Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8a0f611b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8a0f611b
编写于
12月 12, 2019
作者:
W
WangXi
提交者:
gongweibao
12月 12, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Rewrite check nan inf tools (#21076)
上级
019147eb
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
792 addition
and
11 deletion
+792
-11
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+2
-0
paddle/fluid/framework/details/nan_inf_utils.h
paddle/fluid/framework/details/nan_inf_utils.h
+38
-0
paddle/fluid/framework/details/nan_inf_utils_detail.cc
paddle/fluid/framework/details/nan_inf_utils_detail.cc
+320
-0
paddle/fluid/framework/details/nan_inf_utils_detail.cu
paddle/fluid/framework/details/nan_inf_utils_detail.cu
+189
-0
paddle/fluid/framework/details/nan_inf_utils_detail.h
paddle/fluid/framework/details/nan_inf_utils_detail.h
+59
-0
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+2
-10
python/paddle/fluid/tests/unittests/check_nan_inf_base.py
python/paddle/fluid/tests/unittests/check_nan_inf_base.py
+116
-0
python/paddle/fluid/tests/unittests/test_nan_inf.py
python/paddle/fluid/tests/unittests/test_nan_inf.py
+65
-0
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
8a0f611b
...
...
@@ -133,7 +133,7 @@ cc_library(op_kernel_type SRCS op_kernel_type.cc DEPS device_context place)
cc_library
(
unused_var_check SRCS unused_var_check.cc DEPS glog no_need_buffer_vars_inference
)
cc_library
(
operator SRCS operator.cc DEPS op_info device_context tensor scope glog trainer_desc_proto data_feed_proto
shape_inference data_transform lod_tensor profiler transfer_scope_cache op_kernel_type op_call_stack unused_var_check
)
shape_inference data_transform lod_tensor profiler transfer_scope_cache op_kernel_type op_call_stack unused_var_check
nan_inf_utils
)
cc_test
(
operator_test SRCS operator_test.cc DEPS operator op_registry device_context
)
cc_test
(
operator_exception_test SRCS operator_exception_test.cc DEPS operator op_registry device_context
)
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
8a0f611b
...
...
@@ -22,6 +22,7 @@ endif()
if
(
WITH_GPU
)
nv_library
(
nan_inf_utils SRCS nan_inf_utils_detail.cc nan_inf_utils_detail.cu DEPS framework_proto scope place
)
nv_library
(
all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda variable_visitor
)
nv_library
(
fused_all_reduce_op_handle SRCS fused_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
...
...
@@ -43,6 +44,7 @@ if(WITH_GPU)
nv_library
(
fused_broadcast_op_handle SRCS fused_broadcast_op_handle.cc DEPS broadcast_op_handle
)
else
()
cc_library
(
nan_inf_utils SRCS nan_inf_utils_detail.cc DEPS framework_proto scope place
)
cc_library
(
all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
variable_visitor
)
cc_library
(
fused_all_reduce_op_handle SRCS fused_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
...
...
paddle/fluid/framework/details/nan_inf_utils.h
0 → 100644
浏览文件 @
8a0f611b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
// assert false when meets NAN or inf
void
CheckVarHasNanOrInf
(
const
std
::
string
&
op_type
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
const
platform
::
Place
&
place
);
void
CheckOpHasNanOrInf
(
const
framework
::
OperatorBase
&
op
,
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
);
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/nan_inf_utils_detail.cc
0 → 100644
浏览文件 @
8a0f611b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/nan_inf_utils.h"
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/selected_rows.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
static
std
::
once_flag
white_list_init_flag
;
static
int
op_role_nan_inf_white_list
=
0
;
static
constexpr
int
FORWARD
=
0x10000
;
// lazy init
static
const
std
::
unordered_map
<
std
::
string
,
int
>&
role_str2int
()
{
/* In op_proto_maker.h
* framework::OpRole::kForward = 0x0000,
* framework::OpRole::kBackward = 0x0001,
* framework::OpRole::kOptimize = 0x0002,
* framework::OpRole::kRPC = 0x0004,
* framework::OpRole::kDist = 0x0008,
* framework::OpRole::kLRSched = 0x0010,
* framework::OpRole::kLoss = 0x0100,
* framework::OpRole::kNotSpecified = 0x1000,
*/
static
const
std
::
unordered_map
<
std
::
string
,
int
>
_role_str2int
=
{
{
"forward"
,
FORWARD
},
/* kForward=0, can't filter */
{
"backward"
,
static_cast
<
int
>
(
framework
::
OpRole
::
kBackward
)},
{
"optimize"
,
static_cast
<
int
>
(
framework
::
OpRole
::
kOptimize
)},
{
"rpc"
,
static_cast
<
int
>
(
framework
::
OpRole
::
kRPC
)},
{
"dist"
,
static_cast
<
int
>
(
framework
::
OpRole
::
kDist
)},
{
"lrsched"
,
static_cast
<
int
>
(
framework
::
OpRole
::
kLRSched
)},
{
"loss"
,
static_cast
<
int
>
(
framework
::
OpRole
::
kLoss
)},
{
"default"
,
static_cast
<
int
>
(
framework
::
OpRole
::
kNotSpecified
)},
};
return
_role_str2int
;
}
static
std
::
unordered_set
<
std
::
string
>&
op_type_nan_inf_white_list
()
{
static
std
::
unordered_set
<
std
::
string
>
_op_type_nan_inf_white_list
=
{
"coalesce_tensor"
,
/* This Op will alloc tensor, and may not init space */
};
return
_op_type_nan_inf_white_list
;
}
static
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>&
op_var_nan_inf_white_list
()
{
static
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
_op_var_nan_inf_white_list
=
{
/* encoded & gather var consist of idx&val, can't judge directly */
{
"dgc"
,
{
"__dgc_encoded__"
,
"__dgc_gather__"
}},
};
return
_op_var_nan_inf_white_list
;
}
static
void
InitWhiteListFormEnv
()
{
// op_type_skip and op_var_skip may be NULL.
// So need init static value in there, prevent thread competition.
// NOTE. role_str2int needn't do this for it only used in this func.
op_type_nan_inf_white_list
();
op_var_nan_inf_white_list
();
// export PADDLE_INF_NAN_SKIP_OP="op0,op1,op2"
// export PADDLE_INF_NAN_SKIP_ROLE="role1,role2,role3"
// export PADDLE_INF_NAN_SKIP_VAR="op0:var0,op0:var1,op1:var0"
const
char
*
op_type_skip
=
std
::
getenv
(
"PADDLE_INF_NAN_SKIP_OP"
);
const
char
*
op_role_skip
=
std
::
getenv
(
"PADDLE_INF_NAN_SKIP_ROLE"
);
const
char
*
op_var_skip
=
std
::
getenv
(
"PADDLE_INF_NAN_SKIP_VAR"
);
if
(
op_type_skip
!=
NULL
)
{
std
::
stringstream
ss
(
op_type_skip
);
std
::
string
op_type
;
while
(
std
::
getline
(
ss
,
op_type
,
','
))
{
op_type_nan_inf_white_list
().
emplace
(
op_type
);
}
}
if
(
op_role_skip
!=
NULL
)
{
std
::
stringstream
ss
(
op_role_skip
);
std
::
string
op_role
;
while
(
std
::
getline
(
ss
,
op_role
,
','
))
{
PADDLE_ENFORCE_EQ
(
role_str2int
().
find
(
op_role
)
!=
role_str2int
().
end
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Skip role must be one of "
"{forward,backward,optimize,rpc,dist,lrsched,loss,"
"default}, instead of %s"
,
op_role
));
op_role_nan_inf_white_list
|=
role_str2int
().
at
(
op_role
);
}
}
if
(
op_var_skip
!=
NULL
)
{
std
::
stringstream
ss
(
op_var_skip
);
std
::
string
op_var
;
while
(
std
::
getline
(
ss
,
op_var
,
','
))
{
auto
pos
=
op_var
.
find
(
":"
);
PADDLE_ENFORCE_EQ
(
pos
!=
std
::
string
::
npos
,
true
,
platform
::
errors
::
InvalidArgument
(
"Skip var format must be op:var, instead of %s"
,
op_var
));
std
::
string
op
=
op_var
.
substr
(
0
,
pos
);
std
::
string
var
=
op_var
.
substr
(
pos
+
1
);
op_var_nan_inf_white_list
()[
op
].
emplace_back
(
var
);
}
}
}
template
<
typename
T
>
static
void
PrintNanInf
(
const
T
*
value
,
const
size_t
numel
,
int
print_num
,
const
std
::
string
&
op_type
,
const
std
::
string
&
var_name
)
{
size_t
nan_count
,
inf_count
,
num_count
;
nan_count
=
inf_count
=
num_count
=
0
;
// CPU print num value
for
(
size_t
i
=
0
;
i
<
numel
;
++
i
)
{
size_t
count
=
0
;
if
(
std
::
isnan
(
value
[
i
]))
{
count
=
nan_count
++
;
}
else
if
(
std
::
isinf
(
value
[
i
]))
{
count
=
inf_count
++
;
}
else
{
count
=
num_count
++
;
}
if
(
count
<
static_cast
<
size_t
>
(
print_num
))
{
printf
(
"numel:%lu index:%lu value:%f
\n
"
,
static_cast
<
uint64_t
>
(
numel
),
static_cast
<
uint64_t
>
(
i
),
static_cast
<
float
>
(
value
[
i
]));
}
}
bool
has_nan_inf
=
true
;
printf
(
"In cpu, there has %lu,%lu,%lu nan,inf,num
\n
"
,
static_cast
<
uint64_t
>
(
nan_count
),
static_cast
<
uint64_t
>
(
inf_count
),
static_cast
<
uint64_t
>
(
num_count
));
PADDLE_ENFORCE_EQ
(
has_nan_inf
,
false
,
platform
::
errors
::
PreconditionNotMet
(
"===ERROR: in [op=%s] [tensor=%s] find nan or inf==="
,
op_type
,
var_name
));
}
// openmp 4.0, reduction with fp16
#if defined _OPENMP && _OPENMP >= 201307
// more detail see: 180 page of
// https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
#pragma omp declare reduction(+ : paddle::platform::float16 : omp_out += omp_in)
#endif
template
<
typename
T
>
static
void
CheckNanInf
(
const
T
*
value
,
const
size_t
numel
,
int
print_num
,
const
std
::
string
&
op_type
,
const
std
::
string
&
var_name
)
{
T
sum
=
static_cast
<
T
>
(
0.0
);
#if defined _OPENMP && _OPENMP >= 201307
#pragma omp parallel for simd reduction(+ : sum)
#elif defined _OPENMP
#pragma omp parallel for reduction(+ : sum)
#endif
for
(
size_t
i
=
0
;
i
<
numel
;
++
i
)
{
sum
+=
(
value
[
i
]
-
value
[
i
]);
}
if
(
std
::
isnan
(
sum
)
||
std
::
isinf
(
sum
))
{
PrintNanInf
(
value
,
numel
,
print_num
,
op_type
,
var_name
);
}
}
#if defined _OPENMP && _OPENMP >= 201307
// openmp4.0 not need to specialization fp16
#elif defined _OPENMP
template
<
>
void
CheckNanInf
<
paddle
::
platform
::
float16
>
(
const
paddle
::
platform
::
float16
*
value
,
const
size_t
numel
,
int
print_num
,
const
std
::
string
&
op_type
,
const
std
::
string
&
var_name
)
{
float
sum
=
0.0
f
;
#pragma omp parallel for reduction(+ : sum)
for
(
size_t
i
=
0
;
i
<
numel
;
++
i
)
{
sum
+=
static_cast
<
float
>
(
value
[
i
]
-
value
[
i
]);
}
if
(
std
::
isnan
(
sum
)
||
std
::
isinf
(
sum
))
{
PrintNanInf
(
value
,
numel
,
print_num
,
op_type
,
var_name
);
}
}
#endif
template
<
>
template
<
typename
T
>
void
TensorCheckerVisitor
<
platform
::
CPUDeviceContext
>::
apply
(
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
>::
type
*
)
const
{
// use env strategy control in future, -1=print_all.
int
print_num
=
3
;
CheckNanInf
(
tensor_
.
data
<
T
>
(),
tensor_
.
numel
(),
print_num
,
op_type_
,
var_name_
);
}
template
<
>
void
tensor_check
<
platform
::
CPUDeviceContext
>
(
const
std
::
string
&
op_type
,
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
platform
::
Place
&
place
)
{
TensorCheckerVisitor
<
platform
::
CPUDeviceContext
>
vistor
(
op_type
,
var_name
,
tensor
,
place
);
VisitDataType
(
tensor
.
type
(),
vistor
);
}
void
CheckVarHasNanOrInf
(
const
std
::
string
&
op_type
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
const
platform
::
Place
&
place
)
{
auto
*
var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"In op=%s, can't find var:%s"
,
op_type
,
var_name
));
const
Tensor
*
tensor
{
nullptr
};
if
(
var
->
IsType
<
framework
::
LoDTensor
>
())
{
tensor
=
&
var
->
Get
<
framework
::
LoDTensor
>
();
}
else
if
(
var
->
IsType
<
framework
::
SelectedRows
>
())
{
tensor
=
&
var
->
Get
<
framework
::
SelectedRows
>
().
value
();
}
else
{
VLOG
(
10
)
<<
var_name
<<
" var_name need not to check"
;
return
;
}
if
(
tensor
->
memory_size
()
==
0
)
{
VLOG
(
10
)
<<
var_name
<<
" var_name need not to check, size == 0"
;
return
;
}
VLOG
(
10
)
<<
"begin check "
<<
op_type
<<
" var_name:"
<<
var_name
<<
", place:"
<<
tensor
->
place
()
<<
", numel:"
<<
tensor
->
numel
();
if
(
platform
::
is_gpu_place
(
tensor
->
place
()))
{
#ifdef PADDLE_WITH_CUDA
tensor_check
<
platform
::
CUDADeviceContext
>
(
op_type
,
var_name
,
*
tensor
,
place
);
#else
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"Tensor[%s] use gpu place. PaddlePaddle must compile with GPU."
,
var_name
));
#endif
return
;
}
tensor_check
<
platform
::
CPUDeviceContext
>
(
op_type
,
var_name
,
*
tensor
,
place
);
}
bool
IsSkipOp
(
const
framework
::
OperatorBase
&
op
)
{
if
(
op_type_nan_inf_white_list
().
count
(
op
.
Type
())
!=
0
)
return
true
;
int
op_role
=
op
.
template
Attr
<
int
>(
framework
::
OpProtoAndCheckerMaker
::
OpRoleAttrName
());
// kForward=0, can't filter
if
(
op_role
==
static_cast
<
int
>
(
framework
::
OpRole
::
kForward
))
{
op_role
=
FORWARD
;
}
if
(
op_role_nan_inf_white_list
&
op_role
)
return
true
;
return
false
;
}
void
CheckOpHasNanOrInf
(
const
framework
::
OperatorBase
&
op
,
const
framework
::
Scope
&
exec_scope
,
const
platform
::
Place
&
place
)
{
std
::
call_once
(
white_list_init_flag
,
InitWhiteListFormEnv
);
if
(
IsSkipOp
(
op
))
return
;
if
(
op_var_nan_inf_white_list
().
count
(
op
.
Type
())
==
0
)
{
// NOTE. vname may destruct in the end of this func.
for
(
auto
&
vname
:
op
.
OutputVars
(
true
))
{
auto
*
var
=
exec_scope
.
FindVar
(
vname
);
if
(
var
==
nullptr
)
continue
;
CheckVarHasNanOrInf
(
op
.
Type
(),
exec_scope
,
vname
,
place
);
}
}
else
{
for
(
auto
&
vname
:
op
.
OutputVars
(
true
))
{
bool
need_check
=
true
;
for
(
auto
&
white_vname
:
op_var_nan_inf_white_list
().
at
(
op
.
Type
()))
{
if
(
vname
.
find
(
white_vname
)
!=
std
::
string
::
npos
)
{
need_check
=
false
;
break
;
}
}
if
(
!
need_check
)
continue
;
auto
*
var
=
exec_scope
.
FindVar
(
vname
);
if
(
var
==
nullptr
)
continue
;
CheckVarHasNanOrInf
(
op
.
Type
(),
exec_scope
,
vname
,
place
);
}
}
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/nan_inf_utils_detail.cu
0 → 100644
浏览文件 @
8a0f611b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/nan_inf_utils.h"
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
#include <algorithm>
#include <unordered_map>
#include <utility>
#include <vector>
namespace
paddle
{
namespace
framework
{
namespace
details
{
static
std
::
once_flag
init_multi_gpu_op_var_map_flag
;
// lazy init
static
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
memory
::
AllocationPtr
>>&
multi_op_var2gpu_str
()
{
static
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
memory
::
AllocationPtr
>>
_multi_op_var2gpu_str
;
return
_multi_op_var2gpu_str
;
}
static
std
::
vector
<
std
::
mutex
>&
multi_op_var2gpu_str_mutex
()
{
static
std
::
vector
<
std
::
mutex
>
_multi_op_var2gpu_str_mutex
;
return
_multi_op_var2gpu_str_mutex
;
}
static
void
InitMultiGPUOpVarMap
()
{
int
dev_count
=
platform
::
GetCUDADeviceCount
();
PADDLE_ENFORCE_GT
(
dev_count
,
0
,
platform
::
errors
::
NotFound
(
"cuda device must > 0, now dev_count=%d"
,
dev_count
));
// https://stackoverflow.com/questions/16465633/how-can-i-use-something-like-stdvectorstdmutex
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
memory
::
AllocationPtr
>>
tmp_multi
(
dev_count
);
std
::
vector
<
std
::
mutex
>
tmp_multi_mutex
(
dev_count
);
multi_op_var2gpu_str
().
swap
(
tmp_multi
);
multi_op_var2gpu_str_mutex
().
swap
(
tmp_multi_mutex
);
}
template
<
typename
T
>
__device__
__forceinline__
void
PrintNanInfKernel
(
const
T
*
value
,
const
size_t
numel
,
int
print_num
,
char
*
debug_info
)
{
const
size_t
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
__shared__
unsigned
int
nan_count
,
inf_count
,
num_count
;
if
(
threadIdx
.
x
==
0
)
nan_count
=
inf_count
=
num_count
=
0
;
__syncthreads
;
for
(
size_t
i
=
tid
;
i
<
numel
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
unsigned
int
count
=
0
;
if
(
isnan
(
value
[
i
]))
{
count
=
atomicAdd
(
&
nan_count
,
1
);
}
else
if
(
isinf
(
value
[
i
]))
{
count
=
atomicAdd
(
&
inf_count
,
1
);
}
else
{
count
=
atomicAdd
(
&
num_count
,
1
);
}
// for cuda, print in every block
if
(
count
<
print_num
)
{
printf
(
"numel:%lu idx:%lu value:%f
\n
"
,
static_cast
<
uint64_t
>
(
numel
),
static_cast
<
uint64_t
>
(
i
),
static_cast
<
float
>
(
value
[
i
]));
}
}
__syncthreads
;
if
(
true
&&
threadIdx
.
x
==
0
)
{
printf
(
"In block %d, there has %u,%u,%u nan,inf,num
\n
"
,
blockIdx
.
x
,
nan_count
,
inf_count
,
num_count
);
PADDLE_ENFORCE
(
false
,
"===ERROR: in %s find nan or inf==="
,
debug_info
);
}
}
// Resnet 2gpus speed test, no check 270 images/s, this check 229 images/s
template
<
typename
T
>
__global__
void
CheckNanInfKernel
(
const
T
*
value
,
const
size_t
numel
,
int
print_num
,
char
*
debug_info
)
{
/// step 1, judge wheater has nan or inf
__shared__
volatile
int
has_nan_inf
;
if
(
threadIdx
.
x
==
0
)
has_nan_inf
=
false
;
__syncthreads
();
const
size_t
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
T
sum
=
static_cast
<
T
>
(
0.0
);
// Todo(wangxi). simd speed up
for
(
size_t
i
=
tid
;
i
<
numel
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
sum
+=
(
value
[
i
]
-
value
[
i
]);
}
if
(
isnan
(
sum
)
||
isinf
(
sum
))
has_nan_inf
=
true
;
__syncthreads
();
/// Note. different blocks may behave differently
if
(
!
has_nan_inf
)
return
;
PrintNanInfKernel
(
value
,
numel
,
print_num
,
debug_info
);
}
template
<
>
template
<
typename
T
>
void
TensorCheckerVisitor
<
platform
::
CUDADeviceContext
>::
apply
(
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
>::
type
*
)
const
{
int
print_num
=
3
;
auto
*
dev_ctx
=
reinterpret_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
tensor_
.
place
()));
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
tensor_
.
place
()).
device
;
PADDLE_ENFORCE_EQ
(
(
dev_id
>=
0
&&
dev_id
<
multi_op_var2gpu_str_mutex
().
size
()),
true
,
platform
::
errors
::
OutOfRange
(
"GPU dev_id must >=0 and < dev_count=%d"
,
multi_op_var2gpu_str_mutex
().
size
()));
std
::
string
op_var
=
"[op="
+
op_type_
+
"] [tensor="
+
var_name_
+
"]"
;
char
*
gpu_str_ptr
=
NULL
;
{
auto
&
op_var2gpu_str_mutex
=
multi_op_var2gpu_str_mutex
().
at
(
dev_id
);
auto
&
op_var2gpu_str
=
multi_op_var2gpu_str
().
at
(
dev_id
);
std
::
lock_guard
<
std
::
mutex
>
guard
(
op_var2gpu_str_mutex
);
if
(
op_var2gpu_str
.
find
(
op_var
)
==
op_var2gpu_str
.
end
())
{
// insert
auto
gpu_str_tensor
=
paddle
::
memory
::
Alloc
(
*
dev_ctx
,
op_var
.
length
()
+
1
);
gpu_str_ptr
=
reinterpret_cast
<
char
*>
(
gpu_str_tensor
->
ptr
());
op_var2gpu_str
.
emplace
(
op_var
,
std
::
move
(
gpu_str_tensor
));
auto
iter
=
op_var2gpu_str
.
find
(
op_var
);
PADDLE_ENFORCE_EQ
(
iter
!=
op_var2gpu_str
.
end
(),
true
,
platform
::
errors
::
PreconditionNotMet
(
"op_var=%s should successed insert into "
"op_var2gpu_str, but now failed"
,
op_var
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaMemcpyAsync
(
gpu_str_ptr
,
iter
->
first
.
c_str
(),
op_var
.
length
()
+
1
,
cudaMemcpyHostToDevice
,
dev_ctx
->
stream
()),
platform
::
errors
::
External
(
"Async cudaMemcpy op_var info to gpu failed."
));
}
else
{
// get
auto
iter
=
op_var2gpu_str
.
find
(
op_var
);
PADDLE_ENFORCE_EQ
(
iter
!=
op_var2gpu_str
.
end
(),
true
,
platform
::
errors
::
PreconditionNotMet
(
"op_var=%s should be in the op_var2gpu_str, but "
"now can't find it"
,
op_var
));
gpu_str_ptr
=
reinterpret_cast
<
char
*>
(
iter
->
second
->
ptr
());
}
}
const
size_t
threads
=
1024
;
size_t
blocks
=
std
::
min
(
128ul
,
(
tensor_
.
numel
()
+
threads
-
1
)
/
threads
);
CheckNanInfKernel
<<<
blocks
,
threads
,
0
,
dev_ctx
->
stream
()
>>>
(
tensor_
.
data
<
T
>
(),
tensor_
.
numel
(),
print_num
,
gpu_str_ptr
);
}
template
<
>
void
tensor_check
<
platform
::
CUDADeviceContext
>
(
const
std
::
string
&
op_type
,
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
platform
::
Place
&
place
)
{
std
::
call_once
(
init_multi_gpu_op_var_map_flag
,
InitMultiGPUOpVarMap
);
TensorCheckerVisitor
<
platform
::
CUDADeviceContext
>
vistor
(
op_type
,
var_name
,
tensor
,
place
);
VisitDataType
(
tensor
.
type
(),
vistor
);
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/nan_inf_utils_detail.h
0 → 100644
浏览文件 @
8a0f611b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
template
<
typename
DeviceContext
>
struct
TensorCheckerVisitor
{
TensorCheckerVisitor
(
const
std
::
string
&
op_type
,
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
platform
::
Place
&
place
)
:
op_type_
(
op_type
),
var_name_
(
var_name
),
tensor_
(
tensor
),
place_
(
place
)
{}
template
<
typename
T
>
void
apply
(
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
>::
type
*
=
0
)
const
{
VLOG
(
10
)
<<
var_name_
<<
" need not to check, it's type is not float point"
;
}
template
<
typename
T
>
void
apply
(
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
>::
type
*
=
0
)
const
;
std
::
string
op_type_
;
std
::
string
var_name_
;
const
framework
::
Tensor
&
tensor_
;
const
platform
::
Place
&
place_
;
};
template
<
typename
DeviceContext
>
void
tensor_check
(
const
std
::
string
&
op_type
,
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
platform
::
Place
&
place
);
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/operator.cc
浏览文件 @
8a0f611b
...
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/details/nan_inf_utils.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_call_stack.h"
...
...
@@ -1012,16 +1013,7 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
}
if
(
FLAGS_check_nan_inf
)
{
for
(
auto
&
vname
:
OutputVars
(
true
))
{
auto
*
var
=
exec_scope
.
FindVar
(
vname
);
if
(
var
==
nullptr
)
continue
;
if
(
var
->
IsType
<
framework
::
LoDTensor
>
())
{
CheckTensorNANOrInf
(
type_
,
vname
,
var
->
Get
<
framework
::
LoDTensor
>
());
}
else
if
(
var
->
IsType
<
framework
::
SelectedRows
>
())
{
CheckTensorNANOrInf
(
type_
,
vname
,
var
->
Get
<
framework
::
SelectedRows
>
().
value
());
}
}
framework
::
details
::
CheckOpHasNanOrInf
(
*
this
,
exec_scope
,
place
);
}
// To solve issue #15032, have a discussion with @Luotao for cpu inference,
...
...
python/paddle/fluid/tests/unittests/check_nan_inf_base.py
0 → 100644
浏览文件 @
8a0f611b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
unicode_literals
from
__future__
import
print_function
import
os
import
sys
import
time
import
numpy
as
np
os
.
environ
[
str
(
"FLAGS_check_nan_inf"
)]
=
str
(
"1"
)
os
.
environ
[
str
(
"GLOG_vmodule"
)]
=
str
(
"nan_inf_utils_detail=10"
)
import
paddle.fluid.core
as
core
import
paddle
import
paddle.fluid
as
fluid
import
paddle.compat
as
cpt
np
.
random
.
seed
(
0
)
def
generator
():
batch_size
=
5
for
i
in
range
(
5
):
curr_train_x
=
np
.
random
.
randint
(
batch_size
,
size
=
(
batch_size
,
3
)).
astype
(
"float32"
)
if
i
>=
2
:
curr_train_x
[
0
,
:]
=
np
.
nan
curr_train_x
[
-
1
,
:]
=
np
.
inf
res
=
[]
for
i
in
range
(
batch_size
):
y
=
i
%
3
res
.
append
([
y
])
y_label
=
np
.
array
(
res
).
astype
(
'int64'
)
yield
[
curr_train_x
,
y_label
]
def
net
():
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
3
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
# test int64 value
zero
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
0
)
# test float16 value
fp16_zero
=
fluid
.
layers
.
cast
(
zero
,
dtype
=
'float16'
)
y
=
y
+
zero
hidden
=
x
for
i
in
range
(
2
):
hidden
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
400
,
act
=
"sigmoid"
)
hidden
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
3
,
act
=
None
)
cost
,
y_predict
=
fluid
.
layers
.
softmax_with_cross_entropy
(
hidden
,
y
,
return_softmax
=
True
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
y_predict
,
label
=
y
,
k
=
1
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.05
)
sgd_optimizer
.
minimize
(
avg_cost
)
return
y_predict
,
avg_cost
,
acc_top1
def
check
(
use_cuda
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
main
,
startup
):
y_predict
,
avg_cost
,
acc_top1
=
net
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
step
=
0.0
for
train_data
,
y_label
in
generator
():
outs
=
exe
.
run
(
main
,
feed
=
{
'x'
:
train_data
,
'y'
:
y_label
},
fetch_list
=
[
y_predict
.
name
,
avg_cost
.
name
,
acc_top1
.
name
])
step
+=
1
print
(
'iter={:.0f},cost={},acc1={}'
.
format
(
step
,
outs
[
1
][
0
],
outs
[
2
][
0
]))
if
__name__
==
'__main__'
:
if
core
.
is_compiled_with_cuda
():
try
:
check
(
use_cuda
=
True
)
assert
False
except
Exception
as
e
:
print
(
e
)
assert
type
(
e
)
==
core
.
EnforceNotMet
try
:
check
(
use_cuda
=
False
)
assert
False
except
Exception
as
e
:
print
(
e
)
assert
type
(
e
)
==
core
.
EnforceNotMet
python/paddle/fluid/tests/unittests/test_nan_inf.py
0 → 100644
浏览文件 @
8a0f611b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
unicode_literals
from
__future__
import
print_function
import
unittest
import
os
import
sys
import
subprocess
class
TestNanInf
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_python_interp
=
sys
.
executable
if
os
.
getenv
(
'WITH_COVERAGE'
,
'OFF'
)
==
'ON'
:
self
.
_python_interp
+=
" -m coverage run --branch -p"
self
.
_python_interp
+=
" check_nan_inf_base.py"
self
.
env
=
os
.
environ
.
copy
()
def
test_nan_inf
(
self
):
cmd
=
self
.
_python_interp
proc
=
subprocess
.
Popen
(
cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
env
=
self
.
env
)
out
,
err
=
proc
.
communicate
()
returncode
=
proc
.
returncode
print
(
out
)
print
(
err
)
assert
returncode
==
0
# in python3, type(out+err) is 'bytes', need use encode
assert
(
out
+
err
).
find
(
'find nan or inf'
.
encode
())
!=
-
1
class
TestNanInfEnv
(
TestNanInf
):
def
setUp
(
self
):
super
(
TestNanInfEnv
,
self
).
setUp
()
# windows python have some bug with env, so need use str to pass ci
# otherwise, "TypeError: environment can only contain strings"
self
.
env
[
str
(
"PADDLE_INF_NAN_SKIP_OP"
)]
=
str
(
"mul"
)
self
.
env
[
str
(
"PADDLE_INF_NAN_SKIP_ROLE"
)]
=
str
(
"loss"
)
self
.
env
[
str
(
"PADDLE_INF_NAN_SKIP_VAR"
)]
=
str
(
"elementwise_add:fc_0.tmp_1"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录