operator.cc 135.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18
#include <unordered_set>
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/raw_tensor.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
29
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/var_type.h"
31
#include "paddle/fluid/operators/isfinite_op.h"
32
#include "paddle/fluid/operators/ops_extra_info.h"
33
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
34
#include "paddle/fluid/platform/enforce.h"
35
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
36
#include "paddle/fluid/platform/profiler/event_tracing.h"
37
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
38
#include "paddle/phi/common/int_array.h"
39
#include "paddle/phi/common/scalar.h"
40
#include "paddle/phi/core/compat/get_kerneltype_forvar_utils.h"
41
#include "paddle/phi/core/ddim.h"
42
#include "paddle/phi/core/kernel_context.h"
43 44
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
45

46
namespace phi {
47
class DenseTensor;
48
}  // namespace phi
49

50
#ifdef PADDLE_WITH_XPU
51 52
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
53
#endif
Q
Qiao Longfei 已提交
54

55 56
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
57
#include "paddle/fluid/platform/mkldnn_op_list.h"
58 59
#endif

F
fwenguang 已提交
60 61 62 63
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

64 65 66 67
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#endif

D
dzhwinter 已提交
68
DECLARE_bool(benchmark);
69
DECLARE_bool(check_nan_inf);
70
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
71
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
72
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
73

Q
Qiao Longfei 已提交
74 75 76
namespace paddle {
namespace framework {

77 78 79 80 81 82
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
83

84
static DDim GetDimsDebug(const Scope& scope,
85
                         const std::string& name,
86
                         bool get_actual_dim = false) {
87
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
88 89
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
90 91
  }

92 93
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
94
    return tensor.dims();
95
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
96
    if (get_actual_dim) {
97
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
98
    } else {
99
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
100
    }
S
Steffy-zxf 已提交
101 102
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
103 104 105 106 107
  } else {
    return DDim({-1});
  }
}

108
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
109 110 111 112 113
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

114
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
115 116 117 118
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
119

120 121
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
122
    if (UNLIKELY(!tensor.IsInitialized())) {
123 124
      return "";
    }
125
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
126 127
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
128 129 130
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
131
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
132
    }
S
Steffy-zxf 已提交
133 134
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
135 136 137 138 139
  } else {
    return "";
  }
}

140
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
141 142 143 144 145 146 147 148 149 150
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

151 152
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
153 154 155 156
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
157 158
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
159 160 161 162 163 164 165 166 167 168
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

169
static int GetRowSize(const Scope& scope, const std::string& name) {
170 171 172 173 174
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

175 176
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
177 178 179 180 181
  }

  return -1;
}

182
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
183 184 185 186 187 188 189
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

190 191
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
192
    return tensor.lod();
Q
Qiao Longfei 已提交
193 194 195 196 197
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
198 199 200 201 202
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
203
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
204 205 206 207 208 209
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
210
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
211 212 213 214 215 216
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
RuntimeInferShapeContext::RuntimeInferShapeContext(const OperatorBase& op,
                                                   const RuntimeContext& ctx)
    : op_(op), ctx_(ctx) {}

bool RuntimeInferShapeContext::HasInput(const std::string& name) const {
  // has only one input
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end()) {
    return false;
  }
  const auto& in = it->second;
  if (in.size() == 0) return false;
  PADDLE_ENFORCE_EQ(
      in.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input %s should not contain more than one inputs.", name));
  return in[0] != nullptr;
}

bool RuntimeInferShapeContext::HasOutput(const std::string& name) const {
  // has only one output
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end()) {
    return false;
  }
  const auto& out = it->second;
  if (out.size() == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(
      out.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Output %s should not contain more than one outputs.", name));
  return out[0] != nullptr;
}

bool RuntimeInferShapeContext::HasAttr(const std::string& name) const {
  return op_.HasAttr(name);
}

bool RuntimeInferShapeContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (auto& input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

bool RuntimeInferShapeContext::HasOutputs(const std::string& name,
                                          bool allow_null) const {
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end() || it->second.empty()) {
    return false;
  }
  if (!allow_null) {
    for (auto& output : it->second) {
      if (output == nullptr) return false;
    }
  }
  return true;
}

AttrReader RuntimeInferShapeContext::Attrs() const {
  return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
}

std::vector<std::string> RuntimeInferShapeContext::Inputs(
    const std::string& name) const {
  return op_.Inputs(name);
}

std::vector<std::string> RuntimeInferShapeContext::Outputs(
    const std::string& name) const {
  return op_.Outputs(name);
}

std::string RuntimeInferShapeContext::GetInputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->inputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->inputs().size()));
  return op_proto->inputs()[idx].name();
}

std::string RuntimeInferShapeContext::GetOutputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->outputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of outputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->outputs().size()));
  return op_proto->outputs()[idx].name();
}

void RuntimeInferShapeContext::ShareDim(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second[i];
  Variable* out_var = out_it->second[j];

  PADDLE_ENFORCE_EQ(
      in_var->Type(),
      out_var->Type(),
      platform::errors::InvalidArgument(
          "The type of input (%s) and output (%s) are inconsistent.", in, out));

  if (in_var->IsType<phi::SelectedRows>()) {
    auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
    auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
    out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
    out_sele_rows->set_rows(in_sele_rows.rows());
    out_sele_rows->set_height(in_sele_rows.height());
  } else if (in_var->IsType<phi::DenseTensor>()) {
    auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_lod_tensor->Resize(in_lod_tensor.dims());
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Currently, the input type of ShareDim only can be phi::DenseTensor "
        "or SelectedRows."));
  }
}

void RuntimeInferShapeContext::ShareAllLoD(const std::string& in,
                                           const std::string& out) const {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound(
                        "Input [%s] found error in Op [%s]", in, op_.Type()));
  PADDLE_ENFORCE_NE(out_it,
                    ctx_.outputs.end(),
                    platform::errors::NotFound(
                        "Output [%s] found error in Op [%s]", out, op_.Type()));

  auto& in_var_list = in_it->second;
  auto& out_var_list = out_it->second;

  PADDLE_ENFORCE_EQ(
      in_var_list.size(),
      out_var_list.size(),
      platform::errors::PreconditionNotMet(
          "Op [%s]: Input var size should be equal with output var size",
          op_.Type()));

  auto& out_var_names = op_.Outputs(out);

  for (size_t i = 0; i < in_var_list.size(); ++i) {
    if (out_var_names[i] == framework::kEmptyVarName) {
      continue;
    }

    Variable* in_var = in_var_list[i];
    if (!in_var->IsType<phi::DenseTensor>()) return;
    Variable* out_var = out_var_list[i];
    PADDLE_ENFORCE_EQ(
        out_var->IsType<phi::DenseTensor>(),
        true,
        platform::errors::PreconditionNotMet(
            "The %d-th output of Output(%s) must be phi::DenseTensor.",
            i,
            out_var_names[i]));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
    if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
  }
}

void RuntimeInferShapeContext::ShareLoD(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) const {
  if (can_skip_lod_) {
    return;
  }
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second.at(i);
  if (!in_var->IsType<phi::DenseTensor>()) return;
  Variable* out_var = out_it->second.at(j);
  PADDLE_ENFORCE_EQ(
      out_var->IsType<phi::DenseTensor>(),
      true,
      platform::errors::InvalidArgument(
          "The %zu-th output of Output(%s) must be phi::DenseTensor.", j, out));
  auto& in_tensor = in_var->Get<phi::DenseTensor>();
  auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
  out_tensor->set_lod(in_tensor.lod());

// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out phi::DenseTensor?
#ifdef PADDLE_WITH_MKLDNN
  // Fix me: ugly workaround below
  // Correct solution:
  //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
  //    layout of output tensor should be set "manually" in Compute()
  //    of each OPKernel. The reason layout should NOT be shared between
  //    input and output "automatically" (now by InferShape()->ShareLoD())
  //    is that layout transform may occur after InferShape().
  // Workaround:
  //    Skip set_layout() when input layout is kMKLDNN
  //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
  //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
  //    in Compute()
  if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
    out_tensor->set_layout(in_tensor.layout());
}

int32_t RuntimeInferShapeContext::GetLoDLevel(const std::string& in,
                                              size_t i) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

void RuntimeInferShapeContext::SetLoDLevel(const std::string& out,
                                           int32_t lod_level,
                                           size_t j) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

bool RuntimeInferShapeContext::IsRuntime() const { return true; }

bool RuntimeInferShapeContext::IsRunMKLDNNKernel() const {
  try {
    auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
    return ((op_with_kernel.kernel_type()) &&
            (op_with_kernel.kernel_type()->data_layout_ ==
             phi::DataLayout::ONEDNN));
  } catch (std::bad_cast& exp) {
    return false;
  }
}

// TODO(paddle-dev): Can this be template?
paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
RuntimeInferShapeContext::GetInputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
RuntimeInferShapeContext::GetOutputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

DDim RuntimeInferShapeContext::GetInputDim(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input(%s) should hold one element, but now it holds %zu elements.",
          name,
          vars.size()));
  return this->GetDim(vars[0]);
}

std::vector<DDim> RuntimeInferShapeContext::GetInputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  return GetDims(vars);
}

proto::VarType::Type RuntimeInferShapeContext::GetInputVarType(
    const std::string& name) const {
  return GetVarType(InputVars(name).at(0));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetInputsVarType(
    const std::string& name) const {
  return GetVarTypes(InputVars(name));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetOutputsVarType(
    const std::string& name) const {
  return GetVarTypes(OutputVars(name));
}

void RuntimeInferShapeContext::SetOutputDim(const std::string& name,
                                            const DDim& dim) {
  auto& vars = OutputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                        "but now it holds %zu elements.",
                                        name,
                                        vars.size()));
  SetDim(vars[0], dim);
}

void RuntimeInferShapeContext::SetOutputsDim(const std::string& name,
                                             const std::vector<DDim>& dims) {
  auto& vars = OutputVars(name);
  SetDims(vars, dims);
}

const phi::ArgumentMappingFn*
RuntimeInferShapeContext::GetPhiArgumentMappingFn() const {
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
}

const phi::KernelSignature*
RuntimeInferShapeContext::GetPhiDefaultKernelSignature() const {
  return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
}

void RuntimeInferShapeContext::SetSkipLoD(bool skip) { can_skip_lod_ = skip; }

DDim RuntimeInferShapeContext::GetDim(Variable* var) const {
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::InvalidArgument("Input variable is nullptr."));
  if (var->IsType<phi::DenseTensor>()) {
    return var->Get<phi::DenseTensor>().dims();
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().GetCompleteDims();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
        "Variable's type is %s.",
        ToTypeName(var->Type())));
  }
}

std::vector<DDim> RuntimeInferShapeContext::GetDims(
    const std::vector<Variable*>& vars) const {
  std::vector<DDim> ret;
  ret.reserve(vars.size());
  std::transform(
      vars.begin(), vars.end(), std::back_inserter(ret), [this](Variable* var) {
        return this->GetDim(var);
      });
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetRepeatedDims(
    const std::string& name) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetRepeatedDims method only ban be used in compile time."));
}

void RuntimeInferShapeContext::SetDim(Variable* var, const DDim& dim) {
  if (var->IsType<phi::DenseTensor>()) {
    var->GetMutable<phi::DenseTensor>()->Resize(dim);
  } else if (var->IsType<phi::SelectedRows>()) {
    var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Variable type error, expect phi::DenseTensor or SelectedRows, but "
        "received "
        "(%s).",
        ToTypeName(var->Type())));
  }
}

void RuntimeInferShapeContext::SetDims(const std::vector<Variable*>& vars,
                                       const std::vector<DDim>& dims) {
  size_t length = vars.size();
  PADDLE_ENFORCE_EQ(length,
                    dims.size(),
                    platform::errors::InvalidArgument(
                        "The number of input variables do not match the "
                        "number of input dimensions, the number of variables "
                        "is %zu, the number of dimensions is %zu.",
                        length,
                        dims.size()));
  for (size_t i = 0; i < length; ++i) {
    if (vars[i] == nullptr) {
      continue;
    }
    SetDim(vars[i], dims[i]);
  }
}

void RuntimeInferShapeContext::SetRepeatedDims(const std::string& name,
                                               const std::vector<DDim>& dims) {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetRepeatedDims method only can be used in compile time."));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetVarTypes(
    const std::vector<Variable*>& vars) const {
  std::vector<proto::VarType::Type> retv;
  retv.resize(vars.size());
  std::transform(vars.begin(),
                 vars.end(),
                 retv.begin(),
                 std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                           this,
                           std::placeholders::_1));
  return retv;
}

proto::VarType::Type RuntimeInferShapeContext::GetVarType(Variable* var) const {
  return ToVarType(var->Type());
}

const std::vector<Variable*>& RuntimeInferShapeContext::InputVars(
    const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.inputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the input (%s).", op_.Type(), name));
  return it->second;
}

const std::vector<Variable*>& RuntimeInferShapeContext::OutputVars(
    const std::string& name) const {
  auto it = ctx_.outputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.outputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
  return it->second;
}

723
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
724 725 726
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
727
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
728 729 730 731
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
732
#else
733
      auto dev_id = place.device;
P
peizhilin 已提交
734
      platform::SetDeviceId(dev_id);
735 736 737
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
738 739 740 741
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
742
#else
743
      auto dev_id = place.device;
744
      platform::SetXPUDeviceId(dev_id);
745 746 747 748 749 750 751 752
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
753
      auto dev_id = place.device;
754
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
755 756 757 758 759 760 761 762
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
763
      auto dev_id = place.device;
F
fwenguang 已提交
764
      platform::SetMLUDeviceId(dev_id);
765 766 767 768 769 770 771 772
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
773
      phi::DeviceManager::SetDevice(place);
774
#endif
P
peizhilin 已提交
775
    }
P
peizhilin 已提交
776

777
    {
778 779 780
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
781
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
782
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
783 784
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
785 786
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
787
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
788
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
789 790
      RunImpl(scope, place);
    }
791

Z
Zhang Ting 已提交
792
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
793
  } catch (platform::EnforceNotMet& exception) {
794
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
795
    throw std::move(exception);
796 797 798 799 800 801
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
802
  } catch (...) {
803
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
804
    std::rethrow_exception(std::current_exception());
805
  }
806 807
}

808
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
809
  return inputs_.find(name) != inputs_.end();
810 811
}

812
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
813
  auto& ins = Inputs(name);
814
  PADDLE_ENFORCE_LE(
815 816
      ins.size(),
      1UL,
817
      platform::errors::InvalidArgument(
818 819
          "Operator %s's input %s should contain only one variable.",
          type_,
820
          name));
Y
Yu Yang 已提交
821
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
822 823
}

Y
Yu Yang 已提交
824 825
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
826
  auto it = inputs_.find(name);
827
  PADDLE_ENFORCE_NE(
828 829 830 831
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
832
  return it->second;
Y
Yan Chunwei 已提交
833 834
}

835
bool OperatorBase::HasOutputs(const std::string& name) const {
836
  if (outputs_.find(name) != outputs_.end()) {
837 838 839 840 841 842
    return true;
  } else {
    return false;
  }
}

843
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
844
  auto& outs = Outputs(name);
845
  PADDLE_ENFORCE_LE(
846 847
      outs.size(),
      1UL,
848
      platform::errors::InvalidArgument(
849 850
          "Operator %s's output %s should contain only one variable.",
          type_,
851
          name));
Y
Yu Yang 已提交
852
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
853 854
}

Y
Yu Yang 已提交
855 856
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
857
  auto it = outputs_.find(name);
858
  PADDLE_ENFORCE_NE(
859 860
      it,
      outputs_.end(),
861 862
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
863
  return it->second;
Y
Yan Chunwei 已提交
864 865
}

866
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
867
  std::stringstream ss;
Y
Yu Yang 已提交
868
  ss << "Op(" << type_ << "), inputs:{";
869

870
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
871 872
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
873 874
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
875 876
  }

Y
Yu Yang 已提交
877 878
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
879 880
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
881 882
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
883 884
      auto var_name = input.second[i];
      ss << var_name;
885
      if (scope) {
Q
Qiao Longfei 已提交
886 887 888 889 890 891 892
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
893 894 895
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
896 897 898
          std::string place = is_no_need_buffer_var
                                  ? "unknown_place"
                                  : GetPlace(*scope, var_name);
Q
Qiao Longfei 已提交
899
          ss << ":" << dtype;
900 901
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
902
          ss << "(" << place << ")";
903
        }
904
      }
Y
Yu Yang 已提交
905 906 907
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
908
    }
Y
Yu Yang 已提交
909
    ss << "]";
Y
Yu Yang 已提交
910 911
    ++it;
    if (it != inputs_.end()) {
912 913
      ss << ", ";
    }
Q
Qiao Longfei 已提交
914
  }
Y
Yu Yang 已提交
915
  ss << "}, outputs:{";
Y
Yu Yang 已提交
916 917
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
918 919
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
920 921
      auto var_name = output.second[i];
      ss << var_name;
922
      if (scope) {
Q
Qiao Longfei 已提交
923 924 925 926 927 928 929
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
930 931
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
932 933
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
934
          ss << "(" << GetPlace(*scope, var_name) << ")";
935
        }
936
      }
Y
Yu Yang 已提交
937 938 939
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
940
    }
Y
Yu Yang 已提交
941
    ss << "]";
Y
Yu Yang 已提交
942 943
    ++it;
    if (it != outputs_.end()) {
944 945
      ss << ", ";
    }
Q
Qiao Longfei 已提交
946
  }
Y
Yu Yang 已提交
947
  ss << "}.";
Q
Qiao Longfei 已提交
948 949 950
  return ss.str();
}

Y
Yu Yang 已提交
951
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
952 953
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
954
                           const AttributeMap& attrs)
S
sneaxiy 已提交
955 956 957 958 959 960
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
961 962 963 964 965 966 967 968
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
969
  // In OperatorBase level, all attributes with VarDesc type will be considered
970 971 972 973 974 975
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
976
}
977

Q
qijun 已提交
978 979
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
980
  for (auto& o : inputs_) {
Q
qijun 已提交
981 982 983 984 985 986
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
987 988 989 990 991 992 993 994 995 996
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
997
  auto& info = Info();
Y
Yu Yang 已提交
998 999

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
1000
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
1010 1011
}

1012
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
1013
  if (info_ == nullptr || info_->proto_ == nullptr) return;
1014

S
sneaxiy 已提交
1015
  for (auto& in : info_->Proto().inputs()) {
1016
    if (!in.dispensable() && !in.extra()) {
1017
      PADDLE_ENFORCE_NE(
1018 1019 1020 1021
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
1022
    }
1023 1024
  }

S
sneaxiy 已提交
1025
  for (auto& out : info_->Proto().outputs()) {
1026
    if (!out.dispensable() && !out.extra() && !out.intermediate()) {
1027
      PADDLE_ENFORCE_NE(
1028 1029 1030 1031
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
1032
    }
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
1048

1049 1050
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
1051 1052
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
1053 1054
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
1055
  } else {
1056
    PADDLE_THROW(platform::errors::InvalidArgument(
1057
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1058
        ToTypeName(var.Type())));
Q
QI JUN 已提交
1059 1060 1061
  }
}

1062
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
1063 1064
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
1065 1066
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
1067
  } else {
1068
    PADDLE_THROW(platform::errors::InvalidArgument(
1069
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1070
        ToTypeName(var->Type())));
Q
QI JUN 已提交
1071 1072 1073
  }
}

1074 1075 1076 1077 1078 1079 1080 1081
OperatorWithKernel::OperatorWithKernel(const std::string& type,
                                       const VariableNameMap& inputs,
                                       const VariableNameMap& outputs,
                                       const AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

OperatorWithKernel::~OperatorWithKernel() = default;

1082
bool ExecutionContext::HasInput(const std::string& name) const {
1083
  auto* var = InputVar(name);
1084 1085 1086
  return var != nullptr;
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

1101
bool ExecutionContext::HasOutput(const std::string& name) const {
1102
  auto* var = OutputVar(name);
1103 1104 1105
  return var != nullptr;
}

X
Xin Pan 已提交
1106
const Variable* ExecutionContext::InputVar(const std::string& name) const {
1107 1108
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
1109 1110 1111
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

1112
  PADDLE_ENFORCE_LE(
1113 1114
      it->second.size(),
      1UL,
1115
      platform::errors::InvalidArgument(
1116
          "Operator %s's input %s should contain only one variable.",
1117 1118
          op_.Type(),
          name));
X
Xin Pan 已提交
1119 1120 1121
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
1122
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
1123 1124 1125
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

1126
  PADDLE_ENFORCE_LE(
1127 1128
      it->second.size(),
      1UL,
1129 1130
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
1131 1132
          op_.Type(),
          name));
X
Xin Pan 已提交
1133 1134 1135
  return it->second.empty() ? nullptr : it->second[0];
}

1136
template <>
1137 1138
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
1139 1140
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
1141 1142
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
1143 1144
    return {};
  }
1145
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
1146
  res.reserve(vars.size());
1147 1148 1149
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1150
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
1151
                   if (var == nullptr) return nullptr;
1152 1153 1154 1155 1156 1157 1158 1159
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
1160 1161 1162 1163
                 });
  return res;
}

1164
template <>
1165
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
1166
    const std::string& name) const {
H
hong 已提交
1167 1168 1169
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
1170 1171
    return {};
  }
1172
  std::vector<phi::DenseTensor*> res;
1173
  res.reserve(vars.size());
1174 1175 1176
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1177
                 [&](Variable* var) -> phi::DenseTensor* {
1178
                   return var == nullptr ? nullptr
1179
                                         : var->GetMutable<phi::DenseTensor>();
1180
                 });
1181 1182 1183
  return res;
}

Y
Yu Yang 已提交
1184
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
1185
  // check in new Function kernel first
1186
  bool has_phi_kernel = false;
1187
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
1188
  auto kernel_key_map =
1189
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
1190
  for (auto& kernel : kernel_key_map) {
1191
    has_phi_kernel = true;
1192
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
1193 1194 1195 1196
      return true;
    }
  }

Y
Yu Yang 已提交
1197 1198
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
1212 1213 1214
      return true;
    }
  }
H
hong 已提交
1215

Y
Yu Yang 已提交
1216 1217 1218
  return false;
}

1219
struct OperatorWithKernel::CacheImpl {
1220
  static const char kNotAllowInferShapeCahce[];
1221
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
1222 1223 1224 1225 1226 1227 1228
                     RuntimeInferShapeContext* infer_shape_ctx,
                     const std::vector<phi::DenseTensor*>& tensors,
                     bool not_allow_infer_shape_cache)
      : kernel_ctx_(kernel_ctx),
        infer_shape_ctx_(infer_shape_ctx),
        tensors_(tensors),
        not_allow_infer_shape_cache_(not_allow_infer_shape_cache) {}
1229 1230 1231 1232 1233 1234

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
  bool NeedInferShape() {
    if (not_allow_infer_shape_cache_) return true;

    bool ret{false};
    if (last_ddims_.empty() || tensors_.empty()) ret = true;
    if (!ret) {
      CHECK_EQ(last_ddims_.size(), tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        if (tensors_[i]->dims() != last_ddims_[i]) {
          ret = true;
          break;
        }
      }
    }
    if (ret) {
      last_ddims_.resize(tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        last_ddims_[i] = tensors_[i]->dims();
      }
    }
    VLOG(3) << "need infer shape is " << ret;
    return ret;
  }

1259 1260 1261
 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
1262 1263 1264
  std::vector<phi::DenseTensor*> tensors_;
  bool not_allow_infer_shape_cache_;
  std::vector<phi::DDim> last_ddims_;
1265
};
1266 1267
const char OperatorWithKernel::CacheImpl::kNotAllowInferShapeCahce[] =
    "@NOT_ALLOW_INFERSHAPE_CACHE@";
1268

1269 1270
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1271
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1272 1273 1274
  if (tensor.memory_size() == 0) {
    return;
  }
1275 1276
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1277 1278
    return;
  }
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1291 1292
}

1293 1294 1295 1296
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1297 1298
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1311 1312
          op_kernels.begin(),
          op_kernels.end(),
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1324 1325
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1338 1339
          op_kernels.begin(),
          op_kernels.end(),
1340 1341 1342 1343 1344 1345 1346
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
Q
QingshuChen 已提交
1370 1371 1372 1373
                   paddle::platform::is_xpu_support_op(
                       type_,
                       framework::TransToPhiDataType(
                           kern_pair.first.data_type_));
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1385
bool OperatorWithKernel::SupportsMKLDNN(const phi::DataType data_type) const {
1386 1387 1388 1389 1390
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1391 1392
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
1393
                           kern_pair.first.dtype() == data_type;
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
1409
                   kern_pair.first.data_type_ == TransToProtoVarType(data_type);
1410 1411
          });
    }
1412
  }
1413 1414
}

1415
bool OperatorWithKernel::SupportsCUDNN(const phi::DataType data_type) const {
1416 1417
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
1418 1419 1420 1421 1422 1423 1424
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPUDNN &&
                           kern_pair.first.dtype() == data_type;
                  });
1425 1426 1427 1428 1429 1430 1431 1432
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
1433 1434
      proto::VarType::Type fluid_data_type =
          framework::TransToProtoVarType(data_type);
1435 1436 1437
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
1438
          [fluid_data_type](OpKernelMap::const_reference kern_pair) {
1439 1440
            return platform::is_gpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kCUDNN &&
1441
                   kern_pair.first.data_type_ == fluid_data_type;
1442 1443 1444 1445 1446
          });
    }
  }
}

1447
bool OperatorWithKernel::SupportsKernelType(
1448
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1449 1450
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1451 1452 1453 1454 1455
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1456
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1457
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1458 1459
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1460 1461
  }
#endif
1462 1463 1464 1465 1466

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
1467
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1468
            type_, framework::TransToPhiDataType(kernel_type.data_type_));
1469 1470 1471 1472 1473 1474 1475 1476 1477
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1478 1479
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1480 1481 1482
  }
#endif

1483
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1484 1485 1486 1487 1488
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1489
#ifdef PADDLE_WITH_MKLDNN
1490
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1491 1492 1493
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
1494
    tmp_kernel_type.data_layout_ = framework::DataLayout::ONEDNN;
1495 1496 1497 1498
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1499 1500 1501 1502 1503 1504 1505 1506
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kCUDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1507
  return kernel_iter != kernels.end();
1508 1509
}

1510
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
1511
                                         phi::DataType data_type) const {
1512
  return ctx.HasAttr("use_mkldnn") && ctx.Attr<bool>("use_mkldnn") &&
1513 1514
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1515 1516
}

1517 1518 1519 1520 1521
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
  return this->CanMKLDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1522
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
1523
                                        phi::DataType data_type) const {
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
  bool use_cudnn = ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn") &&
                   paddle::platform::is_gpu_place(ctx.GetPlace());

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
    use_cudnn &= (dev_ctx.cudnn_handle() != nullptr);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#if defined(PADDLE_WITH_CUDA)
1535
  if (use_cudnn && data_type == phi::DataType::BFLOAT16) {
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
    PADDLE_ENFORCE_GE(
        platform::DnnVersion(),
        8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA

  return use_cudnn && this->SupportsCUDNN(data_type);
}

1547 1548 1549 1550 1551
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                                        proto::VarType::Type data_type) const {
  return this->CanCUDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1552 1553 1554 1555 1556 1557 1558
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1559
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1560 1561
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1562
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1563
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1564 1565
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
template <typename T>
bool HasSameTensorType(phi::TensorBase* phi_tensor, Variable* var) {
  if (phi_tensor == nullptr && var == nullptr) {
    return true;
  } else if (phi_tensor != nullptr && var != nullptr) {
    if (T::classof(phi_tensor) && var->IsType<T>()) {
      return true;
    }
  }
  return false;
}

// TODO(YuanRisheng): We need collect all `need_prepare_phi_data_`
// into this function.
void OperatorWithKernel::CheckWhetherPreparePhiData(
    const VariableNameMap& innames,
    const VariableNameMap& outnames,
    const Scope& scope) const {
  if (run_phi_kernel_ && impl_ != nullptr) {
    const auto& phi_kernel_context = impl_->getKernelContext();
    size_t phi_tensor_index = 0;
    // Check each tensor in KernelContext, if there is a tensor that has
    // different type with variable. The PhiKernelContext need be reconstructed.
    // We use kernel_signature_'s output to retrieve tensor. Because the tensor
    // in phi_kernel_context stored in the order of kernel_signature_'s output.
    if (phi_kernel_context->OutputsSize() >= phi_tensor_index ||
        kernel_signature_ == nullptr) {
      need_prepare_phi_data_ = true;
      return;
    }

    const auto& phi_output_names = kernel_signature_->output_names;
    for (auto& phi_output_name : phi_output_names) {
      const auto& iter = outnames.find(phi_output_name);
      if (iter != outnames.end()) {
        for (auto& var_name : iter->second) {
          auto var_output = scope.FindVar(var_name);
          auto phi_output =
              phi_kernel_context->MutableOutputAt<phi::TensorBase>(
                  phi_tensor_index);
          if (phi_output == nullptr) {
            continue;
          }
          if (!(HasSameTensorType<phi::DenseTensor>(phi_output, var_output) ||
                HasSameTensorType<phi::SparseCooTensor>(phi_output,
                                                        var_output) ||
                HasSameTensorType<framework::Strings>(phi_output,
                                                      var_output))) {
            need_prepare_phi_data_ = true;
          }
          phi_tensor_index++;
        }
      }
    }
  }
}

L
luotao1 已提交
1623 1624
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1625 1626
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1627 1628 1629
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1630
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1631
    all_kernels_must_compute_runtime_shape_ = true;
C
csy0225 已提交
1632
  const Scope* cur_scope = &scope;
1633
  CheckWhetherPreparePhiData(Inputs(), Outputs(), scope);
1634
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1635 1636
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1637 1638
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
1639
    if (!all_kernels_must_compute_runtime_shape_ && impl_->NeedInferShape()) {
1640
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
1641
    }
1642
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1643
  } else {
C
csy0225 已提交
1644
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
1645
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
C
csy0225 已提交
1646 1647 1648 1649
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1650
    }
1651
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1652 1653 1654 1655 1656 1657
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1658
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1659
  bool fallback_to_cpu = false;
1660
  auto* dev_ctx = pool.Get(place);
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1672 1673 1674 1675
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
H
HongyuJia 已提交
1676
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1677

1678 1679 1680 1681 1682 1683
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1684 1685 1686 1687 1688
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1689 1690
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1691
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1692
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1693 1694 1695 1696 1697 1698
      if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
        kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
      } else {
        kernel_signature_.reset(new phi::KernelSignature(
            std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      }
1699

1700 1701
      VLOG(6) << *kernel_signature_.get();
      phi_kernel_name = kernel_signature_->name;
1702 1703 1704
      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);
1705 1706 1707 1708 1709 1710 1711
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1712
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1713
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1728
                  << phi_kernel_name
1729
                  << ", using_kernel_key:" << *kernel_type_.get();
1730
          auto try_phi_kernel_key =
1731
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1732 1733
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1734 1735
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1736
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1737 1738 1739
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1740
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1741 1742 1743 1744
          }
        }
      }
#endif
1745 1746
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1747
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1748
              phi_kernel_name, phi_kernel_key)));
1749

1750
      if (phi_kernel_->IsValid()) {
1751
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
1752 1753
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1754
      } else {
1755 1756
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `"
                << phi_kernel_name << "` not found.";
1757
      }
1758
    } else {
1759
      phi_kernel_name = kernel_signature_->name;
1760
// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
1761
// LibraryType::kMKLDNN and data_layout_ = DataLayout::ONEDNN. But the default
1762
// values are kPlain, so we need to modify the library_type and data_layout_
1763 1764 1765 1766
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1767
#ifdef PADDLE_WITH_MKLDNN
1768 1769
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1770 1771
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
1772
        kernel_type_->data_layout_ = framework::DataLayout::ONEDNN;
1773 1774 1775
      }
#endif

1776 1777 1778 1779 1780 1781
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (this->CanCUDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kCUDNN;
      }
#endif

1782 1783 1784
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1785 1786 1787 1788
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1789
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1790
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1804
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1805
                  << phi_kernel_name
1806
                  << ", using_kernel_key:" << *kernel_type_.get();
1807
          auto try_phi_kernel_key =
1808
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1809 1810
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1811
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1812
            VLOG(3) << "modify XPU KP kernel in static graph: "
1813
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1814 1815 1816
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1817
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1818 1819 1820 1821
          }
        }
      }
#endif
1822
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1823
    }
1824 1825 1826 1827

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1828
#if defined(PADDLE_WITH_XPU)
1829 1830
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
Q
QingshuChen 已提交
1831 1832
        !paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1833
#endif
1834 1835 1836 1837
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
1838
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1839
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1840 1841 1842 1843 1844 1845
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1846 1847 1848 1849 1850 1851
    bool in_custom_back_list = false;
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    in_custom_back_list =
        phi::backends::custom_device::is_in_custom_black_list(phi_kernel_name);
#endif
    if (phi_kernel_->IsValid() && !in_custom_back_list
1852
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1853 1854
        && !is_xpu_unsupport
#endif
1855 1856 1857
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1858
    ) {
1859
      run_phi_kernel_ = true;
1860 1861 1862
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1863 1864 1865 1866 1867 1868 1869 1870 1871

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif
1872 1873 1874
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1875
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1876
          || is_xpu_unsupport
1877
#endif
1878 1879
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
1880 1881 1882
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
          || in_custom_back_list
1883
#endif
1884
      ) {
1885
        fallback_to_cpu = true;
1886 1887 1888
        if (in_custom_back_list) {
          VLOG(3) << "fluid in black list: " << phi_kernel_name;
        }
H
HongyuJia 已提交
1889
        auto phi_cpu_kernel_key = FallBackToCpu(phi_kernel_key, *this);
1890
        phi_kernel_.reset(
1891
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1892
                phi_kernel_name, phi_cpu_kernel_key)));
1893 1894

        dev_ctx = pool.Get(platform::CPUPlace());
1895
        if (phi_kernel_->IsValid()) {
1896
          VLOG(6) << "Static graph mode PrepareImpl - kernel name: "
1897 1898
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1899
          run_phi_kernel_ = true;
1900 1901
        }
      }
1902 1903
    }
  }
1904
  if (!run_phi_kernel_) {
1905 1906
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1907
      dev_ctx = pool.Get(kernel_type_->place_);
1908
    }
1909 1910
  }

Y
yuyang18 已提交
1911 1912
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1913 1914
  Scope* transfer_scope = nullptr;
  {
1915
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1916
                                       platform::TracerEventType::OperatorInner,
1917 1918
                                       1,
                                       platform::EventRole::kInnerOp);
1919
    if (need_prepare_data_) {
1920 1921 1922 1923 1924 1925
      transfer_scope =
          PrepareData(scope,
                      framework::TransOpKernelTypeToPhiKernelKey(*kernel_type_),
                      &transfered_inplace_vars,
                      runtime_ctx,
                      dev_ctx->GetPlace());
1926
    }
1927
  }
Y
yuyang18 已提交
1928 1929 1930 1931
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1932
  if (!all_kernels_must_compute_runtime_shape_) {
1933
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1934
                                       platform::TracerEventType::OperatorInner,
1935 1936
                                       1,
                                       platform::EventRole::kInnerOp);
1937
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1938
    this->Info().infer_shape_(&infer_shape_ctx);
1939 1940
    record_event.End();
    platform::RecordOpInfoSupplement(
1941
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx, Id());
1942
  }
1943 1944 1945 1946 1947

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1948 1949
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1950
  {
1951
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1952
                                       platform::TracerEventType::OperatorInner,
1953 1954
                                       1,
                                       platform::EventRole::kInnerOp);
1955 1956
    if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                               phi::KernelRegisteredType::FUNCTION) {
1957
      phi::KernelContext phi_kernel_context;
1958 1959
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
        // TODO(inference): Now we only suppor dense_tensor cache, we may be
        // support ScalarTensor, SparseTensor in future.
        bool all_dense_tensor_input_{true};
        for (auto& iter : Inputs()) {
          for (auto& name : iter.second) {
            all_dense_tensor_input_ &=
                scope.FindVar(name)->IsType<phi::DenseTensor>();
          }
        }

        std::vector<phi::DenseTensor*> tensors;
        if (all_dense_tensor_input_) {
          for (auto& iter : Inputs()) {
            for (auto& name : iter.second) {
              auto* t = scope.FindVar(name)->GetMutable<phi::DenseTensor>();
              tensors.push_back(t);
            }
          }
        }

        impl_.reset(
1981
            new CacheImpl(new phi::KernelContext(),
1982 1983 1984
                          new RuntimeInferShapeContext(*this, *runtime_ctx),
                          tensors,
                          HasAttr(CacheImpl::kNotAllowInferShapeCahce)));
1985
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1986
        (*phi_kernel_)(impl_->getKernelContext());
1987
      } else {
1988
        phi::KernelContext phi_kernel_context;
1989 1990
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1991 1992
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1993
      }
1994 1995 1996 1997 1998
    } else if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                                      phi::KernelRegisteredType::STRUCTURE) {
      ExecutionContext execution_context(
          *this, exec_scope, *dev_ctx, *runtime_ctx);
      (*phi_kernel_)(&execution_context);
1999 2000 2001 2002
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
2003 2004 2005
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
2006
  }
D
dzhwinter 已提交
2007

Y
yuyang18 已提交
2008
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
2009
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
2010
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
2011
  }
2012 2013 2014 2015 2016 2017 2018

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

2019 2020 2021 2022 2023 2024 2025 2026
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
2027

D
dzhwinter 已提交
2028
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
2029
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
2030
    dev_ctx->Wait();
2031 2032
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
2033 2034
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
2035
  }
C
chengduoZH 已提交
2036 2037

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
2038
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
2039
  }
2040 2041 2042 2043

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
C
csy0225 已提交
2044 2045
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
2046
  }
Q
Qiao Longfei 已提交
2047
}
X
Xin Pan 已提交
2048

2049 2050
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
2051 2052 2053
  phi::KernelKey phi_kernel_key = this->GetExpectedKernelType(ctx);
  auto expected_kernel_key =
      framework::TransPhiKernelKeyToOpKernelType(phi_kernel_key);
2054 2055 2056

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
2057
// data_layout_ of expected_kernel_key need to be adjusted. There are three
2058
// statements in if condition:
2059 2060 2061
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
2062
#ifdef PADDLE_WITH_MKLDNN
2063
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
2064 2065
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
2066
    expected_kernel_key.data_layout_ = framework::DataLayout::ONEDNN;
2067 2068 2069
  }
#endif

2070 2071 2072 2073 2074 2075
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN;
  }
#endif

2076 2077 2078
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
2089 2090 2091
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
2092 2093
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2094
      if (SupportGPU()) {
2095
        auto& dev_ctx = ctx.device_context();
2096
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2097 2098
      }
#endif
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
2118 2119 2120
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
2121
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2122 2123 2124
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
2125 2126
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
2153 2154 2155
      }
    }
  }
2156 2157 2158 2159 2160 2161

  if (platform::places_are_same_class(expected_kernel_key.place_,
                                      ctx.GetPlace())) {
    expected_kernel_key.place_ = ctx.GetPlace();
  }

C
cc 已提交
2162 2163
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
2164 2165 2166
  return expected_kernel_key;
}

2167
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2168
    const ExecutionContext& ctx) const {
2169 2170 2171 2172 2173 2174 2175
  std::string phi_kernel_name;
  if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
    kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
  } else {
    kernel_signature_.reset(
        new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  }
2176
  VLOG(6) << *kernel_signature_.get();
2177
  phi_kernel_name = kernel_signature_->name;
2178 2179 2180
  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2181 2182 2183
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2184

2185
  if (phi_kernel_->IsValid()) {
2186 2187
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
            << phi_kernel_name << " | kernel key: " << phi_kernel_key
2188
            << " | kernel: " << *phi_kernel_;
2189
  } else {
2190
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `" << phi_kernel_name
2191 2192
            << "` not found.";
  }
2193
  return phi_kernel_key;
2194 2195 2196 2197 2198 2199 2200
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2201 2202
      kernels_iter,
      all_op_kernels.end(),
2203
      platform::errors::Unimplemented(
2204 2205 2206 2207 2208 2209
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2210 2211

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2212

L
Liu Yiqun 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2222
#endif
2223 2224

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2225
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2226
      (kernel_iter == kernels.end() ||
Q
QingshuChen 已提交
2227 2228 2229
       !paddle::platform::is_xpu_support_op(
           type_,
           framework::TransToPhiDataType(expected_kernel_key.data_type_)))) {
2230
    VLOG(3) << "fluid missing XPU kernel: " << type_
2231 2232 2233 2234 2235
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2236
#endif
L
Liu-xiandong 已提交
2237 2238

#ifdef PADDLE_WITH_XPU_KP
2239 2240 2241
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
2242
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
2243 2244
            type_,
            framework::TransToPhiDataType(expected_kernel_key.data_type_));
2245 2246 2247
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2248
      VLOG(3) << "fluid xpu_kp using rt mode ";
2249 2250
    }
    if (use_xpu_kp_kernel_debug) {
2251
      VLOG(3) << "fluid xpu_kp using debug mode ";
2252 2253 2254
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2255 2256
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2257 2258
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2259
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2260
      // if the fluid do not register related kernel, it can't work and have
2261 2262 2263 2264 2265 2266 2267
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2268
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2269 2270
                << ", using_kernel_key:" << expected_kernel_key;
      }
2271
    }
Q
QingshuChen 已提交
2272 2273
    bool is_xpu_unsupport = (!paddle::platform::is_xpu_support_op(
        type_, framework::TransToPhiDataType(expected_kernel_key.data_type_)));
2274 2275
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2276
      VLOG(3) << "fluid missing XPU kernel: " << type_
2277 2278 2279 2280 2281
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2282 2283 2284
  }
#endif

A
Allen Guo 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2295 2296
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2297
      platform::is_npu_place(expected_kernel_key.place_)) {
2298 2299 2300 2301 2302 2303
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2304 2305 2306
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2307
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2308 2309 2310
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2322 2323 2324
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2325
#endif
2326 2327 2328 2329 2330 2331
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2332

2333 2334 2335 2336 2337
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2338 2339
}

Y
yuyang18 已提交
2340
void OperatorWithKernel::TransferInplaceVarsBack(
2341 2342
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2343 2344
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2345
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2346
    auto* origin_var = scope.FindVar(var_name);
2347 2348 2349
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2350
    auto* original_tensor =
C
chengduo 已提交
2351
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2352
    auto* var = transfer_scope.FindVar(var_name);
2353 2354 2355
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2356
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2357
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2358
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2359 2360 2361 2362 2363
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2364 2365 2366
  }
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2396
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2416
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2427
      phi::DenseTensor out;
2428 2429 2430 2431 2432 2433
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2434
Scope* OperatorWithKernel::PrepareData(
2435
    const Scope& scope,
2436
    const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
2437
    std::vector<std::string>* transfered_inplace_vars,
2438 2439
    RuntimeContext* ctx,
    const phi::Place& place) const {
Y
yuyang18 已提交
2440
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2441

2442
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2443 2444 2445 2446
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2447 2448
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2449 2450 2451
    }
  }

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
  auto has_infer_varkernel_fn =
      (run_phi_kernel_ && phi_kernel_->get_kerneltype_forvar_fn_ != nullptr);
  phi::AttributeMap infer_attrs{};
  auto fluid_attrs = Attrs();
  phi::GetKernelTypeForVarContext infer_varkernel_context =
      BuildGetKernelTypeForVarContext(expected_kernel_key,
                                      fluid_attrs,
                                      &infer_attrs,
                                      has_infer_varkernel_fn);

2462 2463 2464 2465 2466 2467 2468 2469 2470
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2471

Y
yuyang18 已提交
2472
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2473
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2474 2475 2476
        continue;
      }

C
chengduo 已提交
2477
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2478

2479
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2480 2481 2482 2483 2484 2485 2486
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
2487
        // oneDNN shape of Var may differ from kNHWC Var
2488 2489
        // In such situation corressponding resized Var
        // has to be created and registered
2490
        if ((tensor_in->layout() == DataLayout::ONEDNN) &&
2491
            (var->IsType<phi::DenseTensor>() == true) &&
2492
            (expected_kernel_key.layout() != DataLayout::ONEDNN) &&
2493 2494
            (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
             DataLayout::kNHWC) &&
2495
            (tensor_in->dims().size() >= 3)) {
2496
          // Mixed execution : oneDNN and GPU is not supported!
2497 2498 2499 2500
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2501
          in_vars->at(i) = trans_var;
2502
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2503
          out->Resize(tensor_in->dims());
2504
          phi::funcs::MatchShapeToLayout(
2505
              out, tensor_in->layout(), DataLayout::kNHWC);
2506
          VLOG(7) << "Created reshaped dummy input based on oneDNN "
2507
                     "phi::DenseTensor , "
2508
                     "but kNHWC layout"
2509
                  << in_name << " in Operator " << type_;
2510
        } else {
2511 2512
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2513 2514 2515 2516 2517
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2518 2519 2520 2521
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2522 2523
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
2524 2525 2526 2527 2528 2529 2530
      if (has_infer_varkernel_fn) {
        infer_varkernel_context.SetVarName(const_cast<std::string*>(&in_name));
        infer_varkernel_context.SetDenseTensor(
            const_cast<phi::DenseTensor*>(tensor_in));
        kernel_type_for_var =
            phi_kernel_->get_kerneltype_forvar_fn_(&infer_varkernel_context);
      }
2531
      bool need_trans_dtype =
2532
          NeedTransformDataType(expected_kernel_key, kernel_type_for_var);
2533
      bool need_trans_layout = NeedTransformLayout(
2534
          kernel_type_for_var.layout(), expected_kernel_key.layout());
2535 2536
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
2537 2538
            backends_are_same_class(kernel_type_for_var.backend(),
                                    expected_kernel_key.backend())) {
2539 2540 2541
          continue;
        }
      }
Y
yuyang18 已提交
2542

2543
      std::unique_ptr<phi::KernelKey> new_expected_kernel_key = nullptr;
2544 2545
      if (run_phi_kernel_ && in_def != nullptr &&
          in_def->backend != phi::Backend::ALL_BACKEND) {
2546 2547
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
2548 2549 2550 2551 2552 2553
             !(in_def->backend == phi::Backend::GPUDNN &&
               tensor_backend == phi::Backend::GPU) &&
             !(in_def->backend == phi::Backend::KPS &&
               tensor_backend == phi::Backend::XPU) &&
             !(in_def->backend == phi::Backend::ONEDNN &&
               tensor_backend == phi::Backend::CPU)) ||
2554
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
2555 2556 2557 2558
          new_expected_kernel_key =
              std::make_unique<phi::KernelKey>(in_def->backend,
                                               expected_kernel_key.layout(),
                                               expected_kernel_key.dtype());
2559 2560 2561 2562 2563 2564 2565
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2566 2567
      }

M
minqiyang 已提交
2568
      VLOG(3) << "Transform Variable " << var_name << " from "
2569 2570 2571
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2572

H
HongyuJia 已提交
2573 2574 2575
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2576
      // We use a thread_local cache to fix that issue, the key in the cache is
2577 2578 2579 2580 2581
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2582 2583
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2584
      // variables, that behavior a lot different.
2585 2586 2587 2588 2589 2590
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2591 2592
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
2593 2594 2595 2596
          if (kernel_type_for_var.backend() == phi::Backend::GPU ||
              kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
              new_expected_kernel_key->backend() == phi::Backend::GPU ||
              new_expected_kernel_key->backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2597
            new_scope = TryCreateTransferScope(
2598 2599 2600
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
2601 2602 2603 2604
        } else if (kernel_type_for_var.backend() == phi::Backend::GPU ||
                   kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
                   expected_kernel_key.backend() == phi::Backend::GPU ||
                   expected_kernel_key.backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2605
          new_scope = TryCreateTransferScope(
2606 2607 2608
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2609
      }
2610

2611
      if (!new_scope) {
Y
yuyang18 已提交
2612 2613
        new_scope = &scope.NewScope();
      }
C
csy0225 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2624 2625

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2626
      auto* trans_var = new_scope->Var(var_name);
2627
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2628 2629 2630 2631 2632 2633 2634

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2635
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2645
      phi::DenseTensor out;
2646 2647 2648 2649 2650 2651 2652 2653 2654
      TransformData(
          new_expected_kernel_key ? *new_expected_kernel_key
                                  : expected_kernel_key,
          kernel_type_for_var,
          *tensor_in,
          &out,
          new_expected_kernel_key
              ? phi::TransToPhiPlace(new_expected_kernel_key->backend())
              : place);
Y
yuyang18 已提交
2655 2656
      SetTensorToVariable(*var, out, trans_var);
    }
2657 2658
  };

2659 2660
  if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                             phi::KernelRegisteredType::FUNCTION) {
2661
    const auto& input_names = kernel_signature_->input_names;
2662
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
2679 2680 2681 2682 2683 2684 2685 2686 2687

      phi::TensorArgDef in_def = input_defs.at(i);
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      // When the backend of input tensor arg_def is CUSTOM, we need to set it
      // to the actual backend by expected_kernel_key.
      if (in_def.backend == phi::Backend::CUSTOM) {
        in_def.SetBackend(expected_kernel_key.backend());
      }
#endif
2688 2689
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2706 2707 2708 2709 2710 2711 2712 2713 2714
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2715
  }
L
Leo Chen 已提交
2716

C
csy0225 已提交
2717 2718 2719 2720
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
2721 2722
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
C
csy0225 已提交
2723

W
wenbin 已提交
2724 2725 2726 2727
  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
C
csy0225 已提交
2728
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2729 2730
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2731 2732 2733

  return new_scope;
}
Q
Qiao Longfei 已提交
2734

2735
void OperatorWithKernel::ParseInputDataType(
2736 2737
    const Variable* var,
    const std::string& name,
2738 2739
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2740 2741 2742
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2743 2744
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2745 2746
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      PADDLE_ENFORCE_EQ(
          sp_t->initialized(),
          true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(),
                                            name));
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2773 2774
    const std::vector<Variable*>& vars,
    const std::string& name,
2775
    proto::VarType::Type* data_type) const {
2776
  proto::VarType::Type default_data_type =
2777 2778 2779 2780
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2781 2782 2783
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2784 2785
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2809
      } else if (var->IsType<LoDTensorArray>()) {
2810 2811 2812 2813
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2814 2815
          }
        }
2816 2817
      }
      if (t != nullptr) {
2818 2819 2820 2821 2822 2823 2824
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2825 2826
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2827 2828 2829 2830 2831 2832 2833
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2834 2835 2836
                           Type(),
                           name,
                           DataTypeToString(tmp),
2837
                           DataTypeToString(*data_type)));
2838 2839 2840 2841 2842 2843
        *data_type = tmp;
      }
    }
  }
}

2844
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2845
    const ExecutionContext& ctx) const {
2846 2847 2848
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2849

2850
  for (auto* name : ctx.InNameList()) {
2851 2852 2853 2854 2855
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2856
  }
2857
  PADDLE_ENFORCE_NE(
2858 2859
      data_type,
      dafault_data_type,
2860 2861
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2862 2863 2864 2865 2866 2867 2868 2869
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2870 2871 2872 2873 2874
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2875
  PADDLE_ENFORCE_NE(
2876 2877
      data_type,
      dafault_data_type,
2878 2879
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2880
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2881
          "LoDTensorArray.",
2882 2883
          name,
          Type()));
2884
  return data_type;
Y
Yu Yang 已提交
2885
}
2886

2887
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2900 2901 2902
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2903 2904
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2905 2906 2907 2908
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2909 2910 2911 2912 2913 2914 2915
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2916
      platform::errors::InvalidArgument(
2917 2918 2919 2920 2921
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2933 2934
    const ExecutionContext& ctx,
    const std::string& name1,
2935 2936 2937 2938 2939 2940
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2941 2942
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2943 2944 2945 2946 2947 2948 2949

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2950
phi::KernelKey OperatorWithKernel::GetExpectedKernelType(
2951
    const ExecutionContext& ctx) const {
2952
  return phi::KernelKey(IndicateDataType(ctx), ctx.GetPlace());
2953 2954
}

2955
phi::KernelKey OperatorWithKernel::GetKernelTypeForVar(
2956
    const std::string& var_name,
2957
    const phi::DenseTensor& tensor,
2958
    const phi::KernelKey& expected_kernel_type) const {
2959 2960 2961 2962
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
2963
  if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
2964
      (tensor.layout() != phi::DataLayout::ONEDNN) &&
2965 2966
      phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
          phi::DataLayout::kNHWC) {
2967 2968
    return phi::KernelKey(
        tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
2969 2970
  }
#endif
2971 2972
  return phi::KernelKey(
      tensor.place(), tensor.layout(), expected_kernel_type.dtype());
2973 2974
}

2975
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2976
    const ExecutionContext& ctx) const {
2977
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2978
  if (arg_map_fn_ == nullptr) {
2979 2980 2981 2982
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2983 2984 2985
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2986 2987 2988 2989
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2990 2991
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2992 2993
}

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

3053
void OperatorWithKernel::BuildPhiKernelContext(
3054 3055
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
3056 3057
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
3058

3059 3060 3061
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
3062

3063 3064 3065
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
3066

3067 3068 3069 3070 3071 3072 3073 3074 3075
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

3076 3077
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
3078 3079 3080
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
3081 3082
                        input_names.size(),
                        input_defs.size()));
3083

3084 3085
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
3086 3087 3088
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
3089 3090
                        output_names.size(),
                        output_defs.size()));
3091

3092 3093
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
3094 3095 3096
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
3097 3098
                        attr_names.size(),
                        attr_defs.size()));
3099
  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
3100
    auto it = ctx.inputs.find(input_names[i]);
3101 3102 3103

    // calcute the start and end index of the input tensors
    size_t start_idx =
3104
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
3105
    // deal with optional here
3106
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
3107
        (input_defs[i].type_index ==
3108
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
3109
         input_defs[i].type_index ==
3110
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
3111
         input_defs[i].type_index ==
3112 3113
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
3114
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
3115
      auto end_idx = start_idx + 1;
3116 3117
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
3118

H
hong 已提交
3119 3120 3121 3122
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
3123
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
3124
      const phi::TensorBase* tensor_in = nullptr;
3125
      auto* var = ins_vector[offset];
3126 3127
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
3128
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3129 3130
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
3131
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3132 3133 3134
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3135
      } else if (var->IsType<framework::LoDTensorArray>()) {
3136
        need_prepare_phi_data_ = true;
3137 3138
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3139 3140 3141
      } else if (var->IsType<framework::Vocab>()) {
        tensor_in = &(var->Get<framework::Vocab>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3142 3143 3144
      } else if (var->IsType<framework::FeedList>()) {
        tensor_in = &(var->Get<framework::FeedList>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3145 3146 3147 3148
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
3149
      }
3150
    }
3151
    // Note: here cannot deal with vector<LoDTensorArray> input
3152
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
3153
  }
3154
  VLOG(4) << "Done inputs";
3155
  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
3156
    auto it = ctx.outputs.find(output_names[i]);
3157
    size_t start_idx =
3158
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
3159 3160

    if (it == ctx.outputs.end() || it->second.empty()) {
3161
      VLOG(4) << "Output " << output_names[i] << " not found";
H
hong 已提交
3162 3163 3164 3165
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
3166
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
3167
      auto end_idx = start_idx + 1;
3168 3169
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
3170 3171 3172 3173
      continue;
    }
    auto& outs_vector = it->second;

3174
    size_t end_idx = start_idx + outs_vector.size();
3175 3176

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
3177
      phi::TensorBase* tensor_out = nullptr;
3178
      auto* var = outs_vector[offset];
3179
      if (var) {
3180 3181
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
3182
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3183 3184
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
3185
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3186 3187 3188
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3189
        } else if (var->template IsType<framework::LoDTensorArray>()) {
3190
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
3191 3192
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
3193
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3194 3195 3196
        } else if (var->template IsType<framework::Strings>()) {
          tensor_out = var->template GetMutable<framework::Strings>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3197 3198 3199 3200 3201 3202 3203
        } else if (var->template IsType<paddle::framework::RawTensor>()) {
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (!var->IsInitialized()) {
          // The following is for RAW type of var
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3204 3205 3206 3207 3208
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
3209
      } else {
3210
        VLOG(4) << "Output " << output_names[i] << " is nullptr";
3211
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3212
      }
3213
    }
3214 3215
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
3216
  }
3217
  VLOG(4) << "Done outputs";
3218
  for (size_t i = 0; i < attr_names.size(); ++i) {
3219 3220
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
3221 3222
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
3223 3224 3225 3226 3227 3228 3229
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
3230
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3231
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
3232
              break;
3233 3234 3235 3236
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
3237
            case proto::AttrType::INT:
3238
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3239
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
3240
              break;
3241 3242 3243 3244
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
3245
            case proto::AttrType::STRING:
3246
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
3247
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
3248
              break;
3249 3250 3251 3252
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
3253 3254 3255 3256 3257 3258 3259
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
3260
          need_prepare_phi_data_ = true;
3261
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
3262 3263
          phi_kernel_context->EmplaceBackAttr(
              std::move(framework::MakePhiScalarFromVar(*ins_vector.front())));
3264
        }
3265 3266 3267 3268 3269
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
3270
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3271
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
3272 3273
              break;
            case proto::AttrType::LONGS:
3274
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3275
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
3276 3277
              break;
            case proto::AttrType::INT:
3278
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3279
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
3280 3281
              break;
            case proto::AttrType::LONG:
3282
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3283
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
3284 3285 3286 3287 3288 3289 3290 3291
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
3292
          need_prepare_phi_data_ = true;
3293 3294
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
3295
            phi_kernel_context->EmplaceBackAttr(std::move(
3296
                framework::MakePhiIntArrayFromVar(*ins_vector.front())));
3297
          } else {  // ShapeTensorList
3298 3299
            phi_kernel_context->EmplaceBackAttr(
                std::move(framework::MakePhiIntArrayFromVarList(ins_vector)));
3300
          }
3301
        }
3302
        break;
3303

3304 3305
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3306 3307
            attr_iter,
            Attrs().end(),
3308 3309 3310 3311 3312 3313
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3314
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3315 3316 3317 3318 3319
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3320
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3321 3322 3323
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3324
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3325 3326 3327 3328 3329
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3330
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3331 3332 3333
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3334
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3335 3336 3337 3338 3339
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3340
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3341 3342 3343
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3344
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3345 3346 3347 3348 3349
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3350
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3351 3352 3353
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3354
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3355 3356 3357 3358 3359
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3360
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3361 3362 3363 3364 3365
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3366 3367
                attr_names[i]));
        }
3368 3369
      } break;
      default: {
3370
        if (attr_iter == Attrs().end()) {
3371
          // TODO(chenweihang): remove this backup searching later
3372 3373 3374 3375 3376 3377 3378 3379 3380
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3381 3382
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3383
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3384
                PADDLE_GET_CONST(float, attr_iter->second));
3385
            break;
3386 3387 3388 3389
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3390
          case phi::AttributeType::INT32:
3391
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3392
                PADDLE_GET_CONST(int, attr_iter->second));
3393 3394
            break;
          case phi::AttributeType::BOOL:
3395
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3396
                PADDLE_GET_CONST(bool, attr_iter->second));
3397 3398
            break;
          case phi::AttributeType::INT64:
3399
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3400
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3401 3402
            break;
          case phi::AttributeType::INT32S:
3403
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3404
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3405
            break;
3406 3407 3408 3409
          case phi::AttributeType::BOOLS:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second));
            break;
3410 3411 3412
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3413
                    PADDLE_GET_CONST(int, attr_iter->second)));
3414
            phi_kernel_context->EmplaceBackAttr(data_type);
3415 3416
          } break;
          case phi::AttributeType::STRING:
3417
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3418
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3419 3420 3421 3422
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3423
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3424
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3425 3426 3427
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3428
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3429 3430
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3431
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3442
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3443
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3444 3445
            break;
          case phi::AttributeType::STRINGS:
3446
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3447
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3448 3449 3450 3451 3452 3453
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3454
        }
3455 3456 3457
      }
    }
  }
3458
  VLOG(4) << "Done attributes";
3459

3460 3461 3462 3463 3464 3465
// Clear All old attrs before add new attrs,
// because sometimes old attrs may be misused.
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->ClearDnnAttr();
3466
    if (!RuntimeAttrs().empty()) need_prepare_phi_data_ = true;
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
  }
#endif

  // Note(YuanRisheng): Now, we can't open code below.
  // Because some unittest run OLD dygraph and ExtraAttr is not supported in OLD
  // dygraph. So, here we use trick that dev_ctx is a global object. We can
  // store ExtraAttr in static graph and when unittest run OLD dygraph, it can
  // obtain these ExtraAttr. We can open this code when OLD dygraph is no longer
  // used.
  /*
  #if defined(PADDLE_WITH_CUDA)
    if(phi::GPUContext::classof(dev_ctx)) {
      phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
      gpu_dnn_ctx->ClearDnnAttr();
    }
  #endif
  */
3484 3485 3486 3487 3488 3489
  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3490
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3491 3492 3493 3494 3495 3496
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
S
Shuangchi He 已提交
3497
  // which increases the cost of development and understanding, so we
3498 3499 3500 3501 3502 3503 3504
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3505
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
      if (it == ctx.inputs.end() || it->second.size() == 0) {
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3540 3541
}

Q
Qiao Longfei 已提交
3542
}  // namespace framework
L
liaogang 已提交
3543
}  // namespace paddle