未验证 提交 b3466387 编写于 作者: L Leo Chen 提交者: GitHub

[phi] move uniform_random to phi (#39937)

* move uniform_random to phi

* fit selected_rows

* replace mutable_data
上级 08b43cce
......@@ -2074,6 +2074,7 @@ void OperatorWithKernel::BuildPhiKernelContext(
}
pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
}
VLOG(4) << "Done inputs";
for (size_t i = 0; i < output_names.size(); ++i) {
auto it = ctx.outputs.find(output_names[i]);
......@@ -2118,6 +2119,7 @@ void OperatorWithKernel::BuildPhiKernelContext(
pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
}
VLOG(4) << "Done outputs";
for (size_t i = 0; i < attr_names.size(); ++i) {
if (attr_defs[i].type_index == std::type_index(typeid(phi::ScalarArray))) {
......@@ -2226,6 +2228,7 @@ void OperatorWithKernel::BuildPhiKernelContext(
}
}
}
VLOG(4) << "Done attributes";
}
} // namespace framework
......
......@@ -281,10 +281,6 @@ REGISTER_OPERATOR(
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
paddle::operators::UniformRandomOpVarTypeInference);
REGISTER_OP_CPU_KERNEL(
uniform_random, paddle::operators::CPUUniformRandomKernel<float>,
paddle::operators::CPUUniformRandomKernel<double>,
paddle::operators::CPUUniformRandomKernel<paddle::platform::bfloat16>);
REGISTER_OP_CPU_KERNEL(
uniform_random_batch_size_like,
paddle::operators::CPUUniformRandomKernel<float>,
......
......@@ -58,9 +58,6 @@ class GPUUniformRandomKernel : public framework::OpKernel<T> {
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(uniform_random,
paddle::operators::GPUUniformRandomKernel<float>,
paddle::operators::GPUUniformRandomKernel<double>);
REGISTER_OP_CUDA_KERNEL(uniform_random_batch_size_like,
paddle::operators::GPUUniformRandomKernel<float>,
paddle::operators::GPUUniformRandomKernel<double>);
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/uniform_random_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T>
inline void UniformRealDistribution(T *data,
const int64_t &size,
const float &min,
const float &max,
std::shared_ptr<std::mt19937_64> engine) {
std::uniform_real_distribution<T> dist(static_cast<T>(min),
static_cast<T>(max));
for (int64_t i = 0; i < size; ++i) {
data[i] = dist(*engine);
}
}
template <>
inline void UniformRealDistribution(phi::dtype::bfloat16 *data,
const int64_t &size,
const float &min,
const float &max,
std::shared_ptr<std::mt19937_64> engine) {
std::uniform_real_distribution<float> dist(min, max);
for (int64_t i = 0; i < size; ++i) {
data[i] = static_cast<phi::dtype::bfloat16>(dist(*engine));
}
}
template <typename T, typename Context>
void UniformRandomRawKernel(const Context &dev_ctx,
const ScalarArray &shape,
DataType dtype,
float min,
float max,
int seed,
int diag_num,
int diag_step,
float diag_val,
DenseTensor *out) {
out->Resize(phi::make_ddim(shape.GetData()));
VLOG(4) << out->dims();
T *data = dev_ctx.template Alloc<T>(out);
auto size = out->numel();
std::shared_ptr<std::mt19937_64> engine;
if (seed) {
engine = std::make_shared<std::mt19937_64>();
engine->seed(seed);
} else {
engine = dev_ctx.GetGenerator()->GetCPUEngine();
}
UniformRealDistribution<T>(data, size, min, max, engine);
if (diag_num > 0) {
PADDLE_ENFORCE_GT(
size,
(diag_num - 1) * (diag_step + 1),
phi::errors::InvalidArgument(
"ShapeInvalid: the diagonal's elements is equal (num-1) "
"* (step-1) with num %d, step %d,"
"It should be smaller than %d, but received %d",
diag_num,
diag_step,
(diag_num - 1) * (diag_step + 1),
size));
for (int64_t i = 0; i < diag_num; ++i) {
int64_t pos = i * diag_step + i;
data[pos] = diag_val;
}
}
}
template <typename T, typename Context>
void UniformRandomKernel(const Context &dev_ctx,
const ScalarArray &shape,
DataType dtype,
float min,
float max,
int seed,
DenseTensor *out) {
UniformRandomRawKernel<T>(
dev_ctx, shape, dtype, min, max, seed, 0, 0, 0.0f, out);
}
} // namespace phi
PD_REGISTER_KERNEL(uniform_random_raw,
CPU,
ALL_LAYOUT,
phi::UniformRandomRawKernel,
float,
double,
phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(uniform_random,
CPU,
ALL_LAYOUT,
phi::UniformRandomKernel,
float,
double,
phi::dtype::bfloat16) {}
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.1 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.1
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/hostdevice.h"
namespace phi {
// Aligned vector generates vectorized load/store on CUDA.
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
T val[Size];
HOSTDEVICE inline const T& operator[](int i) const { return val[i]; }
HOSTDEVICE inline T& operator[](int i) { return val[i]; }
};
template <typename T, int Size>
HOSTDEVICE inline void Load(const T* addr, AlignedVector<T, Size>* vec) {
const AlignedVector<T, Size>* addr_vec =
reinterpret_cast<const AlignedVector<T, Size>*>(addr);
*vec = *addr_vec;
}
template <typename T, int Size>
HOSTDEVICE inline void Store(const AlignedVector<T, Size>& vec, T* addr) {
AlignedVector<T, Size>* addr_vec =
reinterpret_cast<AlignedVector<T, Size>*>(addr);
*addr_vec = vec;
}
/*
* Only the address of input data is the multiplier of 1,2,4, vectorized load
* with corresponding multiplier-value is possible. Moreover, the maximum length
* of vectorized load is 128 bits once. Hence, valid length of vectorized load
* shall be determined under both former constraints.
*/
template <typename T>
int GetVectorizedSize(const T* pointer) {
constexpr int max_load_bits = 128;
int valid_vec_size = max_load_bits / CHAR_BIT / sizeof(T);
uint64_t address = reinterpret_cast<uint64_t>(pointer);
constexpr int vec8 = std::alignment_of<AlignedVector<T, 8>>::value; // NOLINT
constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value; // NOLINT
constexpr int vec2 = std::alignment_of<AlignedVector<T, 2>>::value; // NOLINT
if (address % vec8 == 0) {
/*
* Currently, decide to deal with no more than 4 data once while adopting
* vectorization load/store, if performance test shows that dealing with
* 8 data once in vectorization load/store does get optimized, return code
* below can be changed into " return std::min(8, valid_vec_size); " .
*/
return std::min(4, valid_vec_size);
} else if (address % vec4 == 0) {
return std::min(4, valid_vec_size);
} else if (address % vec2 == 0) {
return std::min(2, valid_vec_size);
} else {
return 1;
}
}
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef __NVCC__
#include <curand_kernel.h>
#endif
#ifdef __HIPCC__
#include <hiprand_kernel.h>
#endif
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/device_context.h"
#include "paddle/phi/core/generator.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
#endif
#if !defined(_WIN32)
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
#else
// there is no equivalent intrinsics in msvc.
#define UNLIKELY(condition) (condition)
#endif
namespace phi {
namespace distribution {
/********************* Transformation Function **********************/
template <typename T>
struct exponential_transform {
explicit exponential_transform(T lambda) : lambda_(lambda) {}
HOSTDEVICE inline T operator()(T val) const {
#if defined(__NVCC__) || defined(__HIPCC__)
if (std::is_same<T, double>::value) {
return static_cast<T>(-1.0) / lambda_ * log(val);
} else {
return static_cast<T>(-1.0) / lambda_ * __logf(val);
}
#else
return static_cast<T>(-1.0) / lambda_ * std::log(static_cast<T>(1.0) - val);
#endif
}
private:
T lambda_;
};
template <typename T>
struct uniform_transform {
explicit uniform_transform(T min, T max) : range_(max - min), min_(min) {}
HOSTDEVICE inline T operator()(T val) const {
if (UNLIKELY(val == static_cast<T>(1.0))) {
return min_;
} else {
return val * range_ + min_;
}
}
private:
T range_;
T min_;
};
template <typename T>
struct normal_transform {
explicit normal_transform(T mean, T std) : mean_(mean), std_(std) {}
HOSTDEVICE inline T operator()(T val) const { return val * std_ + mean_; }
private:
T mean_;
T std_;
};
#if defined(__NVCC__) || defined(__HIPCC__)
namespace kps = phi::kps;
/*********************** Distribution Function *************************/
template <typename T>
struct uniform_distribution;
template <typename T>
struct normal_distribution;
#if defined(__NVCC__)
template <>
struct uniform_distribution<float> {
__device__ inline float4 operator()(curandStatePhilox4_32_10_t *state) const {
return curand_uniform4(state);
}
static constexpr int kReturnsCount = 4;
};
template <>
struct uniform_distribution<double> {
__device__ inline double2 operator()(
curandStatePhilox4_32_10_t *state) const {
return curand_uniform2_double(state);
}
static constexpr int kReturnsCount = 2;
};
template <>
struct normal_distribution<float> {
__device__ inline float4 operator()(curandStatePhilox4_32_10_t *state) const {
return curand_normal4(state);
}
static constexpr int kReturnsCount = 4;
};
template <>
struct normal_distribution<double> {
__device__ inline double2 operator()(
curandStatePhilox4_32_10_t *state) const {
return curand_normal2_double(state);
}
static constexpr int kReturnsCount = 2;
};
#else
template <>
struct uniform_distribution<float> {
__device__ inline float4 operator()(
hiprandStatePhilox4_32_10_t *state) const {
return hiprand_uniform4(state);
}
static constexpr int kReturnsCount = 4;
};
template <>
struct uniform_distribution<double> {
__device__ inline double2 operator()(
hiprandStatePhilox4_32_10_t *state) const {
return hiprand_uniform2_double(state);
}
static constexpr int kReturnsCount = 2;
};
template <>
struct normal_distribution<float> {
__device__ inline float4 operator()(
hiprandStatePhilox4_32_10_t *state) const {
return hiprand_normal4(state);
}
static constexpr int kReturnsCount = 4;
};
template <>
struct normal_distribution<double> {
__device__ inline double2 operator()(
hiprandStatePhilox4_32_10_t *state) const {
return hiprand_normal2_double(state);
}
static constexpr int kReturnsCount = 2;
};
#endif
/******** Launch GPU function of distribution and transformation *********/
template <typename T, typename DistOp, typename TransformOp>
__global__ void DistributionKernel(size_t size,
uint64_t seed,
uint64_t offset,
DistOp dist,
TransformOp trans,
T *out_data,
size_t stride) {
size_t idx = static_cast<size_t>(BLOCK_ID_X * BLOCK_NUM_X);
static constexpr int kCount = DistOp::kReturnsCount;
#if defined(__NVCC__)
curandStatePhilox4_32_10_t state;
curand_init(seed, idx + THREAD_ID_X, offset, &state);
using SType = curandStatePhilox4_32_10_t;
#else
hiprandStatePhilox4_32_10_t state;
hiprand_init(seed, idx + THREAD_ID_X, offset, &state);
using SType = hiprandStatePhilox4_32_10_t;
#endif
size_t total_thread = GRID_NUM_X * BLOCK_NUM_X;
T args[kCount];
T result[kCount];
for (size_t i = idx; i < size; i += total_thread * kCount) {
kps::ElementwiseRandom<SType, T, kCount, 1, DistOp>(&args[0], dist, &state);
kps::ElementwiseUnary<T, T, kCount, 1, 1, TransformOp>(
&result[0], &args[0], trans);
kps::WriteData<T, T, kCount, 1, 1, true>(
out_data + i, &result[0], size - i, 1, stride, 1);
__syncthreads();
}
}
template <typename T, typename DistOp, typename TransformOp>
void distribution_and_transform(const GPUContext &dev_ctx,
DenseTensor *out,
DistOp dist,
TransformOp trans) {
T *out_data = dev_ctx.template Alloc<T>(out);
auto size = out->numel();
int64_t device_id = dev_ctx.GetPlace().GetDeviceId();
auto gen_cuda = dev_ctx.GetGenerator();
size_t block_size = 256;
size_t expect_grid_size = (size + block_size - 1) / block_size;
const auto &prop = backends::gpu::GetDeviceProperties(device_id);
size_t max_grid_size = (prop.maxThreadsPerMultiProcessor / block_size) *
prop.multiProcessorCount;
size_t grid_size =
expect_grid_size > max_grid_size ? max_grid_size : expect_grid_size;
size_t total_thread = block_size * grid_size;
size_t curand4_loop_times =
(size + 4 * total_thread - 1) / (4 * total_thread);
// 'increment' shoulde be multiple of 4
uint64_t increment = curand4_loop_times * 4;
auto seed_offset = gen_cuda->IncrementOffset(increment);
uint64_t seed = seed_offset.first;
uint64_t offset = seed_offset.second;
DistributionKernel<
T,
DistOp,
TransformOp><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
size, seed, offset, dist, trans, out_data, total_thread);
}
#endif
} // namespace distribution
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/random.h>
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/hostdevice.h"
#include "paddle/phi/kernels/funcs/aligned_vector.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
namespace phi {
template <typename T, typename Functor, int VecSize>
__global__ void VectorizedIndexKernel(T *out,
size_t numel,
size_t main_offset,
Functor func) {
size_t data_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
size_t stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
size_t args[VecSize];
T result[VecSize];
for (; data_offset < main_offset; data_offset += stride) {
kps::InitWithDataIndex<size_t, VecSize, 1, 1>(&args[0], data_offset);
kps::ElementwiseUnary<size_t, T, VecSize, 1, 1, Functor>(
&result[0], &args[0], func);
kps::WriteData<T, VecSize, 1, 1, false>(
out + data_offset, &result[0], BLOCK_NUM_X * VecSize);
}
size_t num = numel - data_offset;
if (num > 0) {
kps::InitWithDataIndex<size_t, VecSize, 1, 1>(&args[0], data_offset);
kps::ElementwiseUnary<size_t, T, VecSize, 1, 1, Functor>(
&result[0], &args[0], func);
kps::WriteData<T, VecSize, 1, 1, true>(out + data_offset, &result[0], num);
}
}
template <typename T, typename Functor>
void IndexKernel(const KPDevice &dev_ctx, DenseTensor *out, Functor func) {
int numel = out->numel();
T *out_data = dev_ctx.template Alloc<T>(out);
if (numel <= 0) return;
int vec_size = phi::GetVectorizedSize(out_data);
#ifdef PADDLE_WITH_XPU_KP
int block = 64;
int grid = 8;
auto stream = dev_ctx.x_context()->xpu_stream;
#else
auto config =
phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, numel, vec_size);
int grid = config.block_per_grid.x;
int block = config.thread_per_block.x;
auto stream = dev_ctx.stream();
#endif
size_t main_offset = (numel / (vec_size * block)) * vec_size * block;
switch (vec_size) {
case 4:
VectorizedIndexKernel<T, Functor, 4><<<grid, block, 0, stream>>>(
out_data, numel, main_offset, func);
break;
case 2:
VectorizedIndexKernel<T, Functor, 2><<<grid, block, 0, stream>>>(
out_data, numel, main_offset, func);
break;
case 1:
VectorizedIndexKernel<T, Functor, 1><<<grid, block, 0, stream>>>(
out_data, numel, main_offset, func);
break;
default: {
PADDLE_THROW(phi::errors::Unimplemented(
"Unsupported vectorized size: %d !", vec_size));
break;
}
}
}
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/uniform_random_kernel.h"
#include "gflags/gflags.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/distribution_helper.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
DECLARE_bool(use_curand);
namespace phi {
template <typename T>
struct UniformGenerator {
T min_, max_;
unsigned int seed_;
T diag_val_;
unsigned int diag_num_;
unsigned int diag_step_;
__host__ __device__ UniformGenerator(
T min, T max, int seed, int diag_num, int diag_step, T diag_val)
: min_(min),
max_(max),
seed_(seed),
diag_num_(diag_num),
diag_step_(diag_step),
diag_val_(diag_val) {}
__host__ __device__ T operator()(const unsigned int n) const {
thrust::minstd_rand rng;
rng.seed(seed_);
thrust::uniform_real_distribution<T> dist(min_, max_);
rng.discard(n);
T out = dist(rng);
unsigned int remainder = n % (diag_step_ + 1);
if (remainder == 0 && diag_num_ > n / (diag_step_ + 1)) {
out = diag_val_;
}
return out;
}
};
template <typename T>
struct UniformGeneratorOffset {
T min_, max_;
unsigned int seed_;
T diag_val_;
unsigned int diag_num_;
unsigned int diag_step_;
int offset_;
__host__ __device__ UniformGeneratorOffset(T min,
T max,
int seed,
int diag_num,
int diag_step,
T diag_val,
int offset)
: min_(min),
max_(max),
seed_(seed),
diag_num_(diag_num),
diag_step_(diag_step),
diag_val_(diag_val),
offset_(offset) {}
__host__ __device__ T operator()(const unsigned int n) const {
thrust::minstd_rand rng;
rng.seed(seed_);
thrust::uniform_real_distribution<T> dist(min_, max_);
rng.discard(n + offset_);
T out = dist(rng);
unsigned int remainder = n % (diag_step_ + 1);
if (remainder == 0 && diag_num_ > n / (diag_step_ + 1)) {
out = diag_val_;
}
return out;
}
};
template <typename T, typename Context>
void UniformRandomRawKernel(const Context& dev_ctx,
const ScalarArray& shape,
DataType dtype,
float min,
float max,
int seed,
int diag_num,
int diag_step,
float diag_val,
DenseTensor* out) {
out->Resize(phi::make_ddim(shape.GetData()));
T* data = dev_ctx.template Alloc<T>(out);
auto size = out->numel();
bool seed_flag = false;
if (seed == 0) {
std::random_device rd;
seed = rd();
seed_flag = true;
}
auto generator = dev_ctx.GetGenerator();
if (generator->GetIsInitPy() && seed_flag) {
if (FLAGS_use_curand) {
using MT = typename kps::details::MPTypeTrait<T>::Type;
distribution::uniform_distribution<MT> dist;
distribution::uniform_transform<MT> trans(min, max);
distribution::distribution_and_transform<T>(dev_ctx, out, dist, trans);
} else {
auto seed_offset = generator->IncrementOffset(1);
int64_t gen_offset = size * seed_offset.second;
auto func = UniformGeneratorOffset<T>(min,
max,
seed_offset.first,
diag_num,
diag_step,
diag_val,
gen_offset);
IndexKernel<T, UniformGeneratorOffset<T>>(dev_ctx, out, func);
}
} else {
auto func =
UniformGenerator<T>(min, max, seed, diag_num, diag_step, diag_val);
IndexKernel<T, UniformGenerator<T>>(dev_ctx, out, func);
}
}
template <typename T, typename Context>
void UniformRandomKernel(const Context& dev_ctx,
const ScalarArray& shape,
DataType dtype,
float min,
float max,
int seed,
DenseTensor* out) {
UniformRandomRawKernel<T>(
dev_ctx, shape, dtype, min, max, seed, 0, 0, 0.0f, out);
}
} // namespace phi
PD_REGISTER_KERNEL(uniform_random_raw,
GPU,
ALL_LAYOUT,
phi::UniformRandomRawKernel,
float,
double) {}
PD_REGISTER_KERNEL(
uniform_random, GPU, ALL_LAYOUT, phi::UniformRandomKernel, float, double) {}
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/uniform_random_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void UniformRandomRawSRKernel(const Context& dev_ctx,
const ScalarArray& shape,
DataType dtype,
float min,
float max,
int seed,
int diag_num,
int diag_step,
float diag_val,
SelectedRows* out) {
phi::UniformRandomRawKernel<T>(dev_ctx,
shape,
dtype,
min,
max,
seed,
diag_num,
diag_step,
diag_val,
out->mutable_value());
}
template <typename T, typename Context>
void UniformRandomSRKernel(const Context& dev_ctx,
const ScalarArray& shape,
DataType dtype,
float min,
float max,
int seed,
SelectedRows* out) {
phi::UniformRandomKernel<T>(
dev_ctx, shape, dtype, min, max, seed, out->mutable_value());
}
} // namespace phi
PD_REGISTER_KERNEL(uniform_random_raw_sr,
CPU,
ALL_LAYOUT,
phi::UniformRandomRawSRKernel,
float,
double,
phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(uniform_random_sr,
CPU,
ALL_LAYOUT,
phi::UniformRandomSRKernel,
float,
double,
phi::dtype::bfloat16) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(uniform_random_raw_sr,
GPU,
ALL_LAYOUT,
phi::UniformRandomRawSRKernel,
float,
double) {}
PD_REGISTER_KERNEL(uniform_random_sr,
GPU,
ALL_LAYOUT,
phi::UniformRandomSRKernel,
float,
double) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/device_context.h"
#include "paddle/phi/core/selected_rows.h"
namespace phi {
template <typename T, typename Context>
void UniformRandomRawKernel(const Context& dev_ctx,
const ScalarArray& shape,
DataType dtype,
float min,
float max,
int seed,
int diag_num,
int diag_step,
float diag_val,
DenseTensor* out);
template <typename T, typename Context>
void UniformRandomKernel(const Context& dev_ctx,
const ScalarArray& shape,
DataType dtype,
float min,
float max,
int seed,
DenseTensor* out);
template <typename T, typename Context>
void UniformRandomRawSRKernel(const Context& dev_ctx,
const ScalarArray& shape,
DataType dtype,
float min,
float max,
int seed,
int diag_num,
int diag_step,
float diag_val,
SelectedRows* out);
template <typename T, typename Context>
void UniformRandomSRKernel(const Context& dev_ctx,
const ScalarArray& shape,
DataType dtype,
float min,
float max,
int seed,
SelectedRows* out);
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature UniformRandomOpArgumentMapping(
const ArgumentMappingContext& ctx) {
int diag_num = paddle::any_cast<int>(ctx.Attr("diag_num"));
if (ctx.IsDenseTensorOutput("Out")) {
if (diag_num) {
if (ctx.InputSize("ShapeTensorList") > 0) {
return KernelSignature("uniform_random_raw",
{},
{"ShapeTensorList",
"dtype",
"min",
"max",
"seed",
"diag_num",
"diag_step",
"diag_val"},
{"Out"});
} else {
const auto& shape =
paddle::any_cast<std::vector<int64_t>>(ctx.Attr("shape"));
if (ctx.HasInput("ShapeTensor") && shape.empty()) {
return KernelSignature("uniform_random_raw",
{},
{"ShapeTensor",
"dtype",
"min",
"max",
"seed",
"diag_num",
"diag_step",
"diag_val"},
{"Out"});
} else {
return KernelSignature("uniform_random_raw",
{},
{"shape",
"dtype",
"min",
"max",
"seed",
"diag_num",
"diag_step",
"diag_val"},
{"Out"});
}
}
} else {
if (ctx.InputSize("ShapeTensorList") > 0) {
return KernelSignature(
"uniform_random",
{},
{"ShapeTensorList", "dtype", "min", "max", "seed"},
{"Out"});
} else {
const auto& shape =
paddle::any_cast<std::vector<int64_t>>(ctx.Attr("shape"));
if (ctx.HasInput("ShapeTensor") && shape.empty()) {
return KernelSignature("uniform_random",
{},
{"ShapeTensor", "dtype", "min", "max", "seed"},
{"Out"});
} else {
return KernelSignature("uniform_random",
{},
{"shape", "dtype", "min", "max", "seed"},
{"Out"});
}
}
}
} else if (ctx.IsSelectedRowsOutput("Out")) {
if (diag_num) {
if (ctx.InputSize("ShapeTensorList") > 0) {
return KernelSignature("uniform_random_raw_sr",
{},
{"ShapeTensorList",
"dtype",
"min",
"max",
"seed",
"diag_num",
"diag_step",
"diag_val"},
{"Out"});
} else {
const auto& shape =
paddle::any_cast<std::vector<int64_t>>(ctx.Attr("shape"));
if (ctx.HasInput("ShapeTensor") && shape.empty()) {
return KernelSignature("uniform_random_raw_sr",
{},
{"ShapeTensor",
"dtype",
"min",
"max",
"seed",
"diag_num",
"diag_step",
"diag_val"},
{"Out"});
} else {
return KernelSignature("uniform_random_raw_sr",
{},
{"shape",
"dtype",
"min",
"max",
"seed",
"diag_num",
"diag_step",
"diag_val"},
{"Out"});
}
}
} else {
if (ctx.InputSize("ShapeTensorList") > 0) {
return KernelSignature(
"uniform_random_sr",
{},
{"ShapeTensorList", "dtype", "min", "max", "seed"},
{"Out"});
} else {
const auto& shape =
paddle::any_cast<std::vector<int64_t>>(ctx.Attr("shape"));
if (ctx.HasInput("ShapeTensor") && shape.empty()) {
return KernelSignature("uniform_random_sr",
{},
{"ShapeTensor", "dtype", "min", "max", "seed"},
{"Out"});
} else {
return KernelSignature("uniform_random_sr",
{},
{"shape", "dtype", "min", "max", "seed"},
{"Out"});
}
}
}
}
return KernelSignature("unregistered", {}, {}, {});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(uniform_random, phi::UniformRandomOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册