operator.cc 133.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18
#include <unordered_set>
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/raw_tensor.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
29
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/var_type.h"
31
#include "paddle/fluid/operators/isfinite_op.h"
32
#include "paddle/fluid/operators/ops_extra_info.h"
33
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
34
#include "paddle/fluid/platform/enforce.h"
35
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
36
#include "paddle/fluid/platform/profiler/event_tracing.h"
37
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
38
#include "paddle/phi/common/int_array.h"
39
#include "paddle/phi/common/scalar.h"
40
#include "paddle/phi/core/ddim.h"
41
#include "paddle/phi/core/kernel_context.h"
42 43
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
44

45
namespace phi {
46
class DenseTensor;
47
}  // namespace phi
48

49
#ifdef PADDLE_WITH_XPU
50 51
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
52
#endif
Q
Qiao Longfei 已提交
53

54 55
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
56
#include "paddle/fluid/platform/mkldnn_op_list.h"
57 58
#endif

F
fwenguang 已提交
59 60 61 62
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

63 64 65 66
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#endif

D
dzhwinter 已提交
67
DECLARE_bool(benchmark);
68
DECLARE_bool(check_nan_inf);
69
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
70
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
71
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
72

Q
Qiao Longfei 已提交
73 74 75
namespace paddle {
namespace framework {

76 77 78 79 80 81
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
82

83
static DDim GetDimsDebug(const Scope& scope,
84
                         const std::string& name,
85
                         bool get_actual_dim = false) {
86
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
87 88
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
89 90
  }

91 92
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
93
    return tensor.dims();
94
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
95
    if (get_actual_dim) {
96
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
97
    } else {
98
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
99
    }
S
Steffy-zxf 已提交
100 101
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
102 103 104 105 106
  } else {
    return DDim({-1});
  }
}

107
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
108 109 110 111 112
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

113
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
114 115 116 117
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
118

119 120
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
121
    if (UNLIKELY(!tensor.IsInitialized())) {
122 123
      return "";
    }
124
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
125 126
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
127 128 129
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
130
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
131
    }
S
Steffy-zxf 已提交
132 133
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
134 135 136 137 138
  } else {
    return "";
  }
}

139
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
140 141 142 143 144 145 146 147 148 149
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

150 151
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
152 153 154 155
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
156 157
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
158 159 160 161 162 163 164 165 166 167
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

168
static int GetRowSize(const Scope& scope, const std::string& name) {
169 170 171 172 173
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

174 175
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
176 177 178 179 180
  }

  return -1;
}

181
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
182 183 184 185 186 187 188
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

189 190
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
191
    return tensor.lod();
Q
Qiao Longfei 已提交
192 193 194 195 196
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
197 198 199 200 201
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
202
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
203 204 205 206 207 208
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
209
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
210 211 212 213 214 215
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
RuntimeInferShapeContext::RuntimeInferShapeContext(const OperatorBase& op,
                                                   const RuntimeContext& ctx)
    : op_(op), ctx_(ctx) {}

bool RuntimeInferShapeContext::HasInput(const std::string& name) const {
  // has only one input
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end()) {
    return false;
  }
  const auto& in = it->second;
  if (in.size() == 0) return false;
  PADDLE_ENFORCE_EQ(
      in.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input %s should not contain more than one inputs.", name));
  return in[0] != nullptr;
}

bool RuntimeInferShapeContext::HasOutput(const std::string& name) const {
  // has only one output
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end()) {
    return false;
  }
  const auto& out = it->second;
  if (out.size() == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(
      out.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Output %s should not contain more than one outputs.", name));
  return out[0] != nullptr;
}

bool RuntimeInferShapeContext::HasAttr(const std::string& name) const {
  return op_.HasAttr(name);
}

bool RuntimeInferShapeContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (auto& input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

bool RuntimeInferShapeContext::HasOutputs(const std::string& name,
                                          bool allow_null) const {
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end() || it->second.empty()) {
    return false;
  }
  if (!allow_null) {
    for (auto& output : it->second) {
      if (output == nullptr) return false;
    }
  }
  return true;
}

AttrReader RuntimeInferShapeContext::Attrs() const {
  return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
}

std::vector<std::string> RuntimeInferShapeContext::Inputs(
    const std::string& name) const {
  return op_.Inputs(name);
}

std::vector<std::string> RuntimeInferShapeContext::Outputs(
    const std::string& name) const {
  return op_.Outputs(name);
}

std::string RuntimeInferShapeContext::GetInputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->inputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->inputs().size()));
  return op_proto->inputs()[idx].name();
}

std::string RuntimeInferShapeContext::GetOutputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->outputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of outputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->outputs().size()));
  return op_proto->outputs()[idx].name();
}

void RuntimeInferShapeContext::ShareDim(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second[i];
  Variable* out_var = out_it->second[j];

  PADDLE_ENFORCE_EQ(
      in_var->Type(),
      out_var->Type(),
      platform::errors::InvalidArgument(
          "The type of input (%s) and output (%s) are inconsistent.", in, out));

  if (in_var->IsType<phi::SelectedRows>()) {
    auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
    auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
    out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
    out_sele_rows->set_rows(in_sele_rows.rows());
    out_sele_rows->set_height(in_sele_rows.height());
  } else if (in_var->IsType<phi::DenseTensor>()) {
    auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_lod_tensor->Resize(in_lod_tensor.dims());
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Currently, the input type of ShareDim only can be phi::DenseTensor "
        "or SelectedRows."));
  }
}

void RuntimeInferShapeContext::ShareAllLoD(const std::string& in,
                                           const std::string& out) const {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound(
                        "Input [%s] found error in Op [%s]", in, op_.Type()));
  PADDLE_ENFORCE_NE(out_it,
                    ctx_.outputs.end(),
                    platform::errors::NotFound(
                        "Output [%s] found error in Op [%s]", out, op_.Type()));

  auto& in_var_list = in_it->second;
  auto& out_var_list = out_it->second;

  PADDLE_ENFORCE_EQ(
      in_var_list.size(),
      out_var_list.size(),
      platform::errors::PreconditionNotMet(
          "Op [%s]: Input var size should be equal with output var size",
          op_.Type()));

  auto& out_var_names = op_.Outputs(out);

  for (size_t i = 0; i < in_var_list.size(); ++i) {
    if (out_var_names[i] == framework::kEmptyVarName) {
      continue;
    }

    Variable* in_var = in_var_list[i];
    if (!in_var->IsType<phi::DenseTensor>()) return;
    Variable* out_var = out_var_list[i];
    PADDLE_ENFORCE_EQ(
        out_var->IsType<phi::DenseTensor>(),
        true,
        platform::errors::PreconditionNotMet(
            "The %d-th output of Output(%s) must be phi::DenseTensor.",
            i,
            out_var_names[i]));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
    if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
  }
}

void RuntimeInferShapeContext::ShareLoD(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) const {
  if (can_skip_lod_) {
    return;
  }
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second.at(i);
  if (!in_var->IsType<phi::DenseTensor>()) return;
  Variable* out_var = out_it->second.at(j);
  PADDLE_ENFORCE_EQ(
      out_var->IsType<phi::DenseTensor>(),
      true,
      platform::errors::InvalidArgument(
          "The %zu-th output of Output(%s) must be phi::DenseTensor.", j, out));
  auto& in_tensor = in_var->Get<phi::DenseTensor>();
  auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
  out_tensor->set_lod(in_tensor.lod());

// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out phi::DenseTensor?
#ifdef PADDLE_WITH_MKLDNN
  // Fix me: ugly workaround below
  // Correct solution:
  //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
  //    layout of output tensor should be set "manually" in Compute()
  //    of each OPKernel. The reason layout should NOT be shared between
  //    input and output "automatically" (now by InferShape()->ShareLoD())
  //    is that layout transform may occur after InferShape().
  // Workaround:
  //    Skip set_layout() when input layout is kMKLDNN
  //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
  //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
  //    in Compute()
  if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
    out_tensor->set_layout(in_tensor.layout());
}

int32_t RuntimeInferShapeContext::GetLoDLevel(const std::string& in,
                                              size_t i) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

void RuntimeInferShapeContext::SetLoDLevel(const std::string& out,
                                           int32_t lod_level,
                                           size_t j) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

bool RuntimeInferShapeContext::IsRuntime() const { return true; }

bool RuntimeInferShapeContext::IsRunMKLDNNKernel() const {
  try {
    auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
    return ((op_with_kernel.kernel_type()) &&
            (op_with_kernel.kernel_type()->data_layout_ ==
             phi::DataLayout::ONEDNN));
  } catch (std::bad_cast& exp) {
    return false;
  }
}

// TODO(paddle-dev): Can this be template?
paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
RuntimeInferShapeContext::GetInputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
RuntimeInferShapeContext::GetOutputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

DDim RuntimeInferShapeContext::GetInputDim(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input(%s) should hold one element, but now it holds %zu elements.",
          name,
          vars.size()));
  return this->GetDim(vars[0]);
}

std::vector<DDim> RuntimeInferShapeContext::GetInputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  return GetDims(vars);
}

proto::VarType::Type RuntimeInferShapeContext::GetInputVarType(
    const std::string& name) const {
  return GetVarType(InputVars(name).at(0));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetInputsVarType(
    const std::string& name) const {
  return GetVarTypes(InputVars(name));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetOutputsVarType(
    const std::string& name) const {
  return GetVarTypes(OutputVars(name));
}

void RuntimeInferShapeContext::SetOutputDim(const std::string& name,
                                            const DDim& dim) {
  auto& vars = OutputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                        "but now it holds %zu elements.",
                                        name,
                                        vars.size()));
  SetDim(vars[0], dim);
}

void RuntimeInferShapeContext::SetOutputsDim(const std::string& name,
                                             const std::vector<DDim>& dims) {
  auto& vars = OutputVars(name);
  SetDims(vars, dims);
}

const phi::ArgumentMappingFn*
RuntimeInferShapeContext::GetPhiArgumentMappingFn() const {
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
}

const phi::KernelSignature*
RuntimeInferShapeContext::GetPhiDefaultKernelSignature() const {
  return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
}

void RuntimeInferShapeContext::SetSkipLoD(bool skip) { can_skip_lod_ = skip; }

DDim RuntimeInferShapeContext::GetDim(Variable* var) const {
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::InvalidArgument("Input variable is nullptr."));
  if (var->IsType<phi::DenseTensor>()) {
    return var->Get<phi::DenseTensor>().dims();
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().GetCompleteDims();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
        "Variable's type is %s.",
        ToTypeName(var->Type())));
  }
}

std::vector<DDim> RuntimeInferShapeContext::GetDims(
    const std::vector<Variable*>& vars) const {
  std::vector<DDim> ret;
  ret.reserve(vars.size());
  std::transform(
      vars.begin(), vars.end(), std::back_inserter(ret), [this](Variable* var) {
        return this->GetDim(var);
      });
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetRepeatedDims(
    const std::string& name) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetRepeatedDims method only ban be used in compile time."));
}

void RuntimeInferShapeContext::SetDim(Variable* var, const DDim& dim) {
  if (var->IsType<phi::DenseTensor>()) {
    var->GetMutable<phi::DenseTensor>()->Resize(dim);
  } else if (var->IsType<phi::SelectedRows>()) {
    var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Variable type error, expect phi::DenseTensor or SelectedRows, but "
        "received "
        "(%s).",
        ToTypeName(var->Type())));
  }
}

void RuntimeInferShapeContext::SetDims(const std::vector<Variable*>& vars,
                                       const std::vector<DDim>& dims) {
  size_t length = vars.size();
  PADDLE_ENFORCE_EQ(length,
                    dims.size(),
                    platform::errors::InvalidArgument(
                        "The number of input variables do not match the "
                        "number of input dimensions, the number of variables "
                        "is %zu, the number of dimensions is %zu.",
                        length,
                        dims.size()));
  for (size_t i = 0; i < length; ++i) {
    if (vars[i] == nullptr) {
      continue;
    }
    SetDim(vars[i], dims[i]);
  }
}

void RuntimeInferShapeContext::SetRepeatedDims(const std::string& name,
                                               const std::vector<DDim>& dims) {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetRepeatedDims method only can be used in compile time."));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetVarTypes(
    const std::vector<Variable*>& vars) const {
  std::vector<proto::VarType::Type> retv;
  retv.resize(vars.size());
  std::transform(vars.begin(),
                 vars.end(),
                 retv.begin(),
                 std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                           this,
                           std::placeholders::_1));
  return retv;
}

proto::VarType::Type RuntimeInferShapeContext::GetVarType(Variable* var) const {
  return ToVarType(var->Type());
}

const std::vector<Variable*>& RuntimeInferShapeContext::InputVars(
    const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.inputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the input (%s).", op_.Type(), name));
  return it->second;
}

const std::vector<Variable*>& RuntimeInferShapeContext::OutputVars(
    const std::string& name) const {
  auto it = ctx_.outputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.outputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
  return it->second;
}

722
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
723 724 725
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
726
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
727 728 729 730
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
731
#else
732
      auto dev_id = place.device;
P
peizhilin 已提交
733
      platform::SetDeviceId(dev_id);
734 735 736
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
737 738 739 740
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
741
#else
742
      auto dev_id = place.device;
743
      platform::SetXPUDeviceId(dev_id);
744 745 746 747 748 749 750 751
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
752
      auto dev_id = place.device;
753
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
754 755 756 757 758 759 760 761
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
762
      auto dev_id = place.device;
F
fwenguang 已提交
763
      platform::SetMLUDeviceId(dev_id);
764 765 766 767 768 769 770 771
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
772
      phi::DeviceManager::SetDevice(place);
773
#endif
P
peizhilin 已提交
774
    }
P
peizhilin 已提交
775

776
    {
777 778 779
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
780
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
781
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
782 783
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
784 785
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
786
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
787
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
788 789
      RunImpl(scope, place);
    }
790

Z
Zhang Ting 已提交
791
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
792
  } catch (platform::EnforceNotMet& exception) {
793
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
794
    throw std::move(exception);
795 796 797 798 799 800
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
801
  } catch (...) {
802
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
803
    std::rethrow_exception(std::current_exception());
804
  }
805 806
}

807
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
808
  return inputs_.find(name) != inputs_.end();
809 810
}

811
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
812
  auto& ins = Inputs(name);
813
  PADDLE_ENFORCE_LE(
814 815
      ins.size(),
      1UL,
816
      platform::errors::InvalidArgument(
817 818
          "Operator %s's input %s should contain only one variable.",
          type_,
819
          name));
Y
Yu Yang 已提交
820
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
821 822
}

Y
Yu Yang 已提交
823 824
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
825
  auto it = inputs_.find(name);
826
  PADDLE_ENFORCE_NE(
827 828 829 830
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
831
  return it->second;
Y
Yan Chunwei 已提交
832 833
}

834
bool OperatorBase::HasOutputs(const std::string& name) const {
835
  if (outputs_.find(name) != outputs_.end()) {
836 837 838 839 840 841
    return true;
  } else {
    return false;
  }
}

842
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
843
  auto& outs = Outputs(name);
844
  PADDLE_ENFORCE_LE(
845 846
      outs.size(),
      1UL,
847
      platform::errors::InvalidArgument(
848 849
          "Operator %s's output %s should contain only one variable.",
          type_,
850
          name));
Y
Yu Yang 已提交
851
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
852 853
}

Y
Yu Yang 已提交
854 855
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
856
  auto it = outputs_.find(name);
857
  PADDLE_ENFORCE_NE(
858 859
      it,
      outputs_.end(),
860 861
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
862
  return it->second;
Y
Yan Chunwei 已提交
863 864
}

865
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
866
  std::stringstream ss;
Y
Yu Yang 已提交
867
  ss << "Op(" << type_ << "), inputs:{";
868

869
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
870 871
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
872 873
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
874 875
  }

Y
Yu Yang 已提交
876 877
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
878 879
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
880 881
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
882 883
      auto var_name = input.second[i];
      ss << var_name;
884
      if (scope) {
Q
Qiao Longfei 已提交
885 886 887 888 889 890 891
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
892 893 894
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
895 896 897
          std::string place = is_no_need_buffer_var
                                  ? "unknown_place"
                                  : GetPlace(*scope, var_name);
Q
Qiao Longfei 已提交
898
          ss << ":" << dtype;
899 900
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
901
          ss << "(" << place << ")";
902
        }
903
      }
Y
Yu Yang 已提交
904 905 906
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
907
    }
Y
Yu Yang 已提交
908
    ss << "]";
Y
Yu Yang 已提交
909 910
    ++it;
    if (it != inputs_.end()) {
911 912
      ss << ", ";
    }
Q
Qiao Longfei 已提交
913
  }
Y
Yu Yang 已提交
914
  ss << "}, outputs:{";
Y
Yu Yang 已提交
915 916
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
917 918
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
919 920
      auto var_name = output.second[i];
      ss << var_name;
921
      if (scope) {
Q
Qiao Longfei 已提交
922 923 924 925 926 927 928
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
929 930
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
931 932
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
933
          ss << "(" << GetPlace(*scope, var_name) << ")";
934
        }
935
      }
Y
Yu Yang 已提交
936 937 938
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
939
    }
Y
Yu Yang 已提交
940
    ss << "]";
Y
Yu Yang 已提交
941 942
    ++it;
    if (it != outputs_.end()) {
943 944
      ss << ", ";
    }
Q
Qiao Longfei 已提交
945
  }
Y
Yu Yang 已提交
946
  ss << "}.";
Q
Qiao Longfei 已提交
947 948 949
  return ss.str();
}

Y
Yu Yang 已提交
950
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
951 952
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
953
                           const AttributeMap& attrs)
S
sneaxiy 已提交
954 955 956 957 958 959
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
960 961 962 963 964 965 966 967
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
968
  // In OperatorBase level, all attributes with VarDesc type will be considered
969 970 971 972 973 974
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
975
}
976

Q
qijun 已提交
977 978
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
979
  for (auto& o : inputs_) {
Q
qijun 已提交
980 981 982 983 984 985
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
986 987 988 989 990 991 992 993 994 995
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
996
  auto& info = Info();
Y
Yu Yang 已提交
997 998

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
999
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
1009 1010
}

1011
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
1012
  if (info_ == nullptr || info_->proto_ == nullptr) return;
1013

S
sneaxiy 已提交
1014
  for (auto& in : info_->Proto().inputs()) {
1015
    if (!in.dispensable() && !in.extra()) {
1016
      PADDLE_ENFORCE_NE(
1017 1018 1019 1020
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
1021
    }
1022 1023
  }

S
sneaxiy 已提交
1024
  for (auto& out : info_->Proto().outputs()) {
1025
    if (!out.dispensable() && !out.extra() && !out.intermediate()) {
1026
      PADDLE_ENFORCE_NE(
1027 1028 1029 1030
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
1031
    }
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
1047

1048 1049
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
1050 1051
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
1052 1053
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
1054
  } else {
1055
    PADDLE_THROW(platform::errors::InvalidArgument(
1056
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1057
        ToTypeName(var.Type())));
Q
QI JUN 已提交
1058 1059 1060
  }
}

1061
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
1062 1063
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
1064 1065
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
1066
  } else {
1067
    PADDLE_THROW(platform::errors::InvalidArgument(
1068
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1069
        ToTypeName(var->Type())));
Q
QI JUN 已提交
1070 1071 1072
  }
}

1073 1074 1075 1076 1077 1078 1079 1080
OperatorWithKernel::OperatorWithKernel(const std::string& type,
                                       const VariableNameMap& inputs,
                                       const VariableNameMap& outputs,
                                       const AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

OperatorWithKernel::~OperatorWithKernel() = default;

1081
bool ExecutionContext::HasInput(const std::string& name) const {
1082
  auto* var = InputVar(name);
1083 1084 1085
  return var != nullptr;
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

1100
bool ExecutionContext::HasOutput(const std::string& name) const {
1101
  auto* var = OutputVar(name);
1102 1103 1104
  return var != nullptr;
}

X
Xin Pan 已提交
1105
const Variable* ExecutionContext::InputVar(const std::string& name) const {
1106 1107
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
1108 1109 1110
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

1111
  PADDLE_ENFORCE_LE(
1112 1113
      it->second.size(),
      1UL,
1114
      platform::errors::InvalidArgument(
1115
          "Operator %s's input %s should contain only one variable.",
1116 1117
          op_.Type(),
          name));
X
Xin Pan 已提交
1118 1119 1120
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
1121
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
1122 1123 1124
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

1125
  PADDLE_ENFORCE_LE(
1126 1127
      it->second.size(),
      1UL,
1128 1129
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
1130 1131
          op_.Type(),
          name));
X
Xin Pan 已提交
1132 1133 1134
  return it->second.empty() ? nullptr : it->second[0];
}

1135
template <>
1136 1137
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
1138 1139
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
1140 1141
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
1142 1143
    return {};
  }
1144
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
1145
  res.reserve(vars.size());
1146 1147 1148
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1149
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
1150
                   if (var == nullptr) return nullptr;
1151 1152 1153 1154 1155 1156 1157 1158
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
1159 1160 1161 1162
                 });
  return res;
}

1163
template <>
1164
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
1165
    const std::string& name) const {
H
hong 已提交
1166 1167 1168
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
1169 1170
    return {};
  }
1171
  std::vector<phi::DenseTensor*> res;
1172
  res.reserve(vars.size());
1173 1174 1175
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1176
                 [&](Variable* var) -> phi::DenseTensor* {
1177
                   return var == nullptr ? nullptr
1178
                                         : var->GetMutable<phi::DenseTensor>();
1179
                 });
1180 1181 1182
  return res;
}

Y
Yu Yang 已提交
1183
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
1184
  // check in new Function kernel first
1185
  bool has_phi_kernel = false;
1186
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
1187
  auto kernel_key_map =
1188
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
1189
  for (auto& kernel : kernel_key_map) {
1190
    has_phi_kernel = true;
1191
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
1192 1193 1194 1195
      return true;
    }
  }

Y
Yu Yang 已提交
1196 1197
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
1211 1212 1213
      return true;
    }
  }
H
hong 已提交
1214

Y
Yu Yang 已提交
1215 1216 1217
  return false;
}

1218
struct OperatorWithKernel::CacheImpl {
1219
  static const char kNotAllowInferShapeCahce[];
1220
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
1221 1222 1223 1224 1225 1226 1227
                     RuntimeInferShapeContext* infer_shape_ctx,
                     const std::vector<phi::DenseTensor*>& tensors,
                     bool not_allow_infer_shape_cache)
      : kernel_ctx_(kernel_ctx),
        infer_shape_ctx_(infer_shape_ctx),
        tensors_(tensors),
        not_allow_infer_shape_cache_(not_allow_infer_shape_cache) {}
1228 1229 1230 1231 1232 1233

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
  bool NeedInferShape() {
    if (not_allow_infer_shape_cache_) return true;

    bool ret{false};
    if (last_ddims_.empty() || tensors_.empty()) ret = true;
    if (!ret) {
      CHECK_EQ(last_ddims_.size(), tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        if (tensors_[i]->dims() != last_ddims_[i]) {
          ret = true;
          break;
        }
      }
    }
    if (ret) {
      last_ddims_.resize(tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        last_ddims_[i] = tensors_[i]->dims();
      }
    }
    VLOG(3) << "need infer shape is " << ret;
    return ret;
  }

1258 1259 1260
 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
1261 1262 1263
  std::vector<phi::DenseTensor*> tensors_;
  bool not_allow_infer_shape_cache_;
  std::vector<phi::DDim> last_ddims_;
1264
};
1265 1266
const char OperatorWithKernel::CacheImpl::kNotAllowInferShapeCahce[] =
    "@NOT_ALLOW_INFERSHAPE_CACHE@";
1267

1268 1269
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1270
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1271 1272 1273
  if (tensor.memory_size() == 0) {
    return;
  }
1274 1275
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1276 1277
    return;
  }
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1290 1291
}

1292 1293 1294 1295
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1296 1297
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1310 1311
          op_kernels.begin(),
          op_kernels.end(),
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1323 1324
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1337 1338
          op_kernels.begin(),
          op_kernels.end(),
1339 1340 1341 1342 1343 1344 1345
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
Q
QingshuChen 已提交
1369 1370 1371 1372
                   paddle::platform::is_xpu_support_op(
                       type_,
                       framework::TransToPhiDataType(
                           kern_pair.first.data_type_));
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1384
bool OperatorWithKernel::SupportsMKLDNN(const phi::DataType data_type) const {
1385 1386 1387 1388 1389
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1390 1391
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
1392
                           kern_pair.first.dtype() == data_type;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
1408
                   kern_pair.first.data_type_ == TransToProtoVarType(data_type);
1409 1410
          });
    }
1411
  }
1412 1413
}

1414
bool OperatorWithKernel::SupportsCUDNN(const phi::DataType data_type) const {
1415 1416
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
1417 1418 1419 1420 1421 1422 1423
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPUDNN &&
                           kern_pair.first.dtype() == data_type;
                  });
1424 1425 1426 1427 1428 1429 1430 1431
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
1432 1433
      proto::VarType::Type fluid_data_type =
          framework::TransToProtoVarType(data_type);
1434 1435 1436
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
1437
          [fluid_data_type](OpKernelMap::const_reference kern_pair) {
1438 1439
            return platform::is_gpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kCUDNN &&
1440
                   kern_pair.first.data_type_ == fluid_data_type;
1441 1442 1443 1444 1445
          });
    }
  }
}

1446
bool OperatorWithKernel::SupportsKernelType(
1447
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1448 1449
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1450 1451 1452 1453 1454
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1455
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1456
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1457 1458
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1459 1460
  }
#endif
1461 1462 1463 1464 1465

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
1466
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1467
            type_, framework::TransToPhiDataType(kernel_type.data_type_));
1468 1469 1470 1471 1472 1473 1474 1475 1476
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1477 1478
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1479 1480 1481
  }
#endif

1482
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1483 1484 1485 1486 1487
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1488
#ifdef PADDLE_WITH_MKLDNN
1489
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1490 1491 1492
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
1493
    tmp_kernel_type.data_layout_ = framework::DataLayout::ONEDNN;
1494 1495 1496 1497
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1498 1499 1500 1501 1502 1503 1504 1505
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kCUDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1506
  return kernel_iter != kernels.end();
1507 1508
}

1509
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
1510
                                         phi::DataType data_type) const {
1511
  return ctx.HasAttr("use_mkldnn") && ctx.Attr<bool>("use_mkldnn") &&
1512 1513
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1514 1515
}

1516 1517 1518 1519 1520
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
  return this->CanMKLDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1521
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
1522
                                        phi::DataType data_type) const {
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
  bool use_cudnn = ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn") &&
                   paddle::platform::is_gpu_place(ctx.GetPlace());

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
    use_cudnn &= (dev_ctx.cudnn_handle() != nullptr);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#if defined(PADDLE_WITH_CUDA)
1534
  if (use_cudnn && data_type == phi::DataType::BFLOAT16) {
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
    PADDLE_ENFORCE_GE(
        platform::DnnVersion(),
        8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA

  return use_cudnn && this->SupportsCUDNN(data_type);
}

1546 1547 1548 1549 1550
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                                        proto::VarType::Type data_type) const {
  return this->CanCUDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1551 1552 1553 1554 1555 1556 1557
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1558
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1559 1560
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1561
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1562
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1563 1564
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
template <typename T>
bool HasSameTensorType(phi::TensorBase* phi_tensor, Variable* var) {
  if (phi_tensor == nullptr && var == nullptr) {
    return true;
  } else if (phi_tensor != nullptr && var != nullptr) {
    if (T::classof(phi_tensor) && var->IsType<T>()) {
      return true;
    }
  }
  return false;
}

// TODO(YuanRisheng): We need collect all `need_prepare_phi_data_`
// into this function.
void OperatorWithKernel::CheckWhetherPreparePhiData(
    const VariableNameMap& innames,
    const VariableNameMap& outnames,
    const Scope& scope) const {
  if (run_phi_kernel_ && impl_ != nullptr) {
    const auto& phi_kernel_context = impl_->getKernelContext();
    size_t phi_tensor_index = 0;
    // Check each tensor in KernelContext, if there is a tensor that has
    // different type with variable. The PhiKernelContext need be reconstructed.
    // We use kernel_signature_'s output to retrieve tensor. Because the tensor
    // in phi_kernel_context stored in the order of kernel_signature_'s output.
    if (phi_kernel_context->OutputsSize() >= phi_tensor_index ||
        kernel_signature_ == nullptr) {
      need_prepare_phi_data_ = true;
      return;
    }

    const auto& phi_output_names = kernel_signature_->output_names;
    for (auto& phi_output_name : phi_output_names) {
      const auto& iter = outnames.find(phi_output_name);
      if (iter != outnames.end()) {
        for (auto& var_name : iter->second) {
          auto var_output = scope.FindVar(var_name);
          auto phi_output =
              phi_kernel_context->MutableOutputAt<phi::TensorBase>(
                  phi_tensor_index);
          if (phi_output == nullptr) {
            continue;
          }
          if (!(HasSameTensorType<phi::DenseTensor>(phi_output, var_output) ||
                HasSameTensorType<phi::SparseCooTensor>(phi_output,
                                                        var_output) ||
                HasSameTensorType<framework::Strings>(phi_output,
                                                      var_output))) {
            need_prepare_phi_data_ = true;
          }
          phi_tensor_index++;
        }
      }
    }
  }
}

L
luotao1 已提交
1622 1623
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1624 1625
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1626 1627 1628
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1629
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1630
    all_kernels_must_compute_runtime_shape_ = true;
C
csy0225 已提交
1631
  const Scope* cur_scope = &scope;
1632
  CheckWhetherPreparePhiData(Inputs(), Outputs(), scope);
1633
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1634 1635
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1636 1637
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
1638
    if (!all_kernels_must_compute_runtime_shape_ && impl_->NeedInferShape()) {
1639
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
1640
    }
1641
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1642
  } else {
C
csy0225 已提交
1643
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
1644
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
C
csy0225 已提交
1645 1646 1647 1648
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1649
    }
1650
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1651 1652 1653 1654 1655 1656
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1657
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1658
  bool fallback_to_cpu = false;
1659
  auto* dev_ctx = pool.Get(place);
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1671 1672 1673 1674
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
H
HongyuJia 已提交
1675
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1676

1677 1678 1679 1680 1681 1682
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1683 1684 1685 1686 1687
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1688 1689
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1690
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1691
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1692 1693 1694 1695 1696 1697
      if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
        kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
      } else {
        kernel_signature_.reset(new phi::KernelSignature(
            std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      }
1698

1699 1700
      VLOG(6) << *kernel_signature_.get();
      phi_kernel_name = kernel_signature_->name;
1701 1702 1703
      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);
1704 1705 1706 1707 1708 1709 1710
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1711
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1712
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1727
                  << phi_kernel_name
1728
                  << ", using_kernel_key:" << *kernel_type_.get();
1729
          auto try_phi_kernel_key =
1730
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1731 1732
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1733 1734
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1735
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1736 1737 1738
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1739
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1740 1741 1742 1743
          }
        }
      }
#endif
1744 1745
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1746
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1747
              phi_kernel_name, phi_kernel_key)));
1748

1749
      if (phi_kernel_->IsValid()) {
1750
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
1751 1752
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1753
      } else {
1754 1755
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `"
                << phi_kernel_name << "` not found.";
1756
      }
1757
    } else {
1758
      phi_kernel_name = kernel_signature_->name;
1759
// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
1760
// LibraryType::kMKLDNN and data_layout_ = DataLayout::ONEDNN. But the default
1761
// values are kPlain, so we need to modify the library_type and data_layout_
1762 1763 1764 1765
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1766
#ifdef PADDLE_WITH_MKLDNN
1767 1768
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1769 1770
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
1771
        kernel_type_->data_layout_ = framework::DataLayout::ONEDNN;
1772 1773 1774
      }
#endif

1775 1776 1777 1778 1779 1780
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (this->CanCUDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kCUDNN;
      }
#endif

1781 1782 1783
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1784 1785 1786 1787
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1788
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1789
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1803
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1804
                  << phi_kernel_name
1805
                  << ", using_kernel_key:" << *kernel_type_.get();
1806
          auto try_phi_kernel_key =
1807
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1808 1809
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1810
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1811
            VLOG(3) << "modify XPU KP kernel in static graph: "
1812
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1813 1814 1815
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1816
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1817 1818 1819 1820
          }
        }
      }
#endif
1821
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1822
    }
1823 1824 1825 1826

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1827
#if defined(PADDLE_WITH_XPU)
1828 1829
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
Q
QingshuChen 已提交
1830 1831
        !paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1832
#endif
1833 1834 1835 1836
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
1837
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1838
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1839 1840 1841 1842 1843 1844
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1845 1846 1847 1848 1849 1850
    bool in_custom_back_list = false;
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    in_custom_back_list =
        phi::backends::custom_device::is_in_custom_black_list(phi_kernel_name);
#endif
    if (phi_kernel_->IsValid() && !in_custom_back_list
1851
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1852 1853
        && !is_xpu_unsupport
#endif
1854 1855 1856
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1857
    ) {
1858
      run_phi_kernel_ = true;
1859 1860 1861
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1862 1863 1864 1865 1866 1867 1868 1869 1870

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif
1871 1872 1873
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1874
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1875
          || is_xpu_unsupport
1876
#endif
1877 1878
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
1879 1880 1881
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
          || in_custom_back_list
1882
#endif
1883
      ) {
1884
        fallback_to_cpu = true;
1885 1886 1887
        if (in_custom_back_list) {
          VLOG(3) << "fluid in black list: " << phi_kernel_name;
        }
H
HongyuJia 已提交
1888
        auto phi_cpu_kernel_key = FallBackToCpu(phi_kernel_key, *this);
1889
        phi_kernel_.reset(
1890
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1891
                phi_kernel_name, phi_cpu_kernel_key)));
1892 1893

        dev_ctx = pool.Get(platform::CPUPlace());
1894
        if (phi_kernel_->IsValid()) {
1895
          VLOG(6) << "Static graph mode PrepareImpl - kernel name: "
1896 1897
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1898
          run_phi_kernel_ = true;
1899 1900
        }
      }
1901 1902
    }
  }
1903
  if (!run_phi_kernel_) {
1904 1905
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1906
      dev_ctx = pool.Get(kernel_type_->place_);
1907
    }
1908 1909
  }

Y
yuyang18 已提交
1910 1911
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1912 1913
  Scope* transfer_scope = nullptr;
  {
1914
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1915
                                       platform::TracerEventType::OperatorInner,
1916 1917
                                       1,
                                       platform::EventRole::kInnerOp);
1918
    if (need_prepare_data_) {
1919 1920 1921 1922 1923 1924
      transfer_scope =
          PrepareData(scope,
                      framework::TransOpKernelTypeToPhiKernelKey(*kernel_type_),
                      &transfered_inplace_vars,
                      runtime_ctx,
                      dev_ctx->GetPlace());
1925
    }
1926
  }
Y
yuyang18 已提交
1927 1928 1929 1930
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1931
  if (!all_kernels_must_compute_runtime_shape_) {
1932
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1933
                                       platform::TracerEventType::OperatorInner,
1934 1935
                                       1,
                                       platform::EventRole::kInnerOp);
1936
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1937
    this->Info().infer_shape_(&infer_shape_ctx);
1938 1939
    record_event.End();
    platform::RecordOpInfoSupplement(
1940
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx, Id());
1941
  }
1942 1943 1944 1945 1946

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1947 1948
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1949
  {
1950
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1951
                                       platform::TracerEventType::OperatorInner,
1952 1953
                                       1,
                                       platform::EventRole::kInnerOp);
1954 1955
    if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                               phi::KernelRegisteredType::FUNCTION) {
1956
      phi::KernelContext phi_kernel_context;
1957 1958
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
        // TODO(inference): Now we only suppor dense_tensor cache, we may be
        // support ScalarTensor, SparseTensor in future.
        bool all_dense_tensor_input_{true};
        for (auto& iter : Inputs()) {
          for (auto& name : iter.second) {
            all_dense_tensor_input_ &=
                scope.FindVar(name)->IsType<phi::DenseTensor>();
          }
        }

        std::vector<phi::DenseTensor*> tensors;
        if (all_dense_tensor_input_) {
          for (auto& iter : Inputs()) {
            for (auto& name : iter.second) {
              auto* t = scope.FindVar(name)->GetMutable<phi::DenseTensor>();
              tensors.push_back(t);
            }
          }
        }

        impl_.reset(
1980
            new CacheImpl(new phi::KernelContext(),
1981 1982 1983
                          new RuntimeInferShapeContext(*this, *runtime_ctx),
                          tensors,
                          HasAttr(CacheImpl::kNotAllowInferShapeCahce)));
1984
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1985
        (*phi_kernel_)(impl_->getKernelContext());
1986
      } else {
1987
        phi::KernelContext phi_kernel_context;
1988 1989
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1990 1991
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1992
      }
1993 1994 1995 1996 1997
    } else if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                                      phi::KernelRegisteredType::STRUCTURE) {
      ExecutionContext execution_context(
          *this, exec_scope, *dev_ctx, *runtime_ctx);
      (*phi_kernel_)(&execution_context);
1998 1999 2000 2001
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
2002 2003 2004
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
2005
  }
D
dzhwinter 已提交
2006

Y
yuyang18 已提交
2007
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
2008
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
2009
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
2010
  }
2011 2012 2013 2014 2015 2016 2017

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

2018 2019 2020 2021 2022 2023 2024 2025
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
2026

D
dzhwinter 已提交
2027
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
2028
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
2029
    dev_ctx->Wait();
2030 2031
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
2032 2033
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
2034
  }
C
chengduoZH 已提交
2035 2036

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
2037
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
2038
  }
2039 2040 2041 2042

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
C
csy0225 已提交
2043 2044
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
2045
  }
Q
Qiao Longfei 已提交
2046
}
X
Xin Pan 已提交
2047

2048 2049
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
2050 2051 2052
  phi::KernelKey phi_kernel_key = this->GetExpectedKernelType(ctx);
  auto expected_kernel_key =
      framework::TransPhiKernelKeyToOpKernelType(phi_kernel_key);
2053 2054 2055

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
2056
// data_layout_ of expected_kernel_key need to be adjusted. There are three
2057
// statements in if condition:
2058 2059 2060
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
2061
#ifdef PADDLE_WITH_MKLDNN
2062
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
2063 2064
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
2065
    expected_kernel_key.data_layout_ = framework::DataLayout::ONEDNN;
2066 2067 2068
  }
#endif

2069 2070 2071 2072 2073 2074
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN;
  }
#endif

2075 2076 2077
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
2088 2089 2090
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
2091 2092
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2093
      if (SupportGPU()) {
2094
        auto& dev_ctx = ctx.device_context();
2095
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2096 2097
      }
#endif
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
2117 2118 2119
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
2120
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2121 2122 2123
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
2124 2125
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
2152 2153 2154
      }
    }
  }
2155 2156 2157 2158 2159 2160

  if (platform::places_are_same_class(expected_kernel_key.place_,
                                      ctx.GetPlace())) {
    expected_kernel_key.place_ = ctx.GetPlace();
  }

C
cc 已提交
2161 2162
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
2163 2164 2165
  return expected_kernel_key;
}

2166
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2167
    const ExecutionContext& ctx) const {
2168 2169 2170 2171 2172 2173 2174
  std::string phi_kernel_name;
  if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
    kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
  } else {
    kernel_signature_.reset(
        new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  }
2175
  VLOG(6) << *kernel_signature_.get();
2176
  phi_kernel_name = kernel_signature_->name;
2177 2178 2179
  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2180 2181 2182
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2183

2184
  if (phi_kernel_->IsValid()) {
2185 2186
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
            << phi_kernel_name << " | kernel key: " << phi_kernel_key
2187
            << " | kernel: " << *phi_kernel_;
2188
  } else {
2189
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `" << phi_kernel_name
2190 2191
            << "` not found.";
  }
2192
  return phi_kernel_key;
2193 2194 2195 2196 2197 2198 2199
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2200 2201
      kernels_iter,
      all_op_kernels.end(),
2202
      platform::errors::Unimplemented(
2203 2204 2205 2206 2207 2208
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2209 2210

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2211

L
Liu Yiqun 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2221
#endif
2222 2223

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2224
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2225
      (kernel_iter == kernels.end() ||
Q
QingshuChen 已提交
2226 2227 2228
       !paddle::platform::is_xpu_support_op(
           type_,
           framework::TransToPhiDataType(expected_kernel_key.data_type_)))) {
2229
    VLOG(3) << "fluid missing XPU kernel: " << type_
2230 2231 2232 2233 2234
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2235
#endif
L
Liu-xiandong 已提交
2236 2237

#ifdef PADDLE_WITH_XPU_KP
2238 2239 2240
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
2241
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
2242 2243
            type_,
            framework::TransToPhiDataType(expected_kernel_key.data_type_));
2244 2245 2246
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2247
      VLOG(3) << "fluid xpu_kp using rt mode ";
2248 2249
    }
    if (use_xpu_kp_kernel_debug) {
2250
      VLOG(3) << "fluid xpu_kp using debug mode ";
2251 2252 2253
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2254 2255
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2256 2257
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2258
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2259
      // if the fluid do not register related kernel, it can't work and have
2260 2261 2262 2263 2264 2265 2266
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2267
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2268 2269
                << ", using_kernel_key:" << expected_kernel_key;
      }
2270
    }
Q
QingshuChen 已提交
2271 2272
    bool is_xpu_unsupport = (!paddle::platform::is_xpu_support_op(
        type_, framework::TransToPhiDataType(expected_kernel_key.data_type_)));
2273 2274
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2275
      VLOG(3) << "fluid missing XPU kernel: " << type_
2276 2277 2278 2279 2280
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2281 2282 2283
  }
#endif

A
Allen Guo 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2294 2295
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2296
      platform::is_npu_place(expected_kernel_key.place_)) {
2297 2298 2299 2300 2301 2302
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2303 2304 2305
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2306
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2307 2308 2309
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2321 2322 2323
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2324
#endif
2325 2326 2327 2328 2329 2330
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2331

2332 2333 2334 2335 2336
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2337 2338
}

Y
yuyang18 已提交
2339
void OperatorWithKernel::TransferInplaceVarsBack(
2340 2341
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2342 2343
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2344
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2345
    auto* origin_var = scope.FindVar(var_name);
2346 2347 2348
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2349
    auto* original_tensor =
C
chengduo 已提交
2350
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2351
    auto* var = transfer_scope.FindVar(var_name);
2352 2353 2354
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2355
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2356
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2357
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2358 2359 2360 2361 2362
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2363 2364 2365
  }
}

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2395
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2415
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2426
      phi::DenseTensor out;
2427 2428 2429 2430 2431 2432
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2433
Scope* OperatorWithKernel::PrepareData(
2434
    const Scope& scope,
2435
    const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
2436
    std::vector<std::string>* transfered_inplace_vars,
2437 2438
    RuntimeContext* ctx,
    const phi::Place& place) const {
Y
yuyang18 已提交
2439
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2440

2441
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2442 2443 2444 2445
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2446 2447
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2448 2449 2450
    }
  }

2451 2452 2453 2454 2455 2456 2457 2458 2459
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2460

Y
yuyang18 已提交
2461
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2462
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2463 2464 2465
        continue;
      }

C
chengduo 已提交
2466
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2467

2468
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2469 2470 2471 2472 2473 2474 2475
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
2476
        // oneDNN shape of Var may differ from kNHWC Var
2477 2478
        // In such situation corressponding resized Var
        // has to be created and registered
2479
        if ((tensor_in->layout() == DataLayout::ONEDNN) &&
2480
            (var->IsType<phi::DenseTensor>() == true) &&
2481
            (expected_kernel_key.layout() != DataLayout::ONEDNN) &&
2482 2483
            (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
             DataLayout::kNHWC) &&
2484
            (tensor_in->dims().size() >= 3)) {
2485
          // Mixed execution : oneDNN and GPU is not supported!
2486 2487 2488 2489
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2490
          in_vars->at(i) = trans_var;
2491
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2492
          out->Resize(tensor_in->dims());
2493
          phi::funcs::MatchShapeToLayout(
2494
              out, tensor_in->layout(), DataLayout::kNHWC);
2495
          VLOG(7) << "Created reshaped dummy input based on oneDNN "
2496
                     "phi::DenseTensor , "
2497
                     "but kNHWC layout"
2498
                  << in_name << " in Operator " << type_;
2499
        } else {
2500 2501
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2502 2503 2504 2505 2506
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2507 2508 2509 2510
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2511 2512 2513
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
2514
          NeedTransformDataType(expected_kernel_key, kernel_type_for_var);
2515
      bool need_trans_layout = NeedTransformLayout(
2516
          kernel_type_for_var.layout(), expected_kernel_key.layout());
2517 2518
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
2519 2520
            backends_are_same_class(kernel_type_for_var.backend(),
                                    expected_kernel_key.backend())) {
2521 2522 2523
          continue;
        }
      }
Y
yuyang18 已提交
2524

2525
      std::unique_ptr<phi::KernelKey> new_expected_kernel_key = nullptr;
2526 2527
      if (run_phi_kernel_ && in_def != nullptr &&
          in_def->backend != phi::Backend::ALL_BACKEND) {
2528 2529
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
2530 2531 2532 2533 2534 2535
             !(in_def->backend == phi::Backend::GPUDNN &&
               tensor_backend == phi::Backend::GPU) &&
             !(in_def->backend == phi::Backend::KPS &&
               tensor_backend == phi::Backend::XPU) &&
             !(in_def->backend == phi::Backend::ONEDNN &&
               tensor_backend == phi::Backend::CPU)) ||
2536
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
2537 2538 2539 2540
          new_expected_kernel_key =
              std::make_unique<phi::KernelKey>(in_def->backend,
                                               expected_kernel_key.layout(),
                                               expected_kernel_key.dtype());
2541 2542 2543 2544 2545 2546 2547
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2548 2549
      }

M
minqiyang 已提交
2550
      VLOG(3) << "Transform Variable " << var_name << " from "
2551 2552 2553
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2554

H
HongyuJia 已提交
2555 2556 2557
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2558
      // We use a thread_local cache to fix that issue, the key in the cache is
2559 2560 2561 2562 2563
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2564 2565
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2566
      // variables, that behavior a lot different.
2567 2568 2569 2570 2571 2572
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2573 2574
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
2575 2576 2577 2578
          if (kernel_type_for_var.backend() == phi::Backend::GPU ||
              kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
              new_expected_kernel_key->backend() == phi::Backend::GPU ||
              new_expected_kernel_key->backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2579
            new_scope = TryCreateTransferScope(
2580 2581 2582
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
2583 2584 2585 2586
        } else if (kernel_type_for_var.backend() == phi::Backend::GPU ||
                   kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
                   expected_kernel_key.backend() == phi::Backend::GPU ||
                   expected_kernel_key.backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2587
          new_scope = TryCreateTransferScope(
2588 2589 2590
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2591
      }
2592

2593
      if (!new_scope) {
Y
yuyang18 已提交
2594 2595
        new_scope = &scope.NewScope();
      }
C
csy0225 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2606 2607

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2608
      auto* trans_var = new_scope->Var(var_name);
2609
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2610 2611 2612 2613 2614 2615 2616

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2617
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2627
      phi::DenseTensor out;
2628 2629 2630 2631 2632 2633 2634 2635 2636
      TransformData(
          new_expected_kernel_key ? *new_expected_kernel_key
                                  : expected_kernel_key,
          kernel_type_for_var,
          *tensor_in,
          &out,
          new_expected_kernel_key
              ? phi::TransToPhiPlace(new_expected_kernel_key->backend())
              : place);
Y
yuyang18 已提交
2637 2638
      SetTensorToVariable(*var, out, trans_var);
    }
2639 2640
  };

2641 2642
  if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                             phi::KernelRegisteredType::FUNCTION) {
2643
    const auto& input_names = kernel_signature_->input_names;
2644
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2680 2681 2682 2683 2684 2685 2686 2687 2688
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2689
  }
L
Leo Chen 已提交
2690

C
csy0225 已提交
2691 2692 2693 2694
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
2695 2696
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
C
csy0225 已提交
2697

W
wenbin 已提交
2698 2699 2700 2701
  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
C
csy0225 已提交
2702
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2703 2704
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2705 2706 2707

  return new_scope;
}
Q
Qiao Longfei 已提交
2708

2709
void OperatorWithKernel::ParseInputDataType(
2710 2711
    const Variable* var,
    const std::string& name,
2712 2713
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2714 2715 2716
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2717 2718
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2719 2720
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      PADDLE_ENFORCE_EQ(
          sp_t->initialized(),
          true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(),
                                            name));
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2747 2748
    const std::vector<Variable*>& vars,
    const std::string& name,
2749
    proto::VarType::Type* data_type) const {
2750
  proto::VarType::Type default_data_type =
2751 2752 2753 2754
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2755 2756 2757
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2758 2759
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2783
      } else if (var->IsType<LoDTensorArray>()) {
2784 2785 2786 2787
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2788 2789
          }
        }
2790 2791
      }
      if (t != nullptr) {
2792 2793 2794 2795 2796 2797 2798
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2799 2800
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2801 2802 2803 2804 2805 2806 2807
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2808 2809 2810
                           Type(),
                           name,
                           DataTypeToString(tmp),
2811
                           DataTypeToString(*data_type)));
2812 2813 2814 2815 2816 2817
        *data_type = tmp;
      }
    }
  }
}

2818
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2819
    const ExecutionContext& ctx) const {
2820 2821 2822
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2823

2824
  for (auto* name : ctx.InNameList()) {
2825 2826 2827 2828 2829
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2830
  }
2831
  PADDLE_ENFORCE_NE(
2832 2833
      data_type,
      dafault_data_type,
2834 2835
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2836 2837 2838 2839 2840 2841 2842 2843
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2844 2845 2846 2847 2848
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2849
  PADDLE_ENFORCE_NE(
2850 2851
      data_type,
      dafault_data_type,
2852 2853
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2854
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2855
          "LoDTensorArray.",
2856 2857
          name,
          Type()));
2858
  return data_type;
Y
Yu Yang 已提交
2859
}
2860

2861
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2874 2875 2876
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2877 2878
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2879 2880 2881 2882
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2883 2884 2885 2886 2887 2888 2889
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2890
      platform::errors::InvalidArgument(
2891 2892 2893 2894 2895
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2907 2908
    const ExecutionContext& ctx,
    const std::string& name1,
2909 2910 2911 2912 2913 2914
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2915 2916
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2917 2918 2919 2920 2921 2922 2923

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2924
phi::KernelKey OperatorWithKernel::GetExpectedKernelType(
2925
    const ExecutionContext& ctx) const {
2926
  return phi::KernelKey(IndicateDataType(ctx), ctx.GetPlace());
2927 2928
}

2929
phi::KernelKey OperatorWithKernel::GetKernelTypeForVar(
2930
    const std::string& var_name,
2931
    const phi::DenseTensor& tensor,
2932
    const phi::KernelKey& expected_kernel_type) const {
2933 2934 2935 2936
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
2937
  if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
2938
      (tensor.layout() != phi::DataLayout::ONEDNN) &&
2939 2940
      phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
          phi::DataLayout::kNHWC) {
2941 2942
    return phi::KernelKey(
        tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
2943 2944
  }
#endif
2945 2946
  return phi::KernelKey(
      tensor.place(), tensor.layout(), expected_kernel_type.dtype());
2947 2948
}

2949
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2950
    const ExecutionContext& ctx) const {
2951
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2952
  if (arg_map_fn_ == nullptr) {
2953 2954 2955 2956
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2957 2958 2959
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2960 2961 2962 2963
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2964 2965
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2966 2967
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

3027
void OperatorWithKernel::BuildPhiKernelContext(
3028 3029
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
3030 3031
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
3032

3033 3034 3035
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
3036

3037 3038 3039
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
3040

3041 3042 3043 3044 3045 3046 3047 3048 3049
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

3050 3051
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
3052 3053 3054
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
3055 3056
                        input_names.size(),
                        input_defs.size()));
3057

3058 3059
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
3060 3061 3062
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
3063 3064
                        output_names.size(),
                        output_defs.size()));
3065

3066 3067
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
3068 3069 3070
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
3071 3072
                        attr_names.size(),
                        attr_defs.size()));
3073
  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
3074
    auto it = ctx.inputs.find(input_names[i]);
3075 3076 3077

    // calcute the start and end index of the input tensors
    size_t start_idx =
3078
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
3079
    // deal with optional here
3080
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
3081
        (input_defs[i].type_index ==
3082
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
3083
         input_defs[i].type_index ==
3084
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
3085
         input_defs[i].type_index ==
3086 3087
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
3088
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
3089
      auto end_idx = start_idx + 1;
3090 3091
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
3092

H
hong 已提交
3093 3094 3095 3096
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
3097
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
3098
      const phi::TensorBase* tensor_in = nullptr;
3099
      auto* var = ins_vector[offset];
3100 3101
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
3102
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3103 3104
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
3105
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3106 3107 3108
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3109
      } else if (var->IsType<framework::LoDTensorArray>()) {
3110
        need_prepare_phi_data_ = true;
3111 3112
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3113 3114 3115
      } else if (var->IsType<framework::Vocab>()) {
        tensor_in = &(var->Get<framework::Vocab>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3116 3117 3118
      } else if (var->IsType<framework::FeedList>()) {
        tensor_in = &(var->Get<framework::FeedList>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3119 3120 3121 3122
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
3123
      }
3124
    }
3125
    // Note: here cannot deal with vector<LoDTensorArray> input
3126
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
3127
  }
3128
  VLOG(4) << "Done inputs";
3129
  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
3130
    auto it = ctx.outputs.find(output_names[i]);
3131
    size_t start_idx =
3132
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
3133 3134

    if (it == ctx.outputs.end() || it->second.empty()) {
3135
      VLOG(4) << "Output " << output_names[i] << " not found";
H
hong 已提交
3136 3137 3138 3139
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
3140
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
3141
      auto end_idx = start_idx + 1;
3142 3143
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
3144 3145 3146 3147
      continue;
    }
    auto& outs_vector = it->second;

3148
    size_t end_idx = start_idx + outs_vector.size();
3149 3150

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
3151
      phi::TensorBase* tensor_out = nullptr;
3152
      auto* var = outs_vector[offset];
3153
      if (var) {
3154 3155
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
3156
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3157 3158
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
3159
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3160 3161 3162
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3163
        } else if (var->template IsType<framework::LoDTensorArray>()) {
3164
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
3165 3166
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
3167
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3168 3169 3170
        } else if (var->template IsType<framework::Strings>()) {
          tensor_out = var->template GetMutable<framework::Strings>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3171 3172 3173 3174 3175 3176 3177
        } else if (var->template IsType<paddle::framework::RawTensor>()) {
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (!var->IsInitialized()) {
          // The following is for RAW type of var
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3178 3179 3180 3181 3182
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
3183
      } else {
3184
        VLOG(4) << "Output " << output_names[i] << " is nullptr";
3185
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3186
      }
3187
    }
3188 3189
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
3190
  }
3191
  VLOG(4) << "Done outputs";
3192
  for (size_t i = 0; i < attr_names.size(); ++i) {
3193 3194
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
3195 3196
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
3197 3198 3199 3200 3201 3202 3203
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
3204
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3205
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
3206
              break;
3207 3208 3209 3210
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
3211
            case proto::AttrType::INT:
3212
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3213
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
3214
              break;
3215 3216 3217 3218
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
3219
            case proto::AttrType::STRING:
3220
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
3221
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
3222
              break;
3223 3224 3225 3226
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
3227 3228 3229 3230 3231 3232 3233
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
3234
          need_prepare_phi_data_ = true;
3235
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
3236 3237
          phi_kernel_context->EmplaceBackAttr(
              std::move(framework::MakePhiScalarFromVar(*ins_vector.front())));
3238
        }
3239 3240 3241 3242 3243
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
3244
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3245
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
3246 3247
              break;
            case proto::AttrType::LONGS:
3248
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3249
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
3250 3251
              break;
            case proto::AttrType::INT:
3252
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3253
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
3254 3255
              break;
            case proto::AttrType::LONG:
3256
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3257
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
3258 3259 3260 3261 3262 3263 3264 3265
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
3266
          need_prepare_phi_data_ = true;
3267 3268
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
3269
            phi_kernel_context->EmplaceBackAttr(std::move(
3270
                framework::MakePhiIntArrayFromVar(*ins_vector.front())));
3271
          } else {  // ShapeTensorList
3272 3273
            phi_kernel_context->EmplaceBackAttr(
                std::move(framework::MakePhiIntArrayFromVarList(ins_vector)));
3274
          }
3275
        }
3276
        break;
3277

3278 3279
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3280 3281
            attr_iter,
            Attrs().end(),
3282 3283 3284 3285 3286 3287
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3288
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3289 3290 3291 3292 3293
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3294
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3295 3296 3297
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3298
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3299 3300 3301 3302 3303
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3304
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3305 3306 3307
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3308
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3309 3310 3311 3312 3313
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3314
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3315 3316 3317
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3318
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3319 3320 3321 3322 3323
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3324
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3325 3326 3327
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3328
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3329 3330 3331 3332 3333
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3334
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3335 3336 3337 3338 3339
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3340 3341
                attr_names[i]));
        }
3342 3343
      } break;
      default: {
3344
        if (attr_iter == Attrs().end()) {
3345
          // TODO(chenweihang): remove this backup searching later
3346 3347 3348 3349 3350 3351 3352 3353 3354
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3355 3356
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3357
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3358
                PADDLE_GET_CONST(float, attr_iter->second));
3359
            break;
3360 3361 3362 3363
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3364
          case phi::AttributeType::INT32:
3365
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3366
                PADDLE_GET_CONST(int, attr_iter->second));
3367 3368
            break;
          case phi::AttributeType::BOOL:
3369
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3370
                PADDLE_GET_CONST(bool, attr_iter->second));
3371 3372
            break;
          case phi::AttributeType::INT64:
3373
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3374
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3375 3376
            break;
          case phi::AttributeType::INT32S:
3377
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3378
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3379
            break;
3380 3381 3382 3383
          case phi::AttributeType::BOOLS:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second));
            break;
3384 3385 3386
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3387
                    PADDLE_GET_CONST(int, attr_iter->second)));
3388
            phi_kernel_context->EmplaceBackAttr(data_type);
3389 3390
          } break;
          case phi::AttributeType::STRING:
3391
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3392
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3393 3394 3395 3396
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3397
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3398
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3399 3400 3401
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3402
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3403 3404
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3405
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3416
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3417
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3418 3419
            break;
          case phi::AttributeType::STRINGS:
3420
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3421
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3422 3423 3424 3425 3426 3427
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3428
        }
3429 3430 3431
      }
    }
  }
3432
  VLOG(4) << "Done attributes";
3433

3434 3435 3436 3437 3438 3439
// Clear All old attrs before add new attrs,
// because sometimes old attrs may be misused.
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->ClearDnnAttr();
3440
    if (!RuntimeAttrs().empty()) need_prepare_phi_data_ = true;
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
  }
#endif

  // Note(YuanRisheng): Now, we can't open code below.
  // Because some unittest run OLD dygraph and ExtraAttr is not supported in OLD
  // dygraph. So, here we use trick that dev_ctx is a global object. We can
  // store ExtraAttr in static graph and when unittest run OLD dygraph, it can
  // obtain these ExtraAttr. We can open this code when OLD dygraph is no longer
  // used.
  /*
  #if defined(PADDLE_WITH_CUDA)
    if(phi::GPUContext::classof(dev_ctx)) {
      phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
      gpu_dnn_ctx->ClearDnnAttr();
    }
  #endif
  */
3458 3459 3460 3461 3462 3463
  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3464
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3465 3466 3467 3468 3469 3470
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
S
Shuangchi He 已提交
3471
  // which increases the cost of development and understanding, so we
3472 3473 3474 3475 3476 3477 3478
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3479
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
      if (it == ctx.inputs.end() || it->second.size() == 0) {
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3514 3515
}

Q
Qiao Longfei 已提交
3516
}  // namespace framework
L
liaogang 已提交
3517
}  // namespace paddle