operator.cc 134.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18
#include <unordered_set>
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/raw_tensor.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/operators/isfinite_op.h"
33
#include "paddle/fluid/operators/ops_extra_info.h"
34
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/platform/enforce.h"
36
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
37
#include "paddle/fluid/platform/profiler/event_tracing.h"
38
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
39
#include "paddle/phi/common/int_array.h"
40
#include "paddle/phi/common/scalar.h"
41
#include "paddle/phi/core/ddim.h"
42
#include "paddle/phi/core/kernel_context.h"
43 44
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
45

46
namespace phi {
47
class DenseTensor;
48
}  // namespace phi
49

50
#ifdef PADDLE_WITH_XPU
51 52
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
53
#endif
Q
Qiao Longfei 已提交
54

55 56
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
57
#include "paddle/fluid/platform/mkldnn_op_list.h"
58 59
#endif

F
fwenguang 已提交
60 61 62 63
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

64 65 66 67
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#endif

D
dzhwinter 已提交
68
DECLARE_bool(benchmark);
69
DECLARE_bool(check_nan_inf);
70
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
71
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
72
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
73

Q
Qiao Longfei 已提交
74 75 76
namespace paddle {
namespace framework {

77 78 79 80 81 82
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
83

84
static DDim GetDimsDebug(const Scope& scope,
85
                         const std::string& name,
86
                         bool get_actual_dim = false) {
87
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
88 89
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
90 91
  }

92 93
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
94
    return tensor.dims();
95
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
96
    if (get_actual_dim) {
97
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
98
    } else {
99
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
100
    }
S
Steffy-zxf 已提交
101 102
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
103 104 105 106 107
  } else {
    return DDim({-1});
  }
}

108
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
109 110 111 112 113
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

114
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
115 116 117 118
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
119

120 121
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
122
    if (UNLIKELY(!tensor.IsInitialized())) {
123 124
      return "";
    }
125
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
126 127
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
128 129 130
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
131
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
132
    }
S
Steffy-zxf 已提交
133 134
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
135 136 137 138 139
  } else {
    return "";
  }
}

140
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
141 142 143 144 145 146 147 148 149 150
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

151 152
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
153 154 155 156
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
157 158
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
159 160 161 162 163 164 165 166 167 168
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

169
static int GetRowSize(const Scope& scope, const std::string& name) {
170 171 172 173 174
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

175 176
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
177 178 179 180 181
  }

  return -1;
}

182
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
183 184 185 186 187 188 189
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

190 191
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
192
    return tensor.lod();
Q
Qiao Longfei 已提交
193 194 195 196 197
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
198 199 200 201 202
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
203
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
204 205 206 207 208 209
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
210
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
211 212 213 214 215 216
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

217
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
218 219 220
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
221
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
222 223 224 225
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
226
#else
227
      auto dev_id = place.device;
P
peizhilin 已提交
228
      platform::SetDeviceId(dev_id);
229 230 231
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
232 233 234 235
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
236
#else
237
      auto dev_id = place.device;
238
      platform::SetXPUDeviceId(dev_id);
239 240 241 242 243 244 245 246
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
247
      auto dev_id = place.device;
248
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
249 250 251 252 253 254 255 256
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
257
      auto dev_id = place.device;
F
fwenguang 已提交
258
      platform::SetMLUDeviceId(dev_id);
259 260 261 262 263 264 265 266
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
267
      phi::DeviceManager::SetDevice(place);
268
#endif
P
peizhilin 已提交
269
    }
P
peizhilin 已提交
270

271
    {
272 273 274
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
275
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
276
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
277 278
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
279 280
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
281
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
282
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
283 284
      RunImpl(scope, place);
    }
285

Z
Zhang Ting 已提交
286
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
287
  } catch (platform::EnforceNotMet& exception) {
288
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
289
    throw std::move(exception);
290 291 292 293 294 295
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
296
  } catch (...) {
297
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
298
    std::rethrow_exception(std::current_exception());
299
  }
300 301
}

302
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
303
  return inputs_.find(name) != inputs_.end();
304 305
}

306
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
307
  auto& ins = Inputs(name);
308
  PADDLE_ENFORCE_LE(
309 310
      ins.size(),
      1UL,
311
      platform::errors::InvalidArgument(
312 313
          "Operator %s's input %s should contain only one variable.",
          type_,
314
          name));
Y
Yu Yang 已提交
315
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
316 317
}

Y
Yu Yang 已提交
318 319
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
320
  auto it = inputs_.find(name);
321
  PADDLE_ENFORCE_NE(
322 323 324 325
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
326
  return it->second;
Y
Yan Chunwei 已提交
327 328
}

329
bool OperatorBase::HasOutputs(const std::string& name) const {
330
  if (outputs_.find(name) != outputs_.end()) {
331 332 333 334 335 336
    return true;
  } else {
    return false;
  }
}

337
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
338
  auto& outs = Outputs(name);
339
  PADDLE_ENFORCE_LE(
340 341
      outs.size(),
      1UL,
342
      platform::errors::InvalidArgument(
343 344
          "Operator %s's output %s should contain only one variable.",
          type_,
345
          name));
Y
Yu Yang 已提交
346
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
347 348
}

Y
Yu Yang 已提交
349 350
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
351
  auto it = outputs_.find(name);
352
  PADDLE_ENFORCE_NE(
353 354
      it,
      outputs_.end(),
355 356
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
357
  return it->second;
Y
Yan Chunwei 已提交
358 359
}

360
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
361
  std::stringstream ss;
Y
Yu Yang 已提交
362
  ss << "Op(" << type_ << "), inputs:{";
363

364
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
365 366
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
367 368
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
369 370
  }

Y
Yu Yang 已提交
371 372
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
373 374
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
375 376
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
377 378
      auto var_name = input.second[i];
      ss << var_name;
379
      if (scope) {
Q
Qiao Longfei 已提交
380 381 382 383 384 385 386
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
387 388 389
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
390 391 392
          std::string place = is_no_need_buffer_var
                                  ? "unknown_place"
                                  : GetPlace(*scope, var_name);
Q
Qiao Longfei 已提交
393
          ss << ":" << dtype;
394 395
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
396
          ss << "(" << place << ")";
397
        }
398
      }
Y
Yu Yang 已提交
399 400 401
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
402
    }
Y
Yu Yang 已提交
403
    ss << "]";
Y
Yu Yang 已提交
404 405
    ++it;
    if (it != inputs_.end()) {
406 407
      ss << ", ";
    }
Q
Qiao Longfei 已提交
408
  }
Y
Yu Yang 已提交
409
  ss << "}, outputs:{";
Y
Yu Yang 已提交
410 411
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
412 413
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
414 415
      auto var_name = output.second[i];
      ss << var_name;
416
      if (scope) {
Q
Qiao Longfei 已提交
417 418 419 420 421 422 423
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
424 425
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
426 427
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
428
          ss << "(" << GetPlace(*scope, var_name) << ")";
429
        }
430
      }
Y
Yu Yang 已提交
431 432 433
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
434
    }
Y
Yu Yang 已提交
435
    ss << "]";
Y
Yu Yang 已提交
436 437
    ++it;
    if (it != outputs_.end()) {
438 439
      ss << ", ";
    }
Q
Qiao Longfei 已提交
440
  }
Y
Yu Yang 已提交
441
  ss << "}.";
Q
Qiao Longfei 已提交
442 443 444
  return ss.str();
}

Y
Yu Yang 已提交
445
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
446 447
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
448
                           const AttributeMap& attrs)
S
sneaxiy 已提交
449 450 451 452 453 454
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
455 456 457 458 459 460 461 462
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
463
  // In OperatorBase level, all attributes with VarDesc type will be considered
464 465 466 467 468 469
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
470
}
471

Q
qijun 已提交
472 473
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
474
  for (auto& o : inputs_) {
Q
qijun 已提交
475 476 477 478 479 480
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
481 482 483 484 485 486 487 488 489 490
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
491
  auto& info = Info();
Y
Yu Yang 已提交
492 493

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
494
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
495 496 497 498 499 500 501 502 503
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
504 505
}

506
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
507
  if (info_ == nullptr || info_->proto_ == nullptr) return;
508

S
sneaxiy 已提交
509
  for (auto& in : info_->Proto().inputs()) {
510
    if (!in.dispensable() && !in.extra()) {
511
      PADDLE_ENFORCE_NE(
512 513 514 515
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
516
    }
517 518
  }

S
sneaxiy 已提交
519
  for (auto& out : info_->Proto().outputs()) {
520
    if (!out.dispensable() && !out.extra() && !out.intermediate()) {
521
      PADDLE_ENFORCE_NE(
522 523 524 525
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
526
    }
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
542

543 544
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
545 546
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
547 548
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
549
  } else {
550
    PADDLE_THROW(platform::errors::InvalidArgument(
551
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
552
        ToTypeName(var.Type())));
Q
QI JUN 已提交
553 554 555
  }
}

556
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
557 558
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
559 560
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
561
  } else {
562
    PADDLE_THROW(platform::errors::InvalidArgument(
563
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
564
        ToTypeName(var->Type())));
Q
QI JUN 已提交
565 566 567
  }
}

568 569 570 571 572 573 574 575
OperatorWithKernel::OperatorWithKernel(const std::string& type,
                                       const VariableNameMap& inputs,
                                       const VariableNameMap& outputs,
                                       const AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

OperatorWithKernel::~OperatorWithKernel() = default;

576
bool ExecutionContext::HasInput(const std::string& name) const {
577
  auto* var = InputVar(name);
578 579 580
  return var != nullptr;
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

595
bool ExecutionContext::HasOutput(const std::string& name) const {
596
  auto* var = OutputVar(name);
597 598 599
  return var != nullptr;
}

X
Xin Pan 已提交
600
const Variable* ExecutionContext::InputVar(const std::string& name) const {
601 602
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
603 604 605
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

606
  PADDLE_ENFORCE_LE(
607 608
      it->second.size(),
      1UL,
609
      platform::errors::InvalidArgument(
610
          "Operator %s's input %s should contain only one variable.",
611 612
          op_.Type(),
          name));
X
Xin Pan 已提交
613 614 615
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
616
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
617 618 619
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

620
  PADDLE_ENFORCE_LE(
621 622
      it->second.size(),
      1UL,
623 624
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
625 626
          op_.Type(),
          name));
X
Xin Pan 已提交
627 628 629
  return it->second.empty() ? nullptr : it->second[0];
}

630
template <>
631 632
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
633 634
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
635 636
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
637 638
    return {};
  }
639
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
640
  res.reserve(vars.size());
641 642 643
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
644
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
645
                   if (var == nullptr) return nullptr;
646 647 648 649 650 651 652 653
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
654 655 656 657
                 });
  return res;
}

658
template <>
659
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
660
    const std::string& name) const {
H
hong 已提交
661 662 663
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
664 665
    return {};
  }
666
  std::vector<phi::DenseTensor*> res;
667
  res.reserve(vars.size());
668 669 670
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
671
                 [&](Variable* var) -> phi::DenseTensor* {
672
                   return var == nullptr ? nullptr
673
                                         : var->GetMutable<phi::DenseTensor>();
674
                 });
675 676 677
  return res;
}

Y
Yu Yang 已提交
678
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
679
  // check in new Function kernel first
680
  bool has_phi_kernel = false;
681
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
682
  auto kernel_key_map =
683
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
684
  for (auto& kernel : kernel_key_map) {
685
    has_phi_kernel = true;
686
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
687 688 689 690
      return true;
    }
  }

Y
Yu Yang 已提交
691 692
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
693 694 695 696 697 698 699 700 701 702 703 704 705
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
706 707 708
      return true;
    }
  }
H
hong 已提交
709

Y
Yu Yang 已提交
710 711 712
  return false;
}

713 714
class RuntimeInferShapeContext : public InferShapeContext {
 public:
715
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
716
      : op_(op), ctx_(ctx) {}
717 718

  bool HasInput(const std::string& name) const override {
719
    // has only one input
X
Xin Pan 已提交
720
    const auto& ins = ctx_.inputs;
721 722
    auto it = ins.find(name);
    if (it == ins.end()) {
723 724
      return false;
    }
725
    const auto& in = it->second;
X
Xin Pan 已提交
726
    if (in.size() == 0) return false;
727
    PADDLE_ENFORCE_EQ(
728 729
        in.size(),
        1UL,
730 731
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
732
    return in[0] != nullptr;
733 734 735
  }

  bool HasOutput(const std::string& name) const override {
736
    // has only one output
X
Xin Pan 已提交
737
    const auto& outs = ctx_.outputs;
738 739
    auto it = outs.find(name);
    if (it == outs.end()) {
740 741
      return false;
    }
742
    const auto& out = it->second;
X
Xin Pan 已提交
743
    if (out.size() == 0) {
744 745
      return false;
    }
746
    PADDLE_ENFORCE_EQ(
747 748
        out.size(),
        1UL,
749 750
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
751
    return out[0] != nullptr;
752 753
  }

754 755 756 757
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

758
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
759 760
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
761
    if (it == ins.end() || it->second.empty()) {
762 763
      return false;
    }
X
Xin Pan 已提交
764 765
    for (auto& input : it->second) {
      if (input == nullptr) {
766 767 768 769 770 771
        return false;
      }
    }
    return true;
  }

772 773
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
774 775
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
776
    if (it == outs.end() || it->second.empty()) {
777 778
      return false;
    }
Y
YuanRisheng 已提交
779
    if (!allow_null) {
780 781
      for (auto& output : it->second) {
        if (output == nullptr) return false;
782 783
      }
    }
Y
YuanRisheng 已提交
784
    return true;
785 786
  }

787 788 789
  AttrReader Attrs() const override {
    return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
  }
790

H
hong 已提交
791
  std::vector<std::string> Inputs(const std::string& name) const override {
792 793 794
    return op_.Inputs(name);
  }

H
hong 已提交
795
  std::vector<std::string> Outputs(const std::string& name) const override {
796 797 798
    return op_.Outputs(name);
  }

799 800 801
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
802 803
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
804 805 806
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
807 808 809
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
810 811 812 813 814 815 816
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
817 818
        idx,
        op_proto->outputs().size(),
819 820 821
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
822 823 824
            op_.Type(),
            idx,
            op_proto->outputs().size()));
825 826 827
    return op_proto->outputs()[idx].name();
  }

828 829 830
  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
831
                size_t j = 0) override {
X
Xin Pan 已提交
832 833
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
834
    PADDLE_ENFORCE_NE(
835 836
        in_it,
        ctx_.inputs.end(),
837 838
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
839 840
        out_it,
        ctx_.outputs.end(),
841
        platform::errors::NotFound("Output %s does not exist.", out));
842 843
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
844 845 846
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
847 848 849 850
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
851 852 853
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
854 855
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
856 857 858

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
859

860
    PADDLE_ENFORCE_EQ(
861 862
        in_var->Type(),
        out_var->Type(),
863
        platform::errors::InvalidArgument(
864 865
            "The type of input (%s) and output (%s) are inconsistent.",
            in,
866
            out));
867

868 869 870
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
871 872 873
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
874 875 876
    } else if (in_var->IsType<phi::DenseTensor>()) {
      auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
      auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
877 878
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
879
      PADDLE_THROW(platform::errors::Unimplemented(
880
          "Currently, the input type of ShareDim only can be phi::DenseTensor "
881
          "or SelectedRows."));
882 883 884
    }
  }

H
hong 已提交
885 886 887 888
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
889 890
    PADDLE_ENFORCE_NE(in_it,
                      ctx_.inputs.end(),
H
hong 已提交
891 892 893
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
894 895 896 897
        out_it,
        ctx_.outputs.end(),
        platform::errors::NotFound(
            "Output [%s] found error in Op [%s]", out, op_.Type()));
H
hong 已提交
898 899 900 901 902

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
903 904
        in_var_list.size(),
        out_var_list.size(),
H
hong 已提交
905
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
906
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
907 908 909 910 911 912 913 914 915 916
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
917
      if (!in_var->IsType<phi::DenseTensor>()) return;
H
hong 已提交
918
      Variable* out_var = out_var_list[i];
919 920 921 922 923 924 925 926 927
      PADDLE_ENFORCE_EQ(
          out_var->IsType<phi::DenseTensor>(),
          true,
          platform::errors::PreconditionNotMet(
              "The %d-th output of Output(%s) must be phi::DenseTensor.",
              i,
              out_var_names[i]));
      auto& in_tensor = in_var->Get<phi::DenseTensor>();
      auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
H
hong 已提交
928 929
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
930
      if (in_tensor.layout() != DataLayout::ONEDNN)
H
hong 已提交
931 932 933 934 935
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

936 937 938
  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
Q
Qiao Longfei 已提交
939
                size_t j = 0) const override {
X
Xin Pan 已提交
940 941
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
942
    PADDLE_ENFORCE_NE(
943 944
        in_it,
        ctx_.inputs.end(),
945 946
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
947 948
        out_it,
        ctx_.outputs.end(),
949
        platform::errors::NotFound("Output %s does not exist.", out));
950 951
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
952 953 954
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
955 956 957 958
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
959 960 961
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
962 963
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
964 965

    Variable* in_var = in_it->second.at(i);
966
    if (!in_var->IsType<phi::DenseTensor>()) return;
X
Xin Pan 已提交
967
    Variable* out_var = out_it->second.at(j);
968
    PADDLE_ENFORCE_EQ(
969
        out_var->IsType<phi::DenseTensor>(),
970
        true,
971
        platform::errors::InvalidArgument(
972 973 974 975 976
            "The %zu-th output of Output(%s) must be phi::DenseTensor.",
            j,
            out));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
Q
Qiao Longfei 已提交
977
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
978

M
mozga-intel 已提交
979 980
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
981
// Shall we have a better method to shared info between in/out phi::DenseTensor?
M
mozga-intel 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
995
    if (in_tensor.layout() != DataLayout::ONEDNN)
M
mozga-intel 已提交
996 997
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
998 999
  }

1000
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
1001
    PADDLE_THROW(platform::errors::PreconditionNotMet(
1002
        "GetLoDLevel is only used in compile time. The calculation of "
1003
        "output's actual lod is different among operators so that should be "
1004
        "set in the runtime kernel."));
1005 1006
  }

1007 1008
  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
1009
                   size_t j = 0) const override {
1010
    PADDLE_THROW(platform::errors::PreconditionNotMet(
1011
        "SetLoDLevel is only used in compile time. The calculation of "
1012
        "output's actual lod is different among operators so that should be "
1013
        "set in the runtime kernel."));
C
chengduo 已提交
1014 1015
  }

1016 1017
  bool IsRuntime() const override { return true; }

1018 1019 1020 1021 1022
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
1023
               phi::DataLayout::ONEDNN));
1024
    } catch (const std::bad_cast& exp) {
1025 1026 1027 1028
      return false;
    }
  }

1029
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
1030
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
1031
  GetInputVarPtrs(const std::string& name) const override {
1032
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
1033
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
1034 1035 1036 1037 1038
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
1039
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
1040
  GetOutputVarPtrs(const std::string& name) const override {
1041
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
1042
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
1043 1044 1045 1046 1047
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
1048 1049
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
1050
    PADDLE_ENFORCE_EQ(
1051 1052
        vars.size(),
        1UL,
1053 1054
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
1055 1056
            name,
            vars.size()));
X
Xin Pan 已提交
1057 1058 1059 1060 1061 1062 1063 1064
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

1065 1066 1067 1068
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
1079 1080
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1081
    PADDLE_ENFORCE_EQ(
1082 1083
        vars.size(),
        1UL,
1084 1085
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
1086 1087
                                          name,
                                          vars.size()));
X
Xin Pan 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1097 1098 1099 1100 1101 1102 1103 1104
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1105
 protected:
X
Xin Pan 已提交
1106
  DDim GetDim(Variable* var) const {
1107 1108
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1109 1110
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dims();
1111 1112
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1113
    } else {
1114
      PADDLE_THROW(platform::errors::InvalidArgument(
1115
          "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
1116 1117
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1118 1119 1120
    }
  }

X
Xin Pan 已提交
1121 1122 1123
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
1124 1125 1126
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(ret),
X
Xin Pan 已提交
1127 1128 1129 1130
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1131
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1132 1133
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1134 1135
  }

X
Xin Pan 已提交
1136
  void SetDim(Variable* var, const DDim& dim) {
1137 1138
    if (var->IsType<phi::DenseTensor>()) {
      var->GetMutable<phi::DenseTensor>()->Resize(dim);
1139 1140
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1141
    } else {
1142
      PADDLE_THROW(platform::errors::Unimplemented(
1143 1144
          "Variable type error, expect phi::DenseTensor or SelectedRows, but "
          "received "
1145 1146
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1147 1148 1149 1150 1151 1152
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1153 1154
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
1155 1156 1157 1158
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
1159 1160
                          length,
                          dims.size()));
X
Xin Pan 已提交
1161 1162 1163 1164 1165
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1166 1167 1168
    }
  }

F
fengjiayi 已提交
1169 1170
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1171 1172
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1173 1174
  }

X
Xin Pan 已提交
1175 1176 1177 1178
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
1179 1180 1181
    std::transform(vars.begin(),
                   vars.end(),
                   retv.begin(),
X
Xin Pan 已提交
1182
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
1183 1184
                             this,
                             std::placeholders::_1));
X
Xin Pan 已提交
1185 1186 1187 1188
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1189 1190 1191
    return ToVarType(var->Type());
  }

1192 1193 1194
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1195
    PADDLE_ENFORCE_NE(
1196 1197
        it,
        ctx_.inputs.end(),
1198 1199
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1200 1201 1202 1203 1204
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1205
    PADDLE_ENFORCE_NE(
1206 1207
        it,
        ctx_.outputs.end(),
1208 1209
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1210
    return it->second;
F
fengjiayi 已提交
1211 1212
  }

1213
  const OperatorBase& op_;
X
Xin Pan 已提交
1214
  const RuntimeContext& ctx_;
1215 1216
};

1217
struct OperatorWithKernel::CacheImpl {
1218
  static const char kNotAllowInferShapeCahce[];
1219
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
1220 1221 1222 1223 1224 1225 1226
                     RuntimeInferShapeContext* infer_shape_ctx,
                     const std::vector<phi::DenseTensor*>& tensors,
                     bool not_allow_infer_shape_cache)
      : kernel_ctx_(kernel_ctx),
        infer_shape_ctx_(infer_shape_ctx),
        tensors_(tensors),
        not_allow_infer_shape_cache_(not_allow_infer_shape_cache) {}
1227 1228 1229 1230 1231 1232

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
  bool NeedInferShape() {
    if (not_allow_infer_shape_cache_) return true;

    bool ret{false};
    if (last_ddims_.empty() || tensors_.empty()) ret = true;
    if (!ret) {
      CHECK_EQ(last_ddims_.size(), tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        if (tensors_[i]->dims() != last_ddims_[i]) {
          ret = true;
          break;
        }
      }
    }
    if (ret) {
      last_ddims_.resize(tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        last_ddims_[i] = tensors_[i]->dims();
      }
    }
    VLOG(3) << "need infer shape is " << ret;
    return ret;
  }

1257 1258 1259
 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
1260 1261 1262
  std::vector<phi::DenseTensor*> tensors_;
  bool not_allow_infer_shape_cache_;
  std::vector<phi::DDim> last_ddims_;
1263
};
1264 1265
const char OperatorWithKernel::CacheImpl::kNotAllowInferShapeCahce[] =
    "@NOT_ALLOW_INFERSHAPE_CACHE@";
1266

1267 1268
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1269
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1270 1271 1272
  if (tensor.memory_size() == 0) {
    return;
  }
1273 1274
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1275 1276
    return;
  }
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1289 1290
}

1291 1292 1293 1294
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1295 1296
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1309 1310
          op_kernels.begin(),
          op_kernels.end(),
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1322 1323
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1336 1337
          op_kernels.begin(),
          op_kernels.end(),
1338 1339 1340 1341 1342 1343 1344
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
Q
QingshuChen 已提交
1368 1369 1370 1371
                   paddle::platform::is_xpu_support_op(
                       type_,
                       framework::TransToPhiDataType(
                           kern_pair.first.data_type_));
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1383
bool OperatorWithKernel::SupportsMKLDNN(const phi::DataType data_type) const {
1384 1385 1386 1387 1388
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1389 1390
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
1391
                           kern_pair.first.dtype() == data_type;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
1407
                   kern_pair.first.data_type_ == TransToProtoVarType(data_type);
1408 1409
          });
    }
1410
  }
1411 1412
}

1413
bool OperatorWithKernel::SupportsCUDNN(const phi::DataType data_type) const {
1414 1415
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
1416 1417 1418 1419 1420 1421 1422
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPUDNN &&
                           kern_pair.first.dtype() == data_type;
                  });
1423 1424 1425 1426 1427 1428 1429 1430
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
1431 1432
      proto::VarType::Type fluid_data_type =
          framework::TransToProtoVarType(data_type);
1433 1434 1435
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
1436
          [fluid_data_type](OpKernelMap::const_reference kern_pair) {
1437 1438
            return platform::is_gpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kCUDNN &&
1439
                   kern_pair.first.data_type_ == fluid_data_type;
1440 1441 1442 1443 1444
          });
    }
  }
}

1445
bool OperatorWithKernel::SupportsKernelType(
1446
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1447 1448
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1449 1450 1451 1452 1453
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1454
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1455
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1456 1457
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1458 1459
  }
#endif
1460 1461 1462 1463 1464

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1465 1466
        paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type.data_type_));
1467 1468 1469 1470 1471 1472 1473 1474 1475
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1476 1477
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1478 1479 1480
  }
#endif

1481
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1482 1483 1484 1485 1486
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1487
#ifdef PADDLE_WITH_MKLDNN
1488
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1489 1490 1491
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
1492
    tmp_kernel_type.data_layout_ = framework::DataLayout::ONEDNN;
1493 1494 1495 1496
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1497 1498 1499 1500 1501 1502 1503 1504
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kCUDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1505
  return kernel_iter != kernels.end();
1506 1507
}

1508
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
1509
                                         phi::DataType data_type) const {
1510
  return ctx.HasAttr("use_mkldnn") && ctx.Attr<bool>("use_mkldnn") &&
1511 1512
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1513 1514
}

1515 1516 1517 1518 1519
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
  return this->CanMKLDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1520
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
1521
                                        phi::DataType data_type) const {
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
  bool use_cudnn = ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn") &&
                   paddle::platform::is_gpu_place(ctx.GetPlace());

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
    use_cudnn &= (dev_ctx.cudnn_handle() != nullptr);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#if defined(PADDLE_WITH_CUDA)
1533
  if (use_cudnn && data_type == phi::DataType::BFLOAT16) {
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    PADDLE_ENFORCE_GE(
        platform::DnnVersion(),
        8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA

  return use_cudnn && this->SupportsCUDNN(data_type);
}

1545 1546 1547 1548 1549
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                                        proto::VarType::Type data_type) const {
  return this->CanCUDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1550 1551 1552 1553 1554 1555 1556
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1557
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1558 1559
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1560
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1561
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1562 1563
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
template <typename T>
bool HasSameTensorType(phi::TensorBase* phi_tensor, Variable* var) {
  if (phi_tensor == nullptr && var == nullptr) {
    return true;
  } else if (phi_tensor != nullptr && var != nullptr) {
    if (T::classof(phi_tensor) && var->IsType<T>()) {
      return true;
    }
  }
  return false;
}

// TODO(YuanRisheng): We need collect all `need_prepare_phi_data_`
// into this function.
void OperatorWithKernel::CheckWhetherPreparePhiData(
    const VariableNameMap& innames,
    const VariableNameMap& outnames,
    const Scope& scope) const {
  if (run_phi_kernel_ && impl_ != nullptr) {
    const auto& phi_kernel_context = impl_->getKernelContext();
    size_t phi_tensor_index = 0;
    // Check each tensor in KernelContext, if there is a tensor that has
    // different type with variable. The PhiKernelContext need be reconstructed.
    // We use kernel_signature_'s output to retrieve tensor. Because the tensor
    // in phi_kernel_context stored in the order of kernel_signature_'s output.
    if (phi_kernel_context->OutputsSize() >= phi_tensor_index ||
        kernel_signature_ == nullptr) {
      need_prepare_phi_data_ = true;
      return;
    }

    const auto& phi_output_names = kernel_signature_->output_names;
    for (auto& phi_output_name : phi_output_names) {
      const auto& iter = outnames.find(phi_output_name);
      if (iter != outnames.end()) {
        for (auto& var_name : iter->second) {
          auto var_output = scope.FindVar(var_name);
          auto phi_output =
              phi_kernel_context->MutableOutputAt<phi::TensorBase>(
                  phi_tensor_index);
          if (phi_output == nullptr) {
            continue;
          }
          if (!(HasSameTensorType<phi::DenseTensor>(phi_output, var_output) ||
                HasSameTensorType<phi::SparseCooTensor>(phi_output,
                                                        var_output) ||
                HasSameTensorType<framework::Strings>(phi_output,
                                                      var_output))) {
            need_prepare_phi_data_ = true;
          }
          phi_tensor_index++;
        }
      }
    }
  }
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
// When do we need to reset runtime context?
// 1. When enable cache runtime context, if the program runs for the first time,
//   runtime_ctx_.get() == nullptr, we need to create a new runtime context.
// 2. When enable cache runtime context, if the program is not running for the
// first time,
//   but the input shape or tensor layout of the operator has changed, we cannot
//   use the runtime context stored in the cache at this time, and need to
//   create a new one.
bool OperatorWithKernel::NeedResetRuntimeContext(const Scope& scope) const {
  if (runtime_ctx_.get() == nullptr) return true;
  const auto& name_map = Inputs();
  for (auto& var_name_item : name_map) {
    auto& name_vec = var_name_item.second;
    std::vector<Variable*>& cache_input_vars =
        runtime_ctx_->inputs[var_name_item.first];
    PADDLE_ENFORCE_EQ(
        name_vec.size(),
        cache_input_vars.size(),
        platform::errors::InvalidArgument(
            "The size of input variable names (%d) must be equal to "
            "the size of cache input variable ptrs (%d).",
            name_vec.size(),
            cache_input_vars.size()));
    for (size_t i = 0; i < name_vec.size(); i++) {
      auto var_name = name_vec[i];
      auto* cache_input_var = cache_input_vars[i];
      if (!VarIsTensor(*cache_input_var)) continue;
      auto* cache_input_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(cache_input_var);
      auto cache_input_tensor_dims = cache_input_tensor->dims();
      auto* current_input_var = scope.FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
          current_input_var,
          platform::errors::NotFound(
              "The variable %s is not found when "
              "enable_cache_runtime_context_cache in origin scope.",
              var_name));
      auto* current_input_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(current_input_var);
      auto current_input_tensor_dims = current_input_tensor->dims();
      if (cache_input_tensor_dims != current_input_tensor_dims ||
          NeedTransformLayout(current_input_tensor->layout(),
                              cache_input_tensor->layout())) {
        need_prepare_data_ = true;
        return true;
      }
    }
  }
  return false;
}

L
luotao1 已提交
1672 1673
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1674 1675
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1676 1677 1678
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1679
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1680
    all_kernels_must_compute_runtime_shape_ = true;
1681
  CheckWhetherPreparePhiData(Inputs(), Outputs(), scope);
1682
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1683 1684
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1685 1686
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
1687
    if (!all_kernels_must_compute_runtime_shape_ && impl_->NeedInferShape()) {
1688
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
1689
    }
1690
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1691
  } else {
1692
    if (NeedResetRuntimeContext(scope)) {
1693
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
1694
      runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
L
luotao1 已提交
1695
    }
1696
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1697 1698 1699 1700 1701 1702
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1703
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1704
  bool fallback_to_cpu = false;
1705
  auto* dev_ctx = pool.Get(place);
1706

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1717 1718 1719 1720
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
H
HongyuJia 已提交
1721
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1722

1723 1724 1725 1726 1727 1728
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1729 1730 1731 1732 1733
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1734 1735
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1736
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1737
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1738 1739 1740 1741 1742 1743
      if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
        kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
      } else {
        kernel_signature_.reset(new phi::KernelSignature(
            std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      }
1744

1745 1746
      VLOG(6) << *kernel_signature_.get();
      phi_kernel_name = kernel_signature_->name;
1747 1748 1749
      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);
1750 1751 1752 1753 1754 1755 1756
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1757 1758
            paddle::platform::is_xpu_support_op(
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1773
                  << phi_kernel_name
1774
                  << ", using_kernel_key:" << *kernel_type_.get();
1775
          auto try_phi_kernel_key =
1776
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1777 1778
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1779 1780
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1781
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1782 1783 1784
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1785
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1786 1787 1788 1789
          }
        }
      }
#endif
1790 1791
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1792
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1793
              phi_kernel_name, phi_kernel_key)));
1794

1795
      if (phi_kernel_->IsValid()) {
1796
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
1797 1798
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1799
      } else {
1800 1801
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `"
                << phi_kernel_name << "` not found.";
1802
      }
1803
    } else {
1804
      phi_kernel_name = kernel_signature_->name;
1805
// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
1806
// LibraryType::kMKLDNN and data_layout_ = DataLayout::ONEDNN. But the default
1807
// values are kPlain, so we need to modify the library_type and data_layout_
1808 1809 1810 1811
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1812
#ifdef PADDLE_WITH_MKLDNN
1813 1814
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1815 1816
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
1817
        kernel_type_->data_layout_ = framework::DataLayout::ONEDNN;
1818 1819 1820
      }
#endif

1821 1822 1823 1824 1825 1826
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (this->CanCUDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kCUDNN;
      }
#endif

1827 1828 1829
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1830 1831 1832 1833
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1834 1835
            paddle::platform::is_xpu_support_op(
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1849
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1850
                  << phi_kernel_name
1851
                  << ", using_kernel_key:" << *kernel_type_.get();
1852
          auto try_phi_kernel_key =
1853
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1854 1855
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1856
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1857
            VLOG(3) << "modify XPU KP kernel in static graph: "
1858
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1859 1860 1861
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1862
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1863 1864 1865 1866
          }
        }
      }
#endif
1867
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1868
    }
1869 1870 1871 1872

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1873
#if defined(PADDLE_WITH_XPU)
1874 1875
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
Q
QingshuChen 已提交
1876 1877
        !paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1878
#endif
1879 1880 1881 1882
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1883 1884
        paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1885 1886 1887 1888 1889 1890
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1891
    if (phi_kernel_->IsValid()
1892
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1893 1894
        && !is_xpu_unsupport
#endif
1895 1896 1897
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1898
    ) {
1899
      run_phi_kernel_ = true;
1900 1901 1902
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1913 1914 1915
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1916
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1917
          || is_xpu_unsupport
1918
#endif
1919 1920 1921
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1922
      ) {
1923
        fallback_to_cpu = true;
H
HongyuJia 已提交
1924
        auto phi_cpu_kernel_key = FallBackToCpu(phi_kernel_key, *this);
1925
        phi_kernel_.reset(
1926
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1927
                phi_kernel_name, phi_cpu_kernel_key)));
1928 1929

        dev_ctx = pool.Get(platform::CPUPlace());
1930
        if (phi_kernel_->IsValid()) {
1931
          VLOG(6) << "Static graph mode PrepareImpl - kernel name: "
1932 1933
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1934
          run_phi_kernel_ = true;
1935 1936
        }
      }
1937 1938
    }
  }
1939
  if (!run_phi_kernel_) {
1940 1941
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1942
      dev_ctx = pool.Get(kernel_type_->place_);
1943
    }
1944 1945
  }

Y
yuyang18 已提交
1946 1947
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1948 1949
  Scope* transfer_scope = nullptr;
  {
1950
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1951
                                       platform::TracerEventType::OperatorInner,
1952 1953
                                       1,
                                       platform::EventRole::kInnerOp);
1954
    if (need_prepare_data_) {
1955 1956 1957 1958 1959 1960
      transfer_scope =
          PrepareData(scope,
                      framework::TransOpKernelTypeToPhiKernelKey(*kernel_type_),
                      &transfered_inplace_vars,
                      runtime_ctx,
                      dev_ctx->GetPlace());
1961
    }
1962
  }
Y
yuyang18 已提交
1963 1964 1965 1966
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1967
  if (!all_kernels_must_compute_runtime_shape_) {
1968
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1969
                                       platform::TracerEventType::OperatorInner,
1970 1971
                                       1,
                                       platform::EventRole::kInnerOp);
1972
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1973
    this->Info().infer_shape_(&infer_shape_ctx);
1974 1975
    record_event.End();
    platform::RecordOpInfoSupplement(
1976
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx, Id());
1977
  }
1978 1979 1980 1981 1982

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1983 1984
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1985
  {
1986
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1987
                                       platform::TracerEventType::OperatorInner,
1988 1989
                                       1,
                                       platform::EventRole::kInnerOp);
1990 1991
    if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                               phi::KernelRegisteredType::FUNCTION) {
1992
      phi::KernelContext phi_kernel_context;
1993 1994
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        // TODO(inference): Now we only suppor dense_tensor cache, we may be
        // support ScalarTensor, SparseTensor in future.
        bool all_dense_tensor_input_{true};
        for (auto& iter : Inputs()) {
          for (auto& name : iter.second) {
            all_dense_tensor_input_ &=
                scope.FindVar(name)->IsType<phi::DenseTensor>();
          }
        }

        std::vector<phi::DenseTensor*> tensors;
        if (all_dense_tensor_input_) {
          for (auto& iter : Inputs()) {
            for (auto& name : iter.second) {
              auto* t = scope.FindVar(name)->GetMutable<phi::DenseTensor>();
              tensors.push_back(t);
            }
          }
        }

        impl_.reset(
2016
            new CacheImpl(new phi::KernelContext(),
2017 2018 2019
                          new RuntimeInferShapeContext(*this, *runtime_ctx),
                          tensors,
                          HasAttr(CacheImpl::kNotAllowInferShapeCahce)));
2020
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
2021
        (*phi_kernel_)(impl_->getKernelContext());
2022
      } else {
2023
        phi::KernelContext phi_kernel_context;
2024 2025
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
2026 2027
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
2028
      }
2029 2030 2031 2032 2033
    } else if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                                      phi::KernelRegisteredType::STRUCTURE) {
      ExecutionContext execution_context(
          *this, exec_scope, *dev_ctx, *runtime_ctx);
      (*phi_kernel_)(&execution_context);
2034 2035 2036 2037
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
2038 2039 2040
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
2041
  }
D
dzhwinter 已提交
2042

Y
yuyang18 已提交
2043
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
2044
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
2045
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
2046
  }
2047 2048 2049 2050 2051 2052 2053

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

2054 2055 2056 2057 2058 2059 2060 2061
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
2062

D
dzhwinter 已提交
2063
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
2064
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
2065
    dev_ctx->Wait();
2066 2067
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
2068 2069
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
2070
  }
C
chengduoZH 已提交
2071 2072

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
2073
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
2074
  }
2075 2076 2077 2078

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
2079 2080 2081
  if (cache_transfer_scope_ && !run_by_executor_ &&
      !enable_cache_transfer_scope_) {
    scope.DeleteScope(cache_transfer_scope_);
2082
  }
Q
Qiao Longfei 已提交
2083
}
X
Xin Pan 已提交
2084

2085 2086
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
2087 2088 2089
  phi::KernelKey phi_kernel_key = this->GetExpectedKernelType(ctx);
  auto expected_kernel_key =
      framework::TransPhiKernelKeyToOpKernelType(phi_kernel_key);
2090 2091 2092

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
2093
// data_layout_ of expected_kernel_key need to be adjusted. There are three
2094
// statements in if condition:
2095 2096 2097
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
2098
#ifdef PADDLE_WITH_MKLDNN
2099
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
2100 2101
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
2102
    expected_kernel_key.data_layout_ = framework::DataLayout::ONEDNN;
2103 2104 2105
  }
#endif

2106 2107 2108 2109 2110 2111
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN;
  }
#endif

2112 2113 2114
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
2125 2126 2127
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
2128 2129
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2130
      if (SupportGPU()) {
2131
        auto& dev_ctx = ctx.device_context();
2132
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2133 2134
      }
#endif
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
2154 2155 2156
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
2157
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2158 2159 2160
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
2161 2162
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
2189 2190 2191
      }
    }
  }
2192 2193 2194 2195 2196 2197

  if (platform::places_are_same_class(expected_kernel_key.place_,
                                      ctx.GetPlace())) {
    expected_kernel_key.place_ = ctx.GetPlace();
  }

C
cc 已提交
2198 2199
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
2200 2201 2202
  return expected_kernel_key;
}

2203
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2204
    const ExecutionContext& ctx) const {
2205 2206 2207 2208 2209 2210 2211
  std::string phi_kernel_name;
  if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
    kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
  } else {
    kernel_signature_.reset(
        new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  }
2212
  VLOG(6) << *kernel_signature_.get();
2213
  phi_kernel_name = kernel_signature_->name;
2214 2215 2216
  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2217 2218 2219
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2220

2221
  if (phi_kernel_->IsValid()) {
2222 2223
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
            << phi_kernel_name << " | kernel key: " << phi_kernel_key
2224
            << " | kernel: " << *phi_kernel_;
2225
  } else {
2226
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `" << phi_kernel_name
2227 2228
            << "` not found.";
  }
2229
  return phi_kernel_key;
2230 2231 2232 2233 2234 2235 2236
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2237 2238
      kernels_iter,
      all_op_kernels.end(),
2239
      platform::errors::Unimplemented(
2240 2241 2242 2243 2244 2245
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2246 2247

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2248

L
Liu Yiqun 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2258
#endif
2259 2260

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2261
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2262
      (kernel_iter == kernels.end() ||
Q
QingshuChen 已提交
2263 2264 2265
       !paddle::platform::is_xpu_support_op(
           type_,
           framework::TransToPhiDataType(expected_kernel_key.data_type_)))) {
2266
    VLOG(3) << "fluid missing XPU kernel: " << type_
2267 2268 2269 2270 2271
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2272
#endif
L
Liu-xiandong 已提交
2273 2274

#ifdef PADDLE_WITH_XPU_KP
2275 2276 2277
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
2278 2279 2280
        paddle::platform::is_xpu_support_op(
            type_,
            framework::TransToPhiDataType(expected_kernel_key.data_type_));
2281 2282 2283
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2284
      VLOG(3) << "fluid xpu_kp using rt mode ";
2285 2286
    }
    if (use_xpu_kp_kernel_debug) {
2287
      VLOG(3) << "fluid xpu_kp using debug mode ";
2288 2289 2290
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2291 2292
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2293 2294
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2295
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2296
      // if the fluid do not register related kernel, it can't work and have
2297 2298 2299 2300 2301 2302 2303
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2304
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2305 2306
                << ", using_kernel_key:" << expected_kernel_key;
      }
2307
    }
Q
QingshuChen 已提交
2308 2309
    bool is_xpu_unsupport = (!paddle::platform::is_xpu_support_op(
        type_, framework::TransToPhiDataType(expected_kernel_key.data_type_)));
2310 2311
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2312
      VLOG(3) << "fluid missing XPU kernel: " << type_
2313 2314 2315 2316 2317
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2318 2319 2320
  }
#endif

A
Allen Guo 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2331 2332
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2333
      platform::is_npu_place(expected_kernel_key.place_)) {
2334 2335 2336 2337 2338 2339
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2340 2341 2342
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2343
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2344 2345 2346
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2358 2359 2360
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2361
#endif
2362 2363 2364 2365 2366 2367
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2368

2369 2370 2371 2372 2373
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2374 2375
}

Y
yuyang18 已提交
2376
void OperatorWithKernel::TransferInplaceVarsBack(
2377 2378
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2379 2380
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2381
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2382
    auto* origin_var = scope.FindVar(var_name);
2383 2384 2385
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2386
    auto* original_tensor =
C
chengduo 已提交
2387
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2388
    auto* var = transfer_scope.FindVar(var_name);
2389 2390 2391
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2392
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2393
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2394
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2395 2396 2397 2398 2399
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2400 2401 2402
  }
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2432
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2452
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2463
      phi::DenseTensor out;
2464 2465 2466 2467 2468 2469
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2470
Scope* OperatorWithKernel::PrepareData(
2471
    const Scope& scope,
2472
    const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
2473
    std::vector<std::string>* transfered_inplace_vars,
2474 2475
    RuntimeContext* ctx,
    const phi::Place& place) const {
Y
yuyang18 已提交
2476
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2477

2478
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2479 2480 2481 2482
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2483 2484
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2485 2486 2487
    }
  }

2488 2489 2490 2491 2492 2493 2494 2495 2496
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2497

Y
yuyang18 已提交
2498
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2499
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2500 2501 2502
        continue;
      }

C
chengduo 已提交
2503
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2504

2505
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2506 2507 2508 2509 2510 2511 2512
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
2513
        // oneDNN shape of Var may differ from kNHWC Var
2514 2515
        // In such situation corressponding resized Var
        // has to be created and registered
2516
        if ((tensor_in->layout() == DataLayout::ONEDNN) &&
2517
            (var->IsType<phi::DenseTensor>() == true) &&
2518
            (expected_kernel_key.layout() != DataLayout::ONEDNN) &&
2519 2520
            (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
             DataLayout::kNHWC) &&
2521
            (tensor_in->dims().size() >= 3)) {
2522
          // Mixed execution : oneDNN and GPU is not supported!
2523 2524 2525 2526
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2527
          in_vars->at(i) = trans_var;
2528
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2529
          out->Resize(tensor_in->dims());
2530
          phi::funcs::MatchShapeToLayout(
2531
              out, tensor_in->layout(), DataLayout::kNHWC);
2532
          VLOG(7) << "Created reshaped dummy input based on oneDNN "
2533
                     "phi::DenseTensor , "
2534
                     "but kNHWC layout"
2535
                  << in_name << " in Operator " << type_;
2536
        } else {
2537 2538
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2539 2540 2541 2542 2543
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2544 2545 2546 2547
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2548 2549 2550
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
2551
          NeedTransformDataType(expected_kernel_key, kernel_type_for_var);
2552
      bool need_trans_layout = NeedTransformLayout(
2553
          kernel_type_for_var.layout(), expected_kernel_key.layout());
2554 2555
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
2556 2557
            backends_are_same_class(kernel_type_for_var.backend(),
                                    expected_kernel_key.backend())) {
2558 2559 2560
          continue;
        }
      }
Y
yuyang18 已提交
2561

2562
      std::unique_ptr<phi::KernelKey> new_expected_kernel_key = nullptr;
2563 2564
      if (run_phi_kernel_ && in_def != nullptr &&
          in_def->backend != phi::Backend::ALL_BACKEND) {
2565 2566
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
2567 2568 2569 2570 2571 2572
             !(in_def->backend == phi::Backend::GPUDNN &&
               tensor_backend == phi::Backend::GPU) &&
             !(in_def->backend == phi::Backend::KPS &&
               tensor_backend == phi::Backend::XPU) &&
             !(in_def->backend == phi::Backend::ONEDNN &&
               tensor_backend == phi::Backend::CPU)) ||
2573
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
2574 2575 2576 2577
          new_expected_kernel_key =
              std::make_unique<phi::KernelKey>(in_def->backend,
                                               expected_kernel_key.layout(),
                                               expected_kernel_key.dtype());
2578 2579 2580 2581 2582 2583 2584
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2585 2586
      }

M
minqiyang 已提交
2587
      VLOG(3) << "Transform Variable " << var_name << " from "
2588 2589 2590
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2591

H
HongyuJia 已提交
2592 2593 2594
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2595
      // We use a thread_local cache to fix that issue, the key in the cache is
2596 2597 2598 2599 2600
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2601 2602
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2603
      // variables, that behavior a lot different.
2604 2605 2606 2607 2608 2609
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2610 2611
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
2612 2613 2614 2615
          if (kernel_type_for_var.backend() == phi::Backend::GPU ||
              kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
              new_expected_kernel_key->backend() == phi::Backend::GPU ||
              new_expected_kernel_key->backend() == phi::Backend::GPUDNN) {
2616
            cache_transfer_scope_ = TryCreateTransferScope(
2617 2618
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
2619
            new_scope = cache_transfer_scope_;
2620
          }
2621 2622 2623 2624
        } else if (kernel_type_for_var.backend() == phi::Backend::GPU ||
                   kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
                   expected_kernel_key.backend() == phi::Backend::GPU ||
                   expected_kernel_key.backend() == phi::Backend::GPUDNN) {
2625
          cache_transfer_scope_ = TryCreateTransferScope(
2626 2627
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
2628
          new_scope = cache_transfer_scope_;
2629
        }
2630
      }
2631

2632
      if (!new_scope) {
Y
yuyang18 已提交
2633 2634
        new_scope = &scope.NewScope();
      }
L
Leo Chen 已提交
2635 2636

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2637
      auto* trans_var = new_scope->Var(var_name);
2638
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2639 2640 2641 2642 2643 2644 2645

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2646
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2656
      phi::DenseTensor out;
2657 2658 2659 2660 2661 2662 2663 2664 2665
      TransformData(
          new_expected_kernel_key ? *new_expected_kernel_key
                                  : expected_kernel_key,
          kernel_type_for_var,
          *tensor_in,
          &out,
          new_expected_kernel_key
              ? phi::TransToPhiPlace(new_expected_kernel_key->backend())
              : place);
Y
yuyang18 已提交
2666 2667
      SetTensorToVariable(*var, out, trans_var);
    }
2668 2669
  };

2670 2671
  if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                             phi::KernelRegisteredType::FUNCTION) {
2672
    const auto& input_names = kernel_signature_->input_names;
2673
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2709 2710 2711 2712 2713 2714 2715 2716 2717
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2718
  }
L
Leo Chen 已提交
2719

2720 2721
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2722 2723 2724 2725
  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
2726
  if (enable_cache_runtime_context_ && !force_prepare_data) {
2727 2728
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2729 2730 2731

  return new_scope;
}
Q
Qiao Longfei 已提交
2732

2733
void OperatorWithKernel::ParseInputDataType(
2734 2735
    const Variable* var,
    const std::string& name,
2736 2737
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2738 2739 2740
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2741 2742
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2743 2744
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      PADDLE_ENFORCE_EQ(
          sp_t->initialized(),
          true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(),
                                            name));
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2771 2772
    const std::vector<Variable*>& vars,
    const std::string& name,
2773
    proto::VarType::Type* data_type) const {
2774
  proto::VarType::Type default_data_type =
2775 2776 2777 2778
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2779 2780 2781
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2782 2783
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2807
      } else if (var->IsType<LoDTensorArray>()) {
2808 2809 2810 2811
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2812 2813
          }
        }
2814 2815
      }
      if (t != nullptr) {
2816 2817 2818 2819 2820 2821 2822
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2823 2824
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2825 2826 2827 2828 2829 2830 2831
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2832 2833 2834
                           Type(),
                           name,
                           DataTypeToString(tmp),
2835
                           DataTypeToString(*data_type)));
2836 2837 2838 2839 2840 2841
        *data_type = tmp;
      }
    }
  }
}

2842
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2843
    const ExecutionContext& ctx) const {
2844 2845 2846
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2847

2848
  for (auto* name : ctx.InNameList()) {
2849 2850 2851 2852 2853
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2854
  }
2855
  PADDLE_ENFORCE_NE(
2856 2857
      data_type,
      dafault_data_type,
2858 2859
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2860 2861 2862 2863 2864 2865 2866 2867
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2868 2869 2870 2871 2872
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2873
  PADDLE_ENFORCE_NE(
2874 2875
      data_type,
      dafault_data_type,
2876 2877
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2878
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2879
          "LoDTensorArray.",
2880 2881
          name,
          Type()));
2882
  return data_type;
Y
Yu Yang 已提交
2883
}
2884

2885
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2898 2899 2900
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2901 2902
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2903 2904 2905 2906
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2907 2908 2909 2910 2911 2912 2913
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2914
      platform::errors::InvalidArgument(
2915 2916 2917 2918 2919
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2931 2932
    const ExecutionContext& ctx,
    const std::string& name1,
2933 2934 2935 2936 2937 2938
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2939 2940
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2941 2942 2943 2944 2945 2946 2947

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2948
phi::KernelKey OperatorWithKernel::GetExpectedKernelType(
2949
    const ExecutionContext& ctx) const {
2950
  return phi::KernelKey(IndicateDataType(ctx), ctx.GetPlace());
2951 2952
}

2953
phi::KernelKey OperatorWithKernel::GetKernelTypeForVar(
2954
    const std::string& var_name,
2955
    const phi::DenseTensor& tensor,
2956
    const phi::KernelKey& expected_kernel_type) const {
2957 2958 2959 2960
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
2961
  if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
2962
      (tensor.layout() != phi::DataLayout::ONEDNN) &&
2963 2964
      phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
          phi::DataLayout::kNHWC) {
2965 2966
    return phi::KernelKey(
        tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
2967 2968
  }
#endif
2969 2970
  return phi::KernelKey(
      tensor.place(), tensor.layout(), expected_kernel_type.dtype());
2971 2972
}

2973
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2974
    const ExecutionContext& ctx) const {
2975
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2976
  if (arg_map_fn_ == nullptr) {
2977 2978 2979 2980
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2981 2982 2983
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2984 2985 2986 2987
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2988 2989
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2990 2991
}

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

3051
void OperatorWithKernel::BuildPhiKernelContext(
3052 3053
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
3054 3055
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
3056

3057 3058 3059
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
3060

3061 3062 3063
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
3064

3065 3066 3067 3068 3069 3070 3071 3072 3073
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

3074 3075
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
3076 3077 3078
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
3079 3080
                        input_names.size(),
                        input_defs.size()));
3081

3082 3083
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
3084 3085 3086
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
3087 3088
                        output_names.size(),
                        output_defs.size()));
3089

3090 3091
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
3092 3093 3094
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
3095 3096
                        attr_names.size(),
                        attr_defs.size()));
3097
  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
3098
    auto it = ctx.inputs.find(input_names[i]);
3099 3100 3101

    // calcute the start and end index of the input tensors
    size_t start_idx =
3102
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
3103
    // deal with optional here
3104
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
3105
        (input_defs[i].type_index ==
3106
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
3107
         input_defs[i].type_index ==
3108
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
3109
         input_defs[i].type_index ==
3110 3111
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
3112
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
3113
      auto end_idx = start_idx + 1;
3114 3115
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
3116

H
hong 已提交
3117 3118 3119 3120
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
3121
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
3122
      const phi::TensorBase* tensor_in = nullptr;
3123
      auto* var = ins_vector[offset];
3124 3125
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
3126
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3127 3128
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
3129
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3130 3131 3132
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3133
      } else if (var->IsType<framework::LoDTensorArray>()) {
3134
        need_prepare_phi_data_ = true;
3135 3136
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3137 3138 3139
      } else if (var->IsType<framework::Vocab>()) {
        tensor_in = &(var->Get<framework::Vocab>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3140 3141 3142
      } else if (var->IsType<framework::FeedList>()) {
        tensor_in = &(var->Get<framework::FeedList>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3143 3144 3145 3146
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
3147
      }
3148
    }
3149
    // Note: here cannot deal with vector<LoDTensorArray> input
3150
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
3151
  }
3152
  VLOG(4) << "Done inputs";
3153
  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
3154
    auto it = ctx.outputs.find(output_names[i]);
3155
    size_t start_idx =
3156
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
3157 3158

    if (it == ctx.outputs.end() || it->second.empty()) {
3159
      VLOG(4) << "Output " << output_names[i] << " not found";
H
hong 已提交
3160 3161 3162 3163
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
3164
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
3165
      auto end_idx = start_idx + 1;
3166 3167
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
3168 3169 3170 3171
      continue;
    }
    auto& outs_vector = it->second;

3172
    size_t end_idx = start_idx + outs_vector.size();
3173 3174

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
3175
      phi::TensorBase* tensor_out = nullptr;
3176
      auto* var = outs_vector[offset];
3177
      if (var) {
3178 3179
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
3180
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3181 3182
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
3183
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3184 3185 3186
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3187
        } else if (var->template IsType<framework::LoDTensorArray>()) {
3188
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
3189 3190
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
3191
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3192 3193 3194
        } else if (var->template IsType<framework::Strings>()) {
          tensor_out = var->template GetMutable<framework::Strings>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3195 3196 3197 3198 3199 3200 3201
        } else if (var->template IsType<paddle::framework::RawTensor>()) {
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (!var->IsInitialized()) {
          // The following is for RAW type of var
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3202 3203 3204 3205 3206
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
3207
      } else {
3208
        VLOG(4) << "Output " << output_names[i] << " is nullptr";
3209
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3210
      }
3211
    }
3212 3213
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
3214
  }
3215
  VLOG(4) << "Done outputs";
3216
  for (size_t i = 0; i < attr_names.size(); ++i) {
3217 3218
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
3219 3220
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
3221 3222 3223 3224 3225 3226 3227
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
3228
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3229
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
3230
              break;
3231 3232 3233 3234
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
3235
            case proto::AttrType::INT:
3236
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3237
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
3238
              break;
3239 3240 3241 3242
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
3243
            case proto::AttrType::STRING:
3244
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
3245
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
3246
              break;
3247 3248 3249 3250
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
3251 3252 3253 3254 3255 3256 3257
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
3258
          need_prepare_phi_data_ = true;
3259
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
3260 3261
          phi_kernel_context->EmplaceBackAttr(
              std::move(framework::MakePhiScalarFromVar(*ins_vector.front())));
3262
        }
3263 3264 3265 3266 3267
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
3268
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3269
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
3270 3271
              break;
            case proto::AttrType::LONGS:
3272
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3273
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
3274 3275
              break;
            case proto::AttrType::INT:
3276
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3277
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
3278 3279
              break;
            case proto::AttrType::LONG:
3280
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3281
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
3282 3283 3284 3285 3286 3287 3288 3289
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
3290
          need_prepare_phi_data_ = true;
3291 3292
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
3293
            phi_kernel_context->EmplaceBackAttr(std::move(
3294
                framework::MakePhiIntArrayFromVar(*ins_vector.front())));
3295
          } else {  // ShapeTensorList
3296 3297
            phi_kernel_context->EmplaceBackAttr(
                std::move(framework::MakePhiIntArrayFromVarList(ins_vector)));
3298
          }
3299
        }
3300
        break;
3301

3302 3303
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3304 3305
            attr_iter,
            Attrs().end(),
3306 3307 3308 3309 3310 3311
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3312
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3313 3314 3315 3316 3317
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3318
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3319 3320 3321
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3322
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3323 3324 3325 3326 3327
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3328
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3329 3330 3331
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3332
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3333 3334 3335 3336 3337
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3338
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3339 3340 3341
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3342
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3343 3344 3345 3346 3347
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3348
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3349 3350 3351
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3352
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3353 3354 3355 3356 3357
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3358
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3359 3360 3361 3362 3363
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3364 3365
                attr_names[i]));
        }
3366 3367
      } break;
      default: {
3368
        if (attr_iter == Attrs().end()) {
3369
          // TODO(chenweihang): remove this backup searching later
3370 3371 3372 3373 3374 3375 3376 3377 3378
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3379 3380
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3381
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3382
                PADDLE_GET_CONST(float, attr_iter->second));
3383
            break;
3384 3385 3386 3387
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3388
          case phi::AttributeType::INT32:
3389
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3390
                PADDLE_GET_CONST(int, attr_iter->second));
3391 3392
            break;
          case phi::AttributeType::BOOL:
3393
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3394
                PADDLE_GET_CONST(bool, attr_iter->second));
3395 3396
            break;
          case phi::AttributeType::INT64:
3397
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3398
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3399 3400
            break;
          case phi::AttributeType::INT32S:
3401
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3402
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3403
            break;
3404 3405 3406 3407
          case phi::AttributeType::BOOLS:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second));
            break;
3408 3409 3410
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3411
                    PADDLE_GET_CONST(int, attr_iter->second)));
3412
            phi_kernel_context->EmplaceBackAttr(data_type);
3413 3414
          } break;
          case phi::AttributeType::STRING:
3415
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3416
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3417 3418 3419 3420
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3421
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3422
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3423 3424 3425
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3426
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3427 3428
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3429
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3440
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3441
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3442 3443
            break;
          case phi::AttributeType::STRINGS:
3444
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3445
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3446 3447 3448 3449 3450 3451
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3452
        }
3453 3454 3455
      }
    }
  }
3456
  VLOG(4) << "Done attributes";
3457

3458 3459 3460 3461 3462 3463
// Clear All old attrs before add new attrs,
// because sometimes old attrs may be misused.
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->ClearDnnAttr();
3464
    if (!RuntimeAttrs().empty()) need_prepare_phi_data_ = true;
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
  }
#endif

  // Note(YuanRisheng): Now, we can't open code below.
  // Because some unittest run OLD dygraph and ExtraAttr is not supported in OLD
  // dygraph. So, here we use trick that dev_ctx is a global object. We can
  // store ExtraAttr in static graph and when unittest run OLD dygraph, it can
  // obtain these ExtraAttr. We can open this code when OLD dygraph is no longer
  // used.
  /*
  #if defined(PADDLE_WITH_CUDA)
    if(phi::GPUContext::classof(dev_ctx)) {
      phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
      gpu_dnn_ctx->ClearDnnAttr();
    }
  #endif
  */
3482 3483 3484 3485 3486 3487
  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3488
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
  // which increases the The cost of development and understanding, so we
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3503
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
      if (it == ctx.inputs.end() || it->second.size() == 0) {
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3538 3539
}

Q
Qiao Longfei 已提交
3540
}  // namespace framework
L
liaogang 已提交
3541
}  // namespace paddle