= (dev_ctx.cudnn_handle() != nullptr);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#if defined(PADDLE_WITH_CUDA)
1559
  if (use_cudnn && data_type == phi::DataType::BFLOAT16) {
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    PADDLE_ENFORCE_GE(
        platform::DnnVersion(),
        8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA

  return use_cudnn && this->SupportsCUDNN(data_type);
}

1571 1572 1573 1574 1575
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                                        proto::VarType::Type data_type) const {
  return this->CanCUDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1576 1577 1578 1579 1580 1581 1582
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1583
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1584 1585
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1586
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1587
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1588 1589
}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
template <typename T>
bool HasSameTensorType(phi::TensorBase* phi_tensor, Variable* var) {
  if (phi_tensor == nullptr && var == nullptr) {
    return true;
  } else if (phi_tensor != nullptr && var != nullptr) {
    if (T::classof(phi_tensor) && var->IsType<T>()) {
      return true;
    }
  }
  return false;
}

// TODO(YuanRisheng): We need collect all `need_prepare_phi_data_`
// into this function.
void OperatorWithKernel::CheckWhetherPreparePhiData(
    const VariableNameMap& innames,
    const VariableNameMap& outnames,
    const Scope& scope) const {
  if (run_phi_kernel_ && impl_ != nullptr) {
    const auto& phi_kernel_context = impl_->getKernelContext();
    size_t phi_tensor_index = 0;
    // Check each tensor in KernelContext, if there is a tensor that has
    // different type with variable. The PhiKernelContext need be reconstructed.
    // We use kernel_signature_'s output to retrieve tensor. Because the tensor
    // in phi_kernel_context stored in the order of kernel_signature_'s output.
    if (phi_kernel_context->OutputsSize() >= phi_tensor_index ||
        kernel_signature_ == nullptr) {
      need_prepare_phi_data_ = true;
      return;
    }

    const auto& phi_output_names = kernel_signature_->output_names;
    for (auto& phi_output_name : phi_output_names) {
      const auto& iter = outnames.find(phi_output_name);
      if (iter != outnames.end()) {
        for (auto& var_name : iter->second) {
          auto var_output = scope.FindVar(var_name);
          auto phi_output =
              phi_kernel_context->MutableOutputAt<phi::TensorBase>(
                  phi_tensor_index);
          if (phi_output == nullptr) {
            continue;
          }
          if (!(HasSameTensorType<phi::DenseTensor>(phi_output, var_output) ||
                HasSameTensorType<phi::SparseCooTensor>(phi_output,
                                                        var_output) ||
                HasSameTensorType<framework::Strings>(phi_output,
                                                      var_output))) {
            need_prepare_phi_data_ = true;
          }
          phi_tensor_index++;
        }
      }
    }
  }
}

L
luotao1 已提交
1647 1648
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1649 1650
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1651 1652 1653
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1654
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1655
    all_kernels_must_compute_runtime_shape_ = true;
C
csy0225 已提交
1656
  const Scope* cur_scope = &scope;
1657
  CheckWhetherPreparePhiData(Inputs(), Outputs(), scope);
1658
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1659 1660
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1661 1662
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
1663
    if (!all_kernels_must_compute_runtime_shape_ && impl_->NeedInferShape()) {
1664
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
1665
    }
1666
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1667
  } else {
C
csy0225 已提交
1668
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
1669
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
C
csy0225 已提交
1670 1671 1672 1673
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1674
    }
1675
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1676 1677 1678 1679 1680 1681
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1682
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1683
  bool fallback_to_cpu = false;
1684
  auto* dev_ctx = pool.Get(place);
1685 1686 1687 1688
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
H
HongyuJia 已提交
1689
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1690

1691 1692 1693 1694 1695 1696
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1697 1698 1699 1700 1701
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1702 1703
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1704
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1705
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1706 1707 1708 1709 1710 1711
      if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
        kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
      } else {
        kernel_signature_.reset(new phi::KernelSignature(
            std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      }
1712

1713 1714
      VLOG(6) << *kernel_signature_.get();
      phi_kernel_name = kernel_signature_->name;
1715 1716 1717
      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);
1718 1719 1720 1721 1722 1723 1724
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1725
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1726
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1741
                  << phi_kernel_name
1742
                  << ", using_kernel_key:" << *kernel_type_.get();
1743
          auto try_phi_kernel_key =
1744
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1745 1746
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1747 1748
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1749
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1750 1751 1752
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1753
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1754 1755 1756 1757
          }
        }
      }
#endif
1758 1759
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1760
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1761
              phi_kernel_name, phi_kernel_key)));
1762

1763
      if (phi_kernel_->IsValid()) {
1764
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
1765 1766
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1767
      } else {
1768 1769
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `"
                << phi_kernel_name << "` not found.";
1770
      }
1771
    } else {
1772
      phi_kernel_name = kernel_signature_->name;
1773
// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
1774
// LibraryType::kMKLDNN and data_layout_ = DataLayout::ONEDNN. But the default
1775
// values are kPlain, so we need to modify the library_type and data_layout_
1776 1777 1778 1779
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1780
#ifdef PADDLE_WITH_MKLDNN
1781 1782
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1783 1784
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
1785
        kernel_type_->data_layout_ = framework::DataLayout::ONEDNN;
1786 1787 1788
      }
#endif

1789 1790 1791 1792 1793 1794
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (this->CanCUDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kCUDNN;
      }
#endif

1795 1796 1797
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1798 1799 1800 1801
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1802
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1803
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1817
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1818
                  << phi_kernel_name
1819
                  << ", using_kernel_key:" << *kernel_type_.get();
1820
          auto try_phi_kernel_key =
1821
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1822 1823
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1824
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1825
            VLOG(3) << "modify XPU KP kernel in static graph: "
1826
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1827 1828 1829
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1830
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1831 1832 1833 1834
          }
        }
      }
#endif
1835
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1836
    }
1837 1838 1839 1840

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1841
#if defined(PADDLE_WITH_XPU)
1842 1843
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
Q
QingshuChen 已提交
1844 1845
        !paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1846
#endif
1847 1848 1849 1850
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
1851
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1852
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1853 1854 1855 1856 1857 1858
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1859 1860 1861 1862 1863 1864
    bool in_custom_back_list = false;
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    in_custom_back_list =
        phi::backends::custom_device::is_in_custom_black_list(phi_kernel_name);
#endif
    if (phi_kernel_->IsValid() && !in_custom_back_list
1865
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1866 1867
        && !is_xpu_unsupport
#endif
1868 1869 1870
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1871
    ) {
1872
      run_phi_kernel_ = true;
1873 1874 1875
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1876 1877 1878 1879 1880 1881 1882 1883 1884

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif
1885 1886 1887
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1888
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1889
          || is_xpu_unsupport
1890
#endif
1891 1892
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
1893 1894 1895
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
          || in_custom_back_list
1896
#endif
1897
      ) {
1898
        fallback_to_cpu = true;
1899 1900 1901
        if (in_custom_back_list) {
          VLOG(3) << "fluid in black list: " << phi_kernel_name;
        }
H
HongyuJia 已提交
1902
        auto phi_cpu_kernel_key = FallBackToCpu(phi_kernel_key, *this);
1903
        phi_kernel_.reset(
1904
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1905
                phi_kernel_name, phi_cpu_kernel_key)));
1906 1907

        dev_ctx = pool.Get(platform::CPUPlace());
1908
        if (phi_kernel_->IsValid()) {
1909
          VLOG(6) << "Static graph mode PrepareImpl - kernel name: "
1910 1911
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1912
          run_phi_kernel_ = true;
1913 1914
        }
      }
1915 1916
    }
  }
1917
  if (!run_phi_kernel_) {
1918 1919
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1920
      dev_ctx = pool.Get(kernel_type_->place_);
1921
    }
1922 1923
  }

Y
yuyang18 已提交
1924 1925
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1926 1927
  Scope* transfer_scope = nullptr;
  {
1928
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1929
                                       platform::TracerEventType::OperatorInner,
1930 1931
                                       1,
                                       platform::EventRole::kInnerOp);
1932
    if (need_prepare_data_) {
1933 1934 1935 1936 1937 1938
      transfer_scope =
          PrepareData(scope,
                      framework::TransOpKernelTypeToPhiKernelKey(*kernel_type_),
                      &transfered_inplace_vars,
                      runtime_ctx,
                      dev_ctx->GetPlace());
1939
    }
1940
  }
Y
yuyang18 已提交
1941 1942 1943 1944
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1945
  if (!all_kernels_must_compute_runtime_shape_) {
1946
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1947
                                       platform::TracerEventType::OperatorInner,
1948 1949
                                       1,
                                       platform::EventRole::kInnerOp);
1950
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1951
    this->Info().infer_shape_(&infer_shape_ctx);
1952 1953
    record_event.End();
    platform::RecordOpInfoSupplement(
1954
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx, Id());
1955
  }
1956 1957 1958 1959 1960

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1961 1962
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1963
  {
1964
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1965
                                       platform::TracerEventType::OperatorInner,
1966 1967
                                       1,
                                       platform::EventRole::kInnerOp);
1968 1969
    if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                               phi::KernelRegisteredType::FUNCTION) {
1970
      phi::KernelContext phi_kernel_context;
1971 1972
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
        // TODO(inference): Now we only suppor dense_tensor cache, we may be
        // support ScalarTensor, SparseTensor in future.
        bool all_dense_tensor_input_{true};
        for (auto& iter : Inputs()) {
          for (auto& name : iter.second) {
            all_dense_tensor_input_ &=
                scope.FindVar(name)->IsType<phi::DenseTensor>();
          }
        }

        std::vector<phi::DenseTensor*> tensors;
        if (all_dense_tensor_input_) {
          for (auto& iter : Inputs()) {
            for (auto& name : iter.second) {
              auto* t = scope.FindVar(name)->GetMutable<phi::DenseTensor>();
              tensors.push_back(t);
            }
          }
        }

        impl_.reset(
1994
            new CacheImpl(new phi::KernelContext(),
1995 1996 1997
                          new RuntimeInferShapeContext(*this, *runtime_ctx),
                          tensors,
                          HasAttr(CacheImpl::kNotAllowInferShapeCahce)));
1998
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1999
        (*phi_kernel_)(impl_->getKernelContext());
2000
      } else {
2001
        phi::KernelContext phi_kernel_context;
2002 2003
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
2004 2005
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
2006
      }
2007 2008 2009 2010 2011
    } else if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                                      phi::KernelRegisteredType::STRUCTURE) {
      ExecutionContext execution_context(
          *this, exec_scope, *dev_ctx, *runtime_ctx);
      (*phi_kernel_)(&execution_context);
2012 2013 2014 2015
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
2016 2017 2018
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
2019
  }
D
dzhwinter 已提交
2020

Y
yuyang18 已提交
2021
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
2022
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
2023
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
2024
  }
2025 2026 2027 2028 2029 2030 2031

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

2032 2033 2034 2035 2036 2037 2038 2039
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
2040

D
dzhwinter 已提交
2041
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
2042
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
2043
    dev_ctx->Wait();
2044 2045
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
2046 2047
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
2048
  }
C
chengduoZH 已提交
2049 2050

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
2051
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
2052
  }
2053 2054 2055 2056

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
C
csy0225 已提交
2057 2058
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
2059
  }
Q
Qiao Longfei 已提交
2060
}
X
Xin Pan 已提交
2061

2062 2063
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
2064 2065 2066
  phi::KernelKey phi_kernel_key = this->GetExpectedKernelType(ctx);
  auto expected_kernel_key =
      framework::TransPhiKernelKeyToOpKernelType(phi_kernel_key);
2067 2068 2069

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
2070
// data_layout_ of expected_kernel_key need to be adjusted. There are three
2071
// statements in if condition:
2072 2073 2074
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
2075
#ifdef PADDLE_WITH_MKLDNN
2076
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
2077 2078
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
2079
    expected_kernel_key.data_layout_ = framework::DataLayout::ONEDNN;
2080 2081 2082
  }
#endif

2083 2084 2085 2086 2087 2088
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN;
  }
#endif

2089 2090 2091
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
2102 2103 2104
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
2105 2106
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2107
      if (SupportGPU()) {
2108
        auto& dev_ctx = ctx.device_context();
2109
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2110 2111
      }
#endif
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
2131 2132 2133
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
2134
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2135 2136 2137
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
2138 2139
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
2166 2167 2168
      }
    }
  }
2169 2170 2171 2172 2173 2174

  if (platform::places_are_same_class(expected_kernel_key.place_,
                                      ctx.GetPlace())) {
    expected_kernel_key.place_ = ctx.GetPlace();
  }

C
cc 已提交
2175 2176
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
2177 2178 2179
  return expected_kernel_key;
}

2180
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2181
    const ExecutionContext& ctx) const {
2182 2183 2184 2185 2186 2187 2188
  std::string phi_kernel_name;
  if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
    kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
  } else {
    kernel_signature_.reset(
        new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  }
2189
  VLOG(6) << *kernel_signature_.get();
2190
  phi_kernel_name = kernel_signature_->name;
2191 2192 2193
  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2194 2195 2196
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2197

2198
  if (phi_kernel_->IsValid()) {
2199 2200
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
            << phi_kernel_name << " | kernel key: " << phi_kernel_key
2201
            << " | kernel: " << *phi_kernel_;
2202
  } else {
2203
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `" << phi_kernel_name
2204 2205
            << "` not found.";
  }
2206
  return phi_kernel_key;
2207 2208 2209 2210 2211 2212 2213
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2214 2215
      kernels_iter,
      all_op_kernels.end(),
2216
      platform::errors::Unimplemented(
2217 2218 2219 2220 2221 2222
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2223 2224

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2225

L
Liu Yiqun 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2235
#endif
2236 2237

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2238
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2239
      (kernel_iter == kernels.end() ||
Q
QingshuChen 已提交
2240 2241 2242
       !paddle::platform::is_xpu_support_op(
           type_,
           framework::TransToPhiDataType(expected_kernel_key.data_type_)))) {
2243
    VLOG(3) << "fluid missing XPU kernel: " << type_
2244 2245 2246 2247 2248
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2249
#endif
L
Liu-xiandong 已提交
2250 2251

#ifdef PADDLE_WITH_XPU_KP
2252 2253 2254
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
2255
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
2256 2257
            type_,
            framework::TransToPhiDataType(expected_kernel_key.data_type_));
2258 2259 2260
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2261
      VLOG(3) << "fluid xpu_kp using rt mode ";
2262 2263
    }
    if (use_xpu_kp_kernel_debug) {
2264
      VLOG(3) << "fluid xpu_kp using debug mode ";
2265 2266 2267
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2268 2269
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2270 2271
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2272
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2273
      // if the fluid do not register related kernel, it can't work and have
2274 2275 2276 2277 2278 2279 2280
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2281
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2282 2283
                << ", using_kernel_key:" << expected_kernel_key;
      }
2284
    }
Q
QingshuChen 已提交
2285 2286
    bool is_xpu_unsupport = (!paddle::platform::is_xpu_support_op(
        type_, framework::TransToPhiDataType(expected_kernel_key.data_type_)));
2287 2288
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2289
      VLOG(3) << "fluid missing XPU kernel: " << type_
2290 2291 2292 2293 2294
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2295 2296 2297
  }
#endif

A
Allen Guo 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2308 2309
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2310
      platform::is_npu_place(expected_kernel_key.place_)) {
2311 2312 2313 2314 2315 2316
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2317 2318 2319
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2320
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2321 2322 2323
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2335 2336 2337
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2338
#endif
2339 2340 2341 2342 2343 2344
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2345

2346 2347 2348 2349 2350
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2351 2352
}

Y
yuyang18 已提交
2353
void OperatorWithKernel::TransferInplaceVarsBack(
2354 2355
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2356 2357
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2358
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2359
    auto* origin_var = scope.FindVar(var_name);
2360 2361 2362
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2363
    auto* original_tensor =
C
chengduo 已提交
2364
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2365
    auto* var = transfer_scope.FindVar(var_name);
2366 2367 2368
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2369
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
2370 2371 2372 2373
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2403
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2423
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2434
      phi::DenseTensor out;
2435 2436 2437 2438 2439 2440
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2441
Scope* OperatorWithKernel::PrepareData(
2442
    const Scope& scope,
2443
    const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
2444
    std::vector<std::string>* transfered_inplace_vars,
2445 2446
    RuntimeContext* ctx,
    const phi::Place& place) const {
Y
yuyang18 已提交
2447
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2448

2449
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2450 2451 2452 2453
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2454 2455
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2456 2457 2458
    }
  }

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
  auto has_infer_varkernel_fn =
      (run_phi_kernel_ && phi_kernel_->get_kerneltype_forvar_fn_ != nullptr);
  phi::AttributeMap infer_attrs{};
  auto fluid_attrs = Attrs();
  phi::GetKernelTypeForVarContext infer_varkernel_context =
      BuildGetKernelTypeForVarContext(expected_kernel_key,
                                      fluid_attrs,
                                      &infer_attrs,
                                      has_infer_varkernel_fn);

2469 2470 2471 2472 2473 2474 2475 2476 2477
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2478

Y
yuyang18 已提交
2479
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2480
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2481 2482 2483
        continue;
      }

C
chengduo 已提交
2484
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2485

2486
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2487 2488 2489 2490 2491 2492 2493
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
2494
        // oneDNN shape of Var may differ from kNHWC Var
2495 2496
        // In such situation corressponding resized Var
        // has to be created and registered
2497
        if ((tensor_in->layout() == DataLayout::ONEDNN) &&
2498
            (var->IsType<phi::DenseTensor>() == true) &&
2499
            (expected_kernel_key.layout() != DataLayout::ONEDNN) &&
2500 2501
            (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
             DataLayout::kNHWC) &&
2502
            (tensor_in->dims().size() >= 3)) {
2503
          // Mixed execution : oneDNN and GPU is not supported!
2504 2505 2506 2507
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2508
          in_vars->at(i) = trans_var;
2509
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2510
          out->Resize(tensor_in->dims());
2511
          phi::funcs::MatchShapeToLayout(
2512
              out, tensor_in->layout(), DataLayout::kNHWC);
2513
          VLOG(7) << "Created reshaped dummy input based on oneDNN "
2514
                     "phi::DenseTensor , "
2515
                     "but kNHWC layout"
2516
                  << in_name << " in Operator " << type_;
2517
        } else {
2518 2519
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2520 2521 2522 2523 2524
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2525 2526 2527 2528
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2529 2530
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
2531 2532 2533 2534 2535 2536 2537
      if (has_infer_varkernel_fn) {
        infer_varkernel_context.SetVarName(const_cast<std::string*>(&in_name));
        infer_varkernel_context.SetDenseTensor(
            const_cast<phi::DenseTensor*>(tensor_in));
        kernel_type_for_var =
            phi_kernel_->get_kerneltype_forvar_fn_(&infer_varkernel_context);
      }
2538
      bool need_trans_dtype =
2539
          NeedTransformDataType(expected_kernel_key, kernel_type_for_var);
2540
      bool need_trans_layout = NeedTransformLayout(
2541
          kernel_type_for_var.layout(), expected_kernel_key.layout());
2542 2543
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
2544 2545
            backends_are_same_class(kernel_type_for_var.backend(),
                                    expected_kernel_key.backend())) {
2546 2547 2548
          continue;
        }
      }
Y
yuyang18 已提交
2549

2550
      std::unique_ptr<phi::KernelKey> new_expected_kernel_key = nullptr;
2551 2552
      if (run_phi_kernel_ && in_def != nullptr &&
          in_def->backend != phi::Backend::ALL_BACKEND) {
2553 2554
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
2555 2556 2557 2558 2559 2560
             !(in_def->backend == phi::Backend::GPUDNN &&
               tensor_backend == phi::Backend::GPU) &&
             !(in_def->backend == phi::Backend::KPS &&
               tensor_backend == phi::Backend::XPU) &&
             !(in_def->backend == phi::Backend::ONEDNN &&
               tensor_backend == phi::Backend::CPU)) ||
2561
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
2562 2563 2564 2565
          new_expected_kernel_key =
              std::make_unique<phi::KernelKey>(in_def->backend,
                                               expected_kernel_key.layout(),
                                               expected_kernel_key.dtype());
2566 2567 2568 2569 2570 2571 2572
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2573 2574
      }

M
minqiyang 已提交
2575
      VLOG(3) << "Transform Variable " << var_name << " from "
2576 2577 2578
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2579

H
HongyuJia 已提交
2580 2581 2582
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2583
      // We use a thread_local cache to fix that issue, the key in the cache is
2584 2585 2586 2587 2588
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2589 2590
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2591
      // variables, that behavior a lot different.
2592 2593 2594 2595 2596 2597
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2598 2599
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
2600 2601 2602 2603
          if (kernel_type_for_var.backend() == phi::Backend::GPU ||
              kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
              new_expected_kernel_key->backend() == phi::Backend::GPU ||
              new_expected_kernel_key->backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2604
            new_scope = TryCreateTransferScope(
2605 2606 2607
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
2608 2609 2610 2611
        } else if (kernel_type_for_var.backend() == phi::Backend::GPU ||
                   kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
                   expected_kernel_key.backend() == phi::Backend::GPU ||
                   expected_kernel_key.backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2612
          new_scope = TryCreateTransferScope(
2613 2614 2615
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2616
      }
2617

2618
      if (!new_scope) {
Y
yuyang18 已提交
2619 2620
        new_scope = &scope.NewScope();
      }
C
csy0225 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2631 2632

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2633
      auto* trans_var = new_scope->Var(var_name);
2634
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2635 2636 2637 2638 2639 2640 2641

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2642
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2652
      phi::DenseTensor out;
2653 2654 2655 2656 2657 2658 2659 2660 2661
      TransformData(
          new_expected_kernel_key ? *new_expected_kernel_key
                                  : expected_kernel_key,
          kernel_type_for_var,
          *tensor_in,
          &out,
          new_expected_kernel_key
              ? phi::TransToPhiPlace(new_expected_kernel_key->backend())
              : place);
Y
yuyang18 已提交
2662 2663
      SetTensorToVariable(*var, out, trans_var);
    }
2664 2665
  };

2666 2667
  if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                             phi::KernelRegisteredType::FUNCTION) {
2668
    const auto& input_names = kernel_signature_->input_names;
2669
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
2686 2687 2688 2689 2690 2691 2692 2693 2694

      phi::TensorArgDef in_def = input_defs.at(i);
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      // When the backend of input tensor arg_def is CUSTOM, we need to set it
      // to the actual backend by expected_kernel_key.
      if (in_def.backend == phi::Backend::CUSTOM) {
        in_def.SetBackend(expected_kernel_key.backend());
      }
#endif
2695 2696
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2713 2714 2715 2716 2717 2718 2719 2720 2721
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2722
  }
L
Leo Chen 已提交
2723

C
csy0225 已提交
2724 2725 2726 2727
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
2728 2729
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
C
csy0225 已提交
2730

W
wenbin 已提交
2731 2732 2733 2734
  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
C
csy0225 已提交
2735
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2736 2737
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2738 2739 2740

  return new_scope;
}
Q
Qiao Longfei 已提交
2741

2742
void OperatorWithKernel::ParseInputDataType(
2743 2744
    const Variable* var,
    const std::string& name,
2745 2746
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2747 2748 2749
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2750 2751
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2752 2753
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2754 2755 2756 2757
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2773 2774
    const std::vector<Variable*>& vars,
    const std::string& name,
2775
    proto::VarType::Type* data_type) const {
2776
  proto::VarType::Type default_data_type =
2777 2778 2779 2780
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2781 2782 2783
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2784 2785
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2809
      } else if (var->IsType<LoDTensorArray>()) {
2810 2811 2812 2813
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2814 2815
          }
        }
2816 2817
      }
      if (t != nullptr) {
2818 2819 2820 2821 2822 2823 2824
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2825 2826
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2827 2828 2829 2830 2831 2832 2833
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2834 2835 2836
                           Type(),
                           name,
                           DataTypeToString(tmp),
2837
                           DataTypeToString(*data_type)));
2838 2839 2840 2841 2842 2843
        *data_type = tmp;
      }
    }
  }
}

2844
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2845
    const ExecutionContext& ctx) const {
2846 2847 2848
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2849

2850
  for (auto* name : ctx.InNameList()) {
2851 2852 2853 2854 2855
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2856
  }
2857
  PADDLE_ENFORCE_NE(
2858 2859
      data_type,
      dafault_data_type,
2860 2861
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2862 2863 2864 2865 2866 2867 2868 2869
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2870 2871 2872 2873 2874
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2875
  PADDLE_ENFORCE_NE(
2876 2877
      data_type,
      dafault_data_type,
2878 2879
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2880
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2881
          "LoDTensorArray.",
2882 2883
          name,
          Type()));
2884
  return data_type;
Y
Yu Yang 已提交
2885
}
2886

2887
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2900 2901 2902
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2903 2904
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2905 2906 2907 2908
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2909 2910 2911 2912 2913 2914 2915
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2916
      platform::errors::InvalidArgument(
2917 2918 2919 2920 2921
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2933 2934
    const ExecutionContext& ctx,
    const std::string& name1,
2935 2936 2937 2938 2939 2940
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2941 2942
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2943 2944 2945 2946 2947 2948 2949

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2950
phi::KernelKey OperatorWithKernel::GetExpectedKernelType(
2951
    const ExecutionContext& ctx) const {
2952
  return phi::KernelKey(IndicateDataType(ctx), ctx.GetPlace());
2953 2954
}

2955
phi::KernelKey OperatorWithKernel::GetKernelTypeForVar(
2956
    const std::string& var_name,
2957
    const phi::DenseTensor& tensor,
2958
    const phi::KernelKey& expected_kernel_type) const {
2959 2960 2961 2962
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
2963
  if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
2964
      (tensor.layout() != phi::DataLayout::ONEDNN) &&
2965 2966
      phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
          phi::DataLayout::kNHWC) {
2967 2968
    return phi::KernelKey(
        tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
2969 2970
  }
#endif
2971 2972
  return phi::KernelKey(
      tensor.place(), tensor.layout(), expected_kernel_type.dtype());
2973 2974
}

2975
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2976
    const ExecutionContext& ctx) const {
2977
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2978
  if (arg_map_fn_ == nullptr) {
2979 2980 2981 2982
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2983 2984 2985
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2986 2987 2988 2989
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2990 2991
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2992 2993
}

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

3053
void OperatorWithKernel::BuildPhiKernelContext(
3054 3055
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
3056 3057
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
3058

3059 3060 3061
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
3062

3063 3064 3065
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
3066

3067 3068 3069 3070 3071 3072 3073 3074 3075
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

3076 3077
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
3078 3079 3080
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
3081 3082
                        input_names.size(),
                        input_defs.size()));
3083

3084 3085
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
3086 3087 3088
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
3089 3090
                        output_names.size(),
                        output_defs.size()));
3091

3092 3093
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
3094 3095 3096
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
3097 3098
                        attr_names.size(),
                        attr_defs.size()));
3099
  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
3100
    auto it = ctx.inputs.find(input_names[i]);
3101 3102 3103

    // calcute the start and end index of the input tensors
    size_t start_idx =
3104
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
3105
    // deal with optional here
3106
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
3107
        (input_defs[i].type_index ==
3108
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
3109
         input_defs[i].type_index ==
3110
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
3111
         input_defs[i].type_index ==
3112 3113
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
3114
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
3115
      auto end_idx = start_idx + 1;
3116 3117
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
3118

H
hong 已提交
3119 3120 3121 3122
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
3123
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
3124
      const phi::TensorBase* tensor_in = nullptr;
3125
      auto* var = ins_vector[offset];
3126 3127
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
3128
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3129 3130
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
3131
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3132 3133 3134
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3135
      } else if (var->IsType<framework::LoDTensorArray>()) {
3136
        need_prepare_phi_data_ = true;
3137 3138
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3139 3140 3141
      } else if (var->IsType<framework::Vocab>()) {
        tensor_in = &(var->Get<framework::Vocab>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3142 3143 3144
      } else if (var->IsType<framework::FeedList>()) {
        tensor_in = &(var->Get<framework::FeedList>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3145 3146 3147 3148
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
3149
      }
3150
    }
3151
    // Note: here cannot deal with vector<LoDTensorArray> input
3152
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
3153
  }
3154
  VLOG(4) << "Done inputs";
3155
  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
3156
    auto it = ctx.outputs.find(output_names[i]);
3157
    size_t start_idx =
3158
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
3159 3160

    if (it == ctx.outputs.end() || it->second.empty()) {
3161
      VLOG(4) << "Output " << output_names[i] << " not found";
H
hong 已提交
3162 3163 3164 3165
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
3166
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
3167
      auto end_idx = start_idx + 1;
3168 3169
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
3170 3171 3172 3173
      continue;
    }
    auto& outs_vector = it->second;

3174
    size_t end_idx = start_idx + outs_vector.size();
3175 3176

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
3177
      phi::TensorBase* tensor_out = nullptr;
3178
      auto* var = outs_vector[offset];
3179
      if (var) {
3180 3181
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
3182
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3183 3184
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
3185
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3186 3187 3188
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3189
        } else if (var->template IsType<framework::LoDTensorArray>()) {
3190
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
3191 3192
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
3193
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3194 3195 3196
        } else if (var->template IsType<framework::Strings>()) {
          tensor_out = var->template GetMutable<framework::Strings>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3197 3198 3199 3200 3201 3202 3203
        } else if (var->template IsType<paddle::framework::RawTensor>()) {
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (!var->IsInitialized()) {
          // The following is for RAW type of var
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3204 3205 3206 3207 3208
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
3209
      } else {
3210
        VLOG(4) << "Output " << output_names[i] << " is nullptr";
3211
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3212
      }
3213
    }
3214 3215
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
3216
  }
3217
  VLOG(4) << "Done outputs";
3218
  for (size_t i = 0; i < attr_names.size(); ++i) {
3219 3220
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
3221 3222
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
3223 3224 3225 3226 3227 3228 3229
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
3230
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3231
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
3232
              break;
3233 3234 3235 3236
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
3237
            case proto::AttrType::INT:
3238
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3239
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
3240
              break;
3241 3242 3243 3244
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
3245
            case proto::AttrType::STRING:
3246
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
3247
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
3248
              break;
3249 3250 3251 3252
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
3253 3254 3255 3256 3257
            case proto::AttrType::SCALAR:
              phi_kernel_context->EmplaceBackAttr(
                  std::move(phi::Scalar(PADDLE_GET_CONST(
                      paddle::experimental::Scalar, attr_iter->second))));
              break;
3258 3259 3260 3261 3262 3263 3264
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
3265
          need_prepare_phi_data_ = true;
3266
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
3267 3268
          phi_kernel_context->EmplaceBackAttr(
              std::move(framework::MakePhiScalarFromVar(*ins_vector.front())));
3269
        }
3270 3271 3272 3273 3274
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
3275
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3276
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
3277 3278
              break;
            case proto::AttrType::LONGS:
3279
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3280
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
3281 3282
              break;
            case proto::AttrType::INT:
3283
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3284
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
3285 3286
              break;
            case proto::AttrType::LONG:
3287
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3288
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
3289 3290 3291 3292 3293 3294 3295 3296
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
3297
          need_prepare_phi_data_ = true;
3298 3299
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
3300
            phi_kernel_context->EmplaceBackAttr(std::move(
3301
                framework::MakePhiIntArrayFromVar(*ins_vector.front())));
3302
          } else {  // ShapeTensorList
3303 3304
            phi_kernel_context->EmplaceBackAttr(
                std::move(framework::MakePhiIntArrayFromVarList(ins_vector)));
3305
          }
3306
        }
3307
        break;
3308

3309 3310
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3311 3312
            attr_iter,
            Attrs().end(),
3313 3314 3315 3316 3317 3318
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3319
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3320 3321 3322 3323 3324
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3325
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3326 3327 3328
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3329
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3330 3331 3332 3333 3334
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3335
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3336 3337 3338
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3339
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3340 3341 3342 3343 3344
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3345
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3346 3347 3348
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3349
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3350 3351 3352 3353 3354
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3355
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3356 3357 3358
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3359
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3360 3361 3362 3363 3364
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3365
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3366
          } break;
3367 3368 3369 3370 3371 3372
          case proto::AttrType::SCALARS: {
            const auto& vec = PADDLE_GET_CONST(
                std::vector<paddle::experimental::Scalar>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list{vec.begin(), vec.end()};
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
3373 3374 3375 3376
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3377 3378
                attr_names[i]));
        }
3379 3380
      } break;
      default: {
3381
        if (attr_iter == Attrs().end()) {
3382
          // TODO(chenweihang): remove this backup searching later
3383 3384 3385 3386 3387 3388 3389 3390 3391
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3392 3393
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3394
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3395
                PADDLE_GET_CONST(float, attr_iter->second));
3396
            break;
3397 3398 3399 3400
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3401
          case phi::AttributeType::INT32:
3402
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3403
                PADDLE_GET_CONST(int, attr_iter->second));
3404 3405
            break;
          case phi::AttributeType::BOOL:
3406
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3407
                PADDLE_GET_CONST(bool, attr_iter->second));
3408 3409
            break;
          case phi::AttributeType::INT64:
3410
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3411
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3412 3413
            break;
          case phi::AttributeType::INT32S:
3414
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3415
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3416
            break;
3417 3418 3419 3420
          case phi::AttributeType::BOOLS:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second));
            break;
3421 3422 3423
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3424
                    PADDLE_GET_CONST(int, attr_iter->second)));
3425
            phi_kernel_context->EmplaceBackAttr(data_type);
3426 3427
          } break;
          case phi::AttributeType::STRING:
3428
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3429
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3430 3431 3432 3433
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3434
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3435
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3436 3437 3438
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3439
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3440 3441
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3442
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3453
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3454
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3455 3456
            break;
          case phi::AttributeType::STRINGS:
3457
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3458
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3459 3460 3461 3462 3463 3464
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3465
        }
3466 3467 3468
      }
    }
  }
3469
  VLOG(4) << "Done attributes";
3470

3471 3472 3473 3474 3475 3476
// Clear All old attrs before add new attrs,
// because sometimes old attrs may be misused.
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->ClearDnnAttr();
3477
    if (!RuntimeAttrs().empty()) need_prepare_phi_data_ = true;
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
  }
#endif

  // Note(YuanRisheng): Now, we can't open code below.
  // Because some unittest run OLD dygraph and ExtraAttr is not supported in OLD
  // dygraph. So, here we use trick that dev_ctx is a global object. We can
  // store ExtraAttr in static graph and when unittest run OLD dygraph, it can
  // obtain these ExtraAttr. We can open this code when OLD dygraph is no longer
  // used.
  /*
  #if defined(PADDLE_WITH_CUDA)
    if(phi::GPUContext::classof(dev_ctx)) {
      phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
      gpu_dnn_ctx->ClearDnnAttr();
    }
  #endif
  */
3495 3496 3497 3498 3499 3500
  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3501
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3502 3503 3504 3505 3506 3507
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
S
Shuangchi He 已提交
3508
  // which increases the cost of development and understanding, so we
3509 3510 3511 3512 3513 3514 3515
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3516
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
      if (it == ctx.inputs.end() || it->second.size() == 0) {
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3551 3552
}

Q
Qiao Longfei 已提交
3553
}  // namespace framework
L
liaogang 已提交
3554
}  // namespace paddle