operator.cc 82.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
22
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
24
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
25
#include "paddle/fluid/framework/details/nan_inf_utils.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/profiler.h"
35
#include "paddle/pten/common/scalar.h"
36
#include "paddle/pten/common/scalar_array.h"
H
hong 已提交
37
#include "paddle/pten/core/kernel_factory.h"
38
#include "paddle/pten/ops/compat/signatures.h"
39

40 41 42 43
namespace pten {
class DenseTensor;
}  // namespace pten

44
#ifdef PADDLE_WITH_XPU
45 46
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
47
#endif
Q
Qiao Longfei 已提交
48

49 50 51 52
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
53 54 55 56
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
57
DECLARE_bool(benchmark);
58
DECLARE_bool(check_nan_inf);
59
DECLARE_bool(enable_unused_var_check);
60 61
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
F
Feng Xing 已提交
62
DECLARE_bool(run_kp_kernel);
D
dzhwinter 已提交
63

Q
Qiao Longfei 已提交
64 65 66
namespace paddle {
namespace framework {

67 68 69 70 71 72
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
73

74
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
75
                         bool get_actual_dim = false) {
76
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
77 78
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
79 80
  }

M
minqiyang 已提交
81 82 83
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
84
  } else if (var->IsType<pten::SelectedRows>()) {
M
minqiyang 已提交
85
    if (get_actual_dim) {
86
      return var->Get<pten::SelectedRows>().value().dims();
M
minqiyang 已提交
87
    } else {
88
      return var->Get<pten::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
89
    }
S
Steffy-zxf 已提交
90 91
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
92 93 94 95 96
  } else {
    return DDim({-1});
  }
}

97
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
98 99 100 101 102
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

103
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
104 105 106 107
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
108

M
minqiyang 已提交
109 110 111
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
112 113
      return "";
    }
114
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
115 116
  } else if (var->IsType<pten::SelectedRows>()) {
    auto tensor = var->Get<pten::SelectedRows>().value();
Q
Qiao Longfei 已提交
117 118 119
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
120
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
121
    }
S
Steffy-zxf 已提交
122 123
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
124 125 126 127 128
  } else {
    return "";
  }
}

129
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
146 147
  } else if (var->IsType<pten::SelectedRows>()) {
    auto tensor = var->Get<pten::SelectedRows>().value();
L
Leo Chen 已提交
148 149 150 151 152 153 154 155 156 157
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

158
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
159 160 161 162 163
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

164 165
  if (var->IsType<pten::SelectedRows>()) {
    return var->Get<pten::SelectedRows>().rows().size();
166 167 168 169 170
  }

  return -1;
}

171
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
172 173 174 175 176 177 178
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
179 180 181
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
182 183 184 185 186
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
187 188 189 190 191
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
192
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
193 194 195 196 197 198
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
199
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
200 201 202 203 204 205
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

206
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
207 208 209
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
210
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
211 212 213 214
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
215
#else
216
      auto dev_id = place.device;
P
peizhilin 已提交
217
      platform::SetDeviceId(dev_id);
218 219 220
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
221 222 223 224
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
225
#else
226
      auto dev_id = place.device;
227
      platform::SetXPUDeviceId(dev_id);
228 229 230 231 232 233 234 235
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
236
      auto dev_id = place.device;
237
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
238 239 240 241 242 243 244 245
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
246
      auto dev_id = place.device;
F
fwenguang 已提交
247
      platform::SetMLUDeviceId(dev_id);
248 249 250 251 252 253 254 255 256
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
      platform::DeviceManager::SetDevice(place);
257
#endif
P
peizhilin 已提交
258
    }
P
peizhilin 已提交
259

260
    {
261 262 263 264 265 266
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
267
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
268 269
      RunImpl(scope, place);
    }
270

Z
Zhang Ting 已提交
271
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
272
  } catch (platform::EnforceNotMet& exception) {
273
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
274
    throw std::move(exception);
275 276 277 278 279 280
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
281
  } catch (...) {
282
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
283
    std::rethrow_exception(std::current_exception());
284
  }
285 286
}

287
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
288
  return inputs_.find(name) != inputs_.end();
289 290
}

291
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
292
  auto& ins = Inputs(name);
293 294
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
295
      platform::errors::InvalidArgument(
296 297
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
298
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
299 300
}

Y
Yu Yang 已提交
301 302
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
303
  auto it = inputs_.find(name);
304 305 306 307
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
308
  return it->second;
Y
Yan Chunwei 已提交
309 310
}

311
bool OperatorBase::HasOutputs(const std::string& name) const {
312
  if (outputs_.find(name) != outputs_.end()) {
313 314 315 316 317 318
    return true;
  } else {
    return false;
  }
}

319
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
320
  auto& outs = Outputs(name);
321 322 323 324 325
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
326
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
327 328
}

Y
Yu Yang 已提交
329 330
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
331
  auto it = outputs_.find(name);
332 333 334 335
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
336
  return it->second;
Y
Yan Chunwei 已提交
337 338
}

339
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
340
  std::stringstream ss;
Y
Yu Yang 已提交
341
  ss << "Op(" << type_ << "), inputs:{";
342

343
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
344 345
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
346 347
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
348 349
  }

Y
Yu Yang 已提交
350 351
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
352 353
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
354 355
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
356 357
      auto var_name = input.second[i];
      ss << var_name;
358
      if (scope) {
Q
Qiao Longfei 已提交
359 360 361 362 363 364 365
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
366 367 368
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
369
          ss << ":" << dtype;
370 371
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
372
          ss << "(" << GetPlace(*scope, var_name) << ")";
373
        }
374
      }
Y
Yu Yang 已提交
375 376 377
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
378
    }
Y
Yu Yang 已提交
379
    ss << "]";
Y
Yu Yang 已提交
380 381
    ++it;
    if (it != inputs_.end()) {
382 383
      ss << ", ";
    }
Q
Qiao Longfei 已提交
384
  }
Y
Yu Yang 已提交
385
  ss << "}, outputs:{";
Y
Yu Yang 已提交
386 387
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
388 389
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
390 391
      auto var_name = output.second[i];
      ss << var_name;
392
      if (scope) {
Q
Qiao Longfei 已提交
393 394 395 396 397 398 399
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
400 401
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
402 403
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
404
          ss << "(" << GetPlace(*scope, var_name) << ")";
405
        }
406
      }
Y
Yu Yang 已提交
407 408 409
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
410
    }
Y
Yu Yang 已提交
411
    ss << "]";
Y
Yu Yang 已提交
412 413
    ++it;
    if (it != outputs_.end()) {
414 415
      ss << ", ";
    }
Q
Qiao Longfei 已提交
416
  }
Y
Yu Yang 已提交
417
  ss << "}.";
Q
Qiao Longfei 已提交
418 419 420
  return ss.str();
}

Y
Yu Yang 已提交
421
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
422 423
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
424
                           const AttributeMap& attrs)
S
sneaxiy 已提交
425 426 427 428 429 430
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
431 432 433 434 435 436 437 438
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
439
}
440

Q
qijun 已提交
441 442
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
443
  for (auto& o : inputs_) {
Q
qijun 已提交
444 445 446 447 448 449
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
450 451 452 453 454 455 456 457 458 459
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
460
  auto& info = Info();
Y
Yu Yang 已提交
461 462

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
463
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
464 465 466 467 468 469 470 471 472
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
473 474
}

475
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
476
  if (info_ == nullptr || info_->proto_ == nullptr) return;
477

S
sneaxiy 已提交
478
  for (auto& in : info_->Proto().inputs()) {
479
    if (!in.dispensable() && !in.extra()) {
480 481 482 483
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
484
    }
485 486
  }

S
sneaxiy 已提交
487
  for (auto& out : info_->Proto().outputs()) {
488
    if (!out.dispensable() && !out.extra()) {
489 490 491 492
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
493
    }
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
509

C
chengduo 已提交
510
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
511 512
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
513 514
  } else if (var.IsType<pten::SelectedRows>()) {
    return &(var.Get<pten::SelectedRows>().value());
Q
QI JUN 已提交
515
  } else {
516 517 518
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
519 520 521
  }
}

C
chengduo 已提交
522
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
523
  if (var->IsType<LoDTensor>()) {
524
    return var->GetMutable<LoDTensor>();
525 526
  } else if (var->IsType<pten::SelectedRows>()) {
    return var->GetMutable<pten::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
527
  } else {
528 529 530
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
531 532 533
  }
}

534
bool ExecutionContext::HasInput(const std::string& name) const {
535
  auto* var = InputVar(name);
536 537 538 539
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
540
  auto* var = OutputVar(name);
541 542 543
  return var != nullptr;
}

X
Xin Pan 已提交
544
const Variable* ExecutionContext::InputVar(const std::string& name) const {
545 546
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
547 548 549
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

550 551
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
552
      platform::errors::InvalidArgument(
553 554
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
555 556 557
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
558
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
559 560 561
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

562 563 564 565 566
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
567 568 569
  return it->second.empty() ? nullptr : it->second[0];
}

570
template <>
571
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
572
    const std::string& name) const {
573 574
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
575 576
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
577 578 579 580 581
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
582
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
583
                   if (var == nullptr) return nullptr;
584 585 586 587 588
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
589 590 591 592 593
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

594
template <>
595
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
596
    const std::string& name) const {
H
hong 已提交
597 598 599
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
600 601
    return {};
  }
602
  std::vector<Tensor*> res;
603 604 605 606 607
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
608
                 });
609 610 611
  return res;
}

Y
Yu Yang 已提交
612
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
613 614 615 616 617 618
  // check in new Function kernel first
  auto& kernel_factory = pten::KernelFactory::Instance();
  auto kernel_key_map =
      kernel_factory.SelectKernelMap(pten::TransToPtenKernelName(op_type));
  for (auto& kernel : kernel_key_map) {
    if (platform::is_gpu_place(
619
            pten::TransToPtenPlace(kernel.first.backend()))) {
H
hong 已提交
620 621 622 623
      return true;
    }
  }

Y
Yu Yang 已提交
624 625 626 627 628 629 630 631 632 633 634
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
H
hong 已提交
635

Y
Yu Yang 已提交
636 637 638
  return false;
}

639 640
class RuntimeInferShapeContext : public InferShapeContext {
 public:
641
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
642
      : op_(op), ctx_(ctx) {}
643 644

  bool HasInput(const std::string& name) const override {
645
    // has only one input
X
Xin Pan 已提交
646
    const auto& ins = ctx_.inputs;
647 648
    auto it = ins.find(name);
    if (it == ins.end()) {
649 650
      return false;
    }
651
    const auto& in = it->second;
X
Xin Pan 已提交
652
    if (in.size() == 0) return false;
653 654 655 656
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
657
    return in[0] != nullptr;
658 659 660
  }

  bool HasOutput(const std::string& name) const override {
661
    // has only one output
X
Xin Pan 已提交
662
    const auto& outs = ctx_.outputs;
663 664
    auto it = outs.find(name);
    if (it == outs.end()) {
665 666
      return false;
    }
667
    const auto& out = it->second;
X
Xin Pan 已提交
668
    if (out.size() == 0) {
669 670
      return false;
    }
671 672 673 674
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
675
    return out[0] != nullptr;
676 677
  }

678 679 680 681
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

682
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
683 684
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
685
    if (it == ins.end() || it->second.empty()) {
686 687
      return false;
    }
X
Xin Pan 已提交
688 689
    for (auto& input : it->second) {
      if (input == nullptr) {
690 691 692 693 694 695 696
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
697 698
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
699
    if (it == outs.end() || it->second.empty()) {
700 701
      return false;
    }
X
Xin Pan 已提交
702 703
    for (auto& output : it->second) {
      if (output == nullptr) {
704 705 706 707 708 709 710 711
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
712
  std::vector<std::string> Inputs(const std::string& name) const override {
713 714 715
    return op_.Inputs(name);
  }

H
hong 已提交
716
  std::vector<std::string> Outputs(const std::string& name) const override {
717 718 719
    return op_.Outputs(name);
  }

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

743 744
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
745 746
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
763 764 765

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
766

767 768 769 770 771
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
772

773 774 775
    if (in_var->IsType<pten::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<pten::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<pten::SelectedRows>();
776 777 778 779 780 781 782 783
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
784
      PADDLE_THROW(platform::errors::Unimplemented(
785
          "Currently, the input type of ShareDim only can be LoDTensor "
786
          "or SelectedRows."));
787 788 789
    }
  }

H
hong 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
808
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
835 836
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
837 838
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
855 856

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
857
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
858
    Variable* out_var = out_it->second.at(j);
859 860 861 862
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
863
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
864 865
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
866

M
mozga-intel 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
886 887
  }

888
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
889
    PADDLE_THROW(platform::errors::PreconditionNotMet(
890
        "GetLoDLevel is only used in compile time. The calculation of "
891
        "output's actual lod is different among operators so that should be "
892
        "set in the runtime kernel."));
893 894
  }

895 896
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
897
    PADDLE_THROW(platform::errors::PreconditionNotMet(
898
        "SetLoDLevel is only used in compile time. The calculation of "
899
        "output's actual lod is different among operators so that should be "
900
        "set in the runtime kernel."));
C
chengduo 已提交
901 902
  }

903 904
  bool IsRuntime() const override { return true; }

905 906 907 908 909 910 911 912 913 914 915
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
    } catch (std::bad_cast exp) {
      return false;
    }
  }

916 917
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
918
      const std::string& name) const override {
919 920 921 922 923 924 925 926
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
927
      const std::string& name) const override {
928 929 930 931 932 933 934
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
935 936
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
937 938 939 940 941
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
942 943 944 945 946 947 948 949
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
950 951 952 953 954 955 956 957 958 959
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
960 961
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
962 963 964 965 966
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
967 968 969 970 971 972 973 974 975
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

976
 protected:
X
Xin Pan 已提交
977
  DDim GetDim(Variable* var) const {
978 979
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
980 981
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
982 983
    } else if (var->IsType<pten::SelectedRows>()) {
      return var->Get<pten::SelectedRows>().GetCompleteDims();
984
    } else {
985 986 987 988
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
989 990 991
    }
  }

X
Xin Pan 已提交
992 993 994 995 996 997 998 999
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1000
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1001 1002
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1003 1004
  }

X
Xin Pan 已提交
1005
  void SetDim(Variable* var, const DDim& dim) {
1006 1007
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1008 1009
    } else if (var->IsType<pten::SelectedRows>()) {
      var->GetMutable<pten::SelectedRows>()->set_height(dim[0]);
1010
    } else {
1011 1012 1013 1014
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1015 1016 1017 1018 1019 1020
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1021 1022 1023 1024 1025 1026
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1027 1028 1029 1030 1031
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1032 1033 1034
    }
  }

F
fengjiayi 已提交
1035 1036
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1037 1038
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1039 1040
  }

X
Xin Pan 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1052 1053 1054
    return ToVarType(var->Type());
  }

1055 1056 1057
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1058 1059 1060 1061
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1062 1063 1064 1065 1066
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1067 1068 1069 1070
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1071
    return it->second;
F
fengjiayi 已提交
1072 1073
  }

1074
  const OperatorBase& op_;
X
Xin Pan 已提交
1075
  const RuntimeContext& ctx_;
1076 1077
};

1078 1079
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1080 1081 1082 1083
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1084 1085
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1086 1087
    return;
  }
1088 1089 1090 1091 1092 1093 1094 1095
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1096 1097
}

1098 1099
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1100 1101
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1102
                     [data_type](OpKernelMap::const_reference kern_pair) {
1103 1104
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1105 1106
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1107 1108 1109
                     });
}

1110 1111
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1112 1113 1114
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1115
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1116 1117
}

1118 1119 1120 1121 1122 1123 1124
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1125
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1126 1127
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1128
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1129
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1130 1131
}

L
luotao1 已提交
1132 1133
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1134 1135
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1136 1137 1138
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1139
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1140
    all_kernels_must_compute_runtime_shape_ = true;
1141
  const Scope* cur_scope = &scope;
1142
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1143 1144
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1145
    pre_scope_ = cur_scope;
L
luotao1 已提交
1146
  } else {
1147 1148 1149 1150 1151 1152
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1153 1154 1155 1156 1157 1158 1159 1160
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1161
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1162
  auto* dev_ctx = pool.Get(place);
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1174
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1175 1176 1177 1178
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1179 1180 1181 1182 1183 1184

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1185 1186 1187
  pten::KernelKey pt_kernel_key;
  std::string pt_kernel_name;
  if (pten::KernelFactory::Instance().HasCompatiblePtenKernel(type_)) {
1188
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1189 1190
      pt_kernel_signature_.reset(
          new KernelSignature(std::move(GetExpectedPtenKernelArgs(exe_ctx))));
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
      VLOG(6) << *pt_kernel_signature_.get();

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

      pt_kernel_name = pt_kernel_signature_->name;
      pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
      pt_kernel_.reset(
          new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
        VLOG(6) << "Static mode ChoosePtenKernel - kernel name: "
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
        VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
                << "` not found.";
      }
    }
    if (pt_kernel_->IsValid()) {
      run_pten_kernel_ = true;
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
#ifdef PADDLE_WITH_XPU
          ||
          paddle::platform::is_xpu_place(kernel_type_->place_) &&  // NOLINT
              !paddle::platform::is_xpu_support_op(
                  type_, *kernel_type_.get())  // NOLINT
          || paddle::platform::is_in_xpu_black_list(type_)
#endif
              ) {
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
            new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
          run_pten_kernel_ = true;
        }
      }
1242 1243 1244 1245 1246
    }
  }
  if (!run_pten_kernel_) {
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1247
      dev_ctx = pool.Get(kernel_type_->place_);
1248
    }
1249 1250
  }

Y
yuyang18 已提交
1251 1252
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1253 1254
  Scope* transfer_scope = nullptr;
  {
1255
    platform::RecordEvent record_event("prepare_data",
1256
                                       platform::EventRole::kInnerOp);
1257 1258 1259 1260
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1261
  }
Y
yuyang18 已提交
1262 1263 1264 1265
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1266
  if (!all_kernels_must_compute_runtime_shape_) {
1267
    platform::RecordEvent record_event("infer_shape",
1268
                                       platform::EventRole::kInnerOp);
1269
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1270
    this->Info().infer_shape_(&infer_shape_ctx);
1271
  }
1272 1273 1274 1275 1276

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1277 1278
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1279
  {
1280
    platform::RecordEvent record_event("compute",
1281
                                       platform::EventRole::kInnerOp);
1282
    if (run_pten_kernel_) {
1283
      pten::KernelContext pt_kernel_context;
1284
      // Do data transform before building KernelContext
1285
      // TODO(zhiqiu): support TransferInplaceVarsBack
1286 1287
      PreparePtenData(exec_scope, *pt_kernel_, *pt_kernel_signature_,
                      runtime_ctx);
1288 1289
      BuildPtenKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
      (*pt_kernel_)(&pt_kernel_context);
1290 1291 1292 1293
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1294
  }
D
dzhwinter 已提交
1295

Y
yuyang18 已提交
1296
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1297
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1298
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1299
  }
1300 1301 1302 1303 1304 1305 1306

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1307 1308 1309 1310 1311 1312 1313 1314
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1315

D
dzhwinter 已提交
1316
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1317
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1318
    dev_ctx->Wait();
1319 1320
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1321 1322
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1323
  }
C
chengduoZH 已提交
1324 1325

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1326
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1327
  }
1328 1329 1330 1331 1332 1333 1334

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1335
}
X
Xin Pan 已提交
1336

1337 1338 1339
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1340 1341 1342
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1353 1354
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1355 1356
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1357
      if (SupportGPU()) {
1358
        auto& dev_ctx = ctx.device_context();
1359
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1360 1361 1362 1363 1364
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1365
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1366 1367 1368
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1369 1370 1371 1372 1373 1374
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1375 1376
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1377 1378 1379
  return expected_kernel_key;
}

1380 1381
pten::KernelKey OperatorWithKernel::ChoosePtenKernel(
    const ExecutionContext& ctx) const {
1382
  pt_kernel_signature_.reset(
1383
      new KernelSignature(std::move(GetExpectedPtenKernelArgs(ctx))));
1384
  VLOG(6) << *pt_kernel_signature_.get();
1385 1386 1387 1388

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1389
  auto pt_kernel_name = pt_kernel_signature_->name;
1390 1391 1392 1393 1394 1395
  auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
  pt_kernel_.reset(
      new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
          pt_kernel_name, pt_kernel_key)));

  if (pt_kernel_->IsValid()) {
C
Chen Weihang 已提交
1396
    VLOG(6) << "Static mode ChoosePtenKernel - kernel name: " << pt_kernel_name
1397 1398 1399
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
C
Chen Weihang 已提交
1400
    VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
1401 1402
            << "` not found.";
  }
1403
  return pt_kernel_key;
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1419 1420

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1421

L
Liu Yiqun 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1431 1432
#endif
#ifdef PADDLE_WITH_XPU
1433
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1434 1435 1436
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1437 1438 1439 1440 1441 1442
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1443
#endif
L
Liu-xiandong 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

#ifdef PADDLE_WITH_XPU_KP
  bool use_xpu_kp_kernel_rt =
      FLAGS_run_kp_kernel &&
      paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
  bool use_xpu_kp_kernel_debug =
      paddle::platform::is_in_xpu_kpwhite_list(type_);
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
      (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug)) {
    expected_kernel_key.library_type_ = LibraryType::kKP;
    kernel_iter = kernels.find(expected_kernel_key);
    VLOG(3) << "using XPU KP kernel: " << type_
            << ", using_kernel_key:" << expected_kernel_key;
  }
#endif

A
Allen Guo 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1470 1471
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1472
      platform::is_npu_place(expected_kernel_key.place_)) {
1473 1474 1475 1476 1477 1478
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1479 1480 1481
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1482
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1483 1484 1485 1486 1487 1488
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1489
#endif
1490 1491 1492 1493
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1494

1495 1496 1497 1498 1499
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1500 1501
}

Y
yuyang18 已提交
1502 1503 1504 1505
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1506
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1507
    auto* origin_var = scope.FindVar(var_name);
1508 1509 1510
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1511
    auto* original_tensor =
C
chengduo 已提交
1512
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1513
    auto* var = transfer_scope.FindVar(var_name);
1514 1515
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1516
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1517
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1518
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1519 1520 1521 1522 1523
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1524 1525 1526
  }
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1556
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1576
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1594
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1595
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1596 1597
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1598
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1599

1600
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1601 1602 1603 1604
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1605 1606
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1607 1608 1609
    }
  }

Y
yuyang18 已提交
1610
  for (auto& var_name_item : Inputs()) {
1611 1612
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1613

X
Xin Pan 已提交
1614 1615 1616 1617
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1618
      auto* var = input_vars[i];
X
Xin Pan 已提交
1619

Y
yuyang18 已提交
1620
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1621
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1622 1623 1624
        continue;
      }

C
chengduo 已提交
1625
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1641 1642
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1675 1676
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1677

1678 1679 1680
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1681
      // We use a thread_local cache to fix that issue, the key in the cache is
1682 1683 1684 1685 1686
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1687 1688
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1689
      // variables, that behavior a lot different.
1690 1691 1692 1693 1694 1695 1696 1697 1698
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1699 1700
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1701
        enable_cache_transfer_scope_ = true;
1702
      }
1703
      if (!new_scope) {
Y
yuyang18 已提交
1704 1705
        new_scope = &scope.NewScope();
      }
1706 1707 1708 1709
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1710
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1711 1712
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1713
      if (enable_cache_runtime_context_) {
1714 1715
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1716 1717

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1718
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1719
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1737
      Tensor out;
Y
yuyang18 已提交
1738
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1739 1740 1741
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1742

1743 1744 1745 1746 1747 1748
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1749 1750 1751 1752 1753 1754

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1755 1756
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1757 1758 1759

  return new_scope;
}
Q
Qiao Longfei 已提交
1760

1761
void OperatorWithKernel::ParseInputDataType(
1762
    const std::vector<Variable*>& vars, const std::string& name,
1763
    proto::VarType::Type* data_type) const {
1764
  proto::VarType::Type default_data_type =
1765 1766 1767 1768 1769 1770 1771 1772 1773
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
1774 1775
      } else if (var->IsType<pten::SelectedRows>()) {
        t = &(var->Get<pten::SelectedRows>().value());
1776
      } else if (var->IsType<LoDTensorArray>()) {
1777 1778 1779 1780
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1781 1782
          }
        }
1783 1784
      }
      if (t != nullptr) {
1785 1786
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1787 1788 1789
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1790 1791
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
1792 1793 1794 1795 1796 1797 1798 1799 1800
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1801 1802 1803 1804 1805 1806
        *data_type = tmp;
      }
    }
  }
}

1807
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1808
    const ExecutionContext& ctx) const {
1809 1810 1811
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1812
  for (auto& input : ctx.InNameList()) {
1813 1814
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
1815
  }
1816 1817 1818 1819
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1820 1821 1822 1823 1824 1825 1826 1827
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
1828
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
1829 1830
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1831 1832 1833 1834 1835
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1836
  return data_type;
Y
Yu Yang 已提交
1837
}
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
1857 1858
  } else if (var->IsType<pten::SelectedRows>()) {
    t = var->GetMutable<pten::SelectedRows>()->mutable_value();
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
1890 1891
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
1892 1893 1894 1895 1896 1897 1898

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1899 1900 1901 1902 1903 1904 1905 1906
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1907 1908
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1909 1910
}

1911 1912
KernelSignature OperatorWithKernel::GetExpectedPtenKernelArgs(
    const ExecutionContext& ctx) const {
1913 1914 1915 1916
  InitDefaultKernelSignatureMap();
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
  return pten::OpUtilsMap::Instance().GetArgumentMappingFn(Type())(
      arg_mapping_ctx);
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
Scope* OperatorWithKernel::PreparePtenData(
    const Scope& scope, const pten::Kernel& pt_kernel,
    const KernelSignature& pt_kernel_signature, RuntimeContext* ctx) const {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
1930
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

1941 1942
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
1943
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
1944 1945
      continue;
    }
1946
    auto& ins_vector = ctx->inputs.at(input_names[i]);
1947
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
1948 1949 1950
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

1951 1952 1953 1954 1955 1956 1957
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

1967 1968 1969 1970
      if (!tensor_in->IsInitialized()) {
        continue;
      }

1971
      auto expected_place = pten::TransToPtenPlace(in_def.backend);
1972 1973 1974 1975
      if (platform::is_same_place(tensor_in->place(), expected_place)) {
        continue;
      }

1976 1977
      VLOG(3) << "PTen Transform Variable " << input_names[i] << " from "
              << tensor_in->place() << " to " << expected_place;
1978

1979 1980 1981
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
1982

1983
      // Create new var with the same name in transfer scopes
1984
      auto* trans_var = new_scope->Var(name_vec[offset]);
1985
      ins_vector[offset] = trans_var;
1986

1987 1988 1989 1990
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
1991 1992 1993 1994 1995 1996
    }
  }

  return new_scope;
}

1997
void OperatorWithKernel::BuildPtenKernelContext(
1998 1999 2000
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
    pten::KernelContext* pt_kernel_context) const {
  pt_kernel_context->SetDeviceContext(dev_ctx);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2029
    auto it = ctx.inputs.find(input_names[i]);
2030 2031 2032

    // calcute the start and end index of the input tensors
    size_t start_idx =
2033
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2034

H
hong 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
    // deal with optional here
    if ((it == ctx.inputs.end()) &&
        (input_defs[i].type_index ==
         std::type_index(typeid(paddle::optional<const pten::DenseTensor&>)))) {
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2047
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2048
      const pten::TensorBase* tensor_in = nullptr;
2049
      auto* var = ins_vector[offset];
H
hong 已提交
2050 2051
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2052 2053
      } else if (var->IsType<pten::SelectedRows>()) {
        tensor_in = &(var->Get<pten::SelectedRows>());
2054 2055 2056 2057
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2058
      }
H
hong 已提交
2059

2060
      pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2061
    }
2062
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2063 2064 2065
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2066
    auto it = ctx.outputs.find(output_names[i]);
2067
    size_t start_idx =
2068
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2083
    size_t end_idx = start_idx + outs_vector.size();
2084 2085

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2086
      pten::TensorBase* tensor_out = nullptr;
2087
      auto* var = outs_vector[offset];
H
hong 已提交
2088 2089
      if (var->template IsType<framework::LoDTensor>()) {
        tensor_out = var->template GetMutable<framework::LoDTensor>();
2090 2091
      } else if (var->template IsType<pten::SelectedRows>()) {
        tensor_out = var->template GetMutable<pten::SelectedRows>();
2092 2093 2094 2095
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported output `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2096
      }
2097

2098 2099
      experimental::ResetTensorDtypeAndLayoutByArgDef(tensor_out,
                                                      output_defs.at(i));
2100
      SetAllocationForOutputTenosr(
2101
          tensor_out, pten::TransToPtenPlace(output_defs.at(i).backend));
2102 2103

      pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2104
    }
2105

2106
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2107 2108 2109
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
2110 2111 2112 2113 2114
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
2115
          pt_kernel_context->EmplaceBackAttr(std::move(pten::ScalarArray(
2116
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2117 2118
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
2119
          pt_kernel_context->EmplaceBackAttr(std::move(pten::ScalarArray(
2120
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
C
chentianyu03 已提交
2121 2122 2123 2124
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(int32_t))) {
          pt_kernel_context->EmplaceBackAttr(std::move(pten::ScalarArray(
              &BOOST_GET_CONST(int32_t, attr_iter->second), 1)));
2125 2126 2127 2128 2129 2130 2131 2132 2133
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2134
          pt_kernel_context->EmplaceBackAttr(std::move(
2135 2136
              experimental::MakePtenScalarArrayFromVar(*ins_vector.front())));
        } else {  // ShapeTensorList
2137
          pt_kernel_context->EmplaceBackAttr(std::move(
2138 2139 2140 2141 2142
              experimental::MakePtenScalarArrayFromVarList(ins_vector)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
2143 2144 2145
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
2146 2147 2148 2149
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
2150
          pt_kernel_context->EmplaceBackAttr(
2151 2152 2153
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
2154
          pt_kernel_context->EmplaceBackAttr(
2155
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
2156 2157 2158 2159
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          pt_kernel_context->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(int, attr))));
2160 2161 2162 2163 2164 2165
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2166
      } else {
2167
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2168
        pt_kernel_context->EmplaceBackAttr(std::move(
2169
            experimental::MakePtenScalarFromVar(*ins_vector.front())));
2170
      }
2171

2172 2173
    } else {
      // TODO(chenweihang): support other attrs later
2174
      auto& attr = Attrs().at(attr_names[i]);
2175
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
2176
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
2177
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
2178
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
2179
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
2180
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
H
hong 已提交
2181 2182
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
H
hong 已提交
2183 2184 2185
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::string))) {
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
2186
      } else if (attr_defs[i].type_index ==
2187
                 std::type_index(typeid(pten::DataType))) {
2188
        auto data_type = paddle::framework::TransToPtenDataType(
2189 2190
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
2191
        pt_kernel_context->EmplaceBackAttr(data_type);
2192 2193 2194 2195 2196 2197 2198 2199
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2200
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2201 2202 2203
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr

H
hong 已提交
2204 2205 2206 2207
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
        pt_kernel_context->EmplaceBackAttr(vector_int_attr);
2208 2209
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2210
            "Unsupported cast op attribute `%s` when construct "
2211 2212 2213 2214 2215 2216 2217
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
}

Q
Qiao Longfei 已提交
2218
}  // namespace framework
L
liaogang 已提交
2219
}  // namespace paddle