operator.cc 132.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18
#include <unordered_set>
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/raw_tensor.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
29
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/var_type.h"
31
#include "paddle/fluid/operators/isfinite_op.h"
32
#include "paddle/fluid/operators/ops_extra_info.h"
33
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
34
#include "paddle/fluid/platform/enforce.h"
35
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
36
#include "paddle/fluid/platform/profiler/event_tracing.h"
37
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
38
#include "paddle/phi/common/int_array.h"
39
#include "paddle/phi/common/scalar.h"
40
#include "paddle/phi/core/compat/get_kerneltype_forvar_utils.h"
41
#include "paddle/phi/core/ddim.h"
42
#include "paddle/phi/core/kernel_context.h"
43 44
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
45

46
namespace phi {
47
class DenseTensor;
48
}  // namespace phi
49

50
#ifdef PADDLE_WITH_XPU
51 52
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
53
#endif
Q
Qiao Longfei 已提交
54

55 56
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
57
#include "paddle/fluid/platform/mkldnn_op_list.h"
58 59
#endif

60 61 62 63
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#endif

D
dzhwinter 已提交
64
DECLARE_bool(benchmark);
65
DECLARE_bool(check_nan_inf);
66
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
67
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
68
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
69

Q
Qiao Longfei 已提交
70 71 72
namespace paddle {
namespace framework {

73 74 75 76 77 78
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
79

80
static DDim GetDimsDebug(const Scope& scope,
81
                         const std::string& name,
82
                         bool get_actual_dim = false) {
83
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
84 85
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
86 87
  }

88 89
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
90
    return tensor.dims();
91
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
92
    if (get_actual_dim) {
93
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
94
    } else {
95
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
96
    }
S
Steffy-zxf 已提交
97 98
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
99 100 101 102 103
  } else {
    return DDim({-1});
  }
}

104
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
105 106 107 108 109
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

110
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
111 112 113 114
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
115

116 117
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
118
    if (UNLIKELY(!tensor.IsInitialized())) {
119 120
      return "";
    }
121
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
122 123
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
124 125 126
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
127
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
128
    }
S
Steffy-zxf 已提交
129 130
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
131 132 133 134 135
  } else {
    return "";
  }
}

136
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
137 138 139 140 141 142 143 144 145 146
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

147 148
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
149 150 151 152
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
153 154
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
155 156 157 158 159 160 161 162 163 164
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

165
static int GetRowSize(const Scope& scope, const std::string& name) {
166 167 168 169 170
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

171 172
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
173 174 175 176 177
  }

  return -1;
}

178
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
179 180 181 182 183 184 185
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

186 187
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
188
    return tensor.lod();
Q
Qiao Longfei 已提交
189 190 191 192 193
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
194 195 196 197 198
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
199
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
200 201 202 203 204 205
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
206
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
207 208 209 210 211 212
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
RuntimeInferShapeContext::RuntimeInferShapeContext(const OperatorBase& op,
                                                   const RuntimeContext& ctx)
    : op_(op), ctx_(ctx) {}

bool RuntimeInferShapeContext::HasInput(const std::string& name) const {
  // has only one input
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end()) {
    return false;
  }
  const auto& in = it->second;
  if (in.size() == 0) return false;
  PADDLE_ENFORCE_EQ(
      in.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input %s should not contain more than one inputs.", name));
  return in[0] != nullptr;
}

bool RuntimeInferShapeContext::HasOutput(const std::string& name) const {
  // has only one output
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end()) {
    return false;
  }
  const auto& out = it->second;
  if (out.size() == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(
      out.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Output %s should not contain more than one outputs.", name));
  return out[0] != nullptr;
}

bool RuntimeInferShapeContext::HasAttr(const std::string& name) const {
  return op_.HasAttr(name);
}

bool RuntimeInferShapeContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (auto& input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

bool RuntimeInferShapeContext::HasOutputs(const std::string& name,
                                          bool allow_null) const {
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end() || it->second.empty()) {
    return false;
  }
  if (!allow_null) {
    for (auto& output : it->second) {
      if (output == nullptr) return false;
    }
  }
  return true;
}

AttrReader RuntimeInferShapeContext::Attrs() const {
  return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
}

std::vector<std::string> RuntimeInferShapeContext::Inputs(
    const std::string& name) const {
  return op_.Inputs(name);
}

std::vector<std::string> RuntimeInferShapeContext::Outputs(
    const std::string& name) const {
  return op_.Outputs(name);
}

std::string RuntimeInferShapeContext::GetInputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->inputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->inputs().size()));
  return op_proto->inputs()[idx].name();
}

std::string RuntimeInferShapeContext::GetOutputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->outputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of outputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->outputs().size()));
  return op_proto->outputs()[idx].name();
}

void RuntimeInferShapeContext::ShareDim(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second[i];
  Variable* out_var = out_it->second[j];

  PADDLE_ENFORCE_EQ(
      in_var->Type(),
      out_var->Type(),
      platform::errors::InvalidArgument(
          "The type of input (%s) and output (%s) are inconsistent.", in, out));

  if (in_var->IsType<phi::SelectedRows>()) {
    auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
    auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
    out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
    out_sele_rows->set_rows(in_sele_rows.rows());
    out_sele_rows->set_height(in_sele_rows.height());
  } else if (in_var->IsType<phi::DenseTensor>()) {
    auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_lod_tensor->Resize(in_lod_tensor.dims());
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Currently, the input type of ShareDim only can be phi::DenseTensor "
        "or SelectedRows."));
  }
}

void RuntimeInferShapeContext::ShareAllLoD(const std::string& in,
                                           const std::string& out) const {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound(
                        "Input [%s] found error in Op [%s]", in, op_.Type()));
  PADDLE_ENFORCE_NE(out_it,
                    ctx_.outputs.end(),
                    platform::errors::NotFound(
                        "Output [%s] found error in Op [%s]", out, op_.Type()));

  auto& in_var_list = in_it->second;
  auto& out_var_list = out_it->second;

  PADDLE_ENFORCE_EQ(
      in_var_list.size(),
      out_var_list.size(),
      platform::errors::PreconditionNotMet(
          "Op [%s]: Input var size should be equal with output var size",
          op_.Type()));

  auto& out_var_names = op_.Outputs(out);

  for (size_t i = 0; i < in_var_list.size(); ++i) {
    if (out_var_names[i] == framework::kEmptyVarName) {
      continue;
    }

    Variable* in_var = in_var_list[i];
    if (!in_var->IsType<phi::DenseTensor>()) return;
    Variable* out_var = out_var_list[i];
    PADDLE_ENFORCE_EQ(
        out_var->IsType<phi::DenseTensor>(),
        true,
        platform::errors::PreconditionNotMet(
            "The %d-th output of Output(%s) must be phi::DenseTensor.",
            i,
            out_var_names[i]));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
    if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
  }
}

void RuntimeInferShapeContext::ShareLoD(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) const {
  if (can_skip_lod_) {
    return;
  }
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second.at(i);
  if (!in_var->IsType<phi::DenseTensor>()) return;
  Variable* out_var = out_it->second.at(j);
  PADDLE_ENFORCE_EQ(
      out_var->IsType<phi::DenseTensor>(),
      true,
      platform::errors::InvalidArgument(
          "The %zu-th output of Output(%s) must be phi::DenseTensor.", j, out));
  auto& in_tensor = in_var->Get<phi::DenseTensor>();
  auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
  out_tensor->set_lod(in_tensor.lod());

// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out phi::DenseTensor?
#ifdef PADDLE_WITH_MKLDNN
  // Fix me: ugly workaround below
  // Correct solution:
  //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
  //    layout of output tensor should be set "manually" in Compute()
  //    of each OPKernel. The reason layout should NOT be shared between
  //    input and output "automatically" (now by InferShape()->ShareLoD())
  //    is that layout transform may occur after InferShape().
  // Workaround:
  //    Skip set_layout() when input layout is kMKLDNN
  //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
  //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
  //    in Compute()
  if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
    out_tensor->set_layout(in_tensor.layout());
}

int32_t RuntimeInferShapeContext::GetLoDLevel(const std::string& in,
                                              size_t i) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

void RuntimeInferShapeContext::SetLoDLevel(const std::string& out,
                                           int32_t lod_level,
                                           size_t j) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

bool RuntimeInferShapeContext::IsRuntime() const { return true; }

bool RuntimeInferShapeContext::IsRunMKLDNNKernel() const {
  try {
    auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
    return ((op_with_kernel.kernel_type()) &&
            (op_with_kernel.kernel_type()->data_layout_ ==
             phi::DataLayout::ONEDNN));
  } catch (std::bad_cast& exp) {
    return false;
  }
}

// TODO(paddle-dev): Can this be template?
paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
RuntimeInferShapeContext::GetInputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
RuntimeInferShapeContext::GetOutputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

DDim RuntimeInferShapeContext::GetInputDim(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input(%s) should hold one element, but now it holds %zu elements.",
          name,
          vars.size()));
  return this->GetDim(vars[0]);
}

std::vector<DDim> RuntimeInferShapeContext::GetInputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  return GetDims(vars);
}

proto::VarType::Type RuntimeInferShapeContext::GetInputVarType(
    const std::string& name) const {
  return GetVarType(InputVars(name).at(0));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetInputsVarType(
    const std::string& name) const {
  return GetVarTypes(InputVars(name));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetOutputsVarType(
    const std::string& name) const {
  return GetVarTypes(OutputVars(name));
}

void RuntimeInferShapeContext::SetOutputDim(const std::string& name,
                                            const DDim& dim) {
  auto& vars = OutputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                        "but now it holds %zu elements.",
                                        name,
                                        vars.size()));
  SetDim(vars[0], dim);
}

void RuntimeInferShapeContext::SetOutputsDim(const std::string& name,
                                             const std::vector<DDim>& dims) {
  auto& vars = OutputVars(name);
  SetDims(vars, dims);
}

const phi::ArgumentMappingFn*
RuntimeInferShapeContext::GetPhiArgumentMappingFn() const {
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
}

const phi::KernelSignature*
RuntimeInferShapeContext::GetPhiDefaultKernelSignature() const {
  return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
}

void RuntimeInferShapeContext::SetSkipLoD(bool skip) { can_skip_lod_ = skip; }

P
pangengzheng 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
std::vector<LoD> RuntimeInferShapeContext::GetOutputsLod(
    const std::string& out) const {
  auto out_it = ctx_.outputs.find(out);
  auto& out_var_list = out_it->second;

  std::vector<LoD> ret;
  for (size_t i = 0; i < out_var_list.size(); ++i) {
    Variable* out_var = out_var_list[i];
    if (out_var != nullptr) {
      auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
      ret.push_back(out_tensor->lod());
    }
  }
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetOutputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  std::vector<Variable*> vars_res;
  for (auto var : vars) {
    if (var != nullptr) {
      vars_res.push_back(var);
    }
  }
  return GetDims(vars_res);
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
DDim RuntimeInferShapeContext::GetDim(Variable* var) const {
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::InvalidArgument("Input variable is nullptr."));
  if (var->IsType<phi::DenseTensor>()) {
    return var->Get<phi::DenseTensor>().dims();
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().GetCompleteDims();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
        "Variable's type is %s.",
        ToTypeName(var->Type())));
  }
}

std::vector<DDim> RuntimeInferShapeContext::GetDims(
    const std::vector<Variable*>& vars) const {
  std::vector<DDim> ret;
  ret.reserve(vars.size());
  std::transform(
      vars.begin(), vars.end(), std::back_inserter(ret), [this](Variable* var) {
        return this->GetDim(var);
      });
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetRepeatedDims(
    const std::string& name) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetRepeatedDims method only ban be used in compile time."));
}

void RuntimeInferShapeContext::SetDim(Variable* var, const DDim& dim) {
  if (var->IsType<phi::DenseTensor>()) {
    var->GetMutable<phi::DenseTensor>()->Resize(dim);
  } else if (var->IsType<phi::SelectedRows>()) {
    var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Variable type error, expect phi::DenseTensor or SelectedRows, but "
        "received "
        "(%s).",
        ToTypeName(var->Type())));
  }
}

void RuntimeInferShapeContext::SetDims(const std::vector<Variable*>& vars,
                                       const std::vector<DDim>& dims) {
  size_t length = vars.size();
  PADDLE_ENFORCE_EQ(length,
                    dims.size(),
                    platform::errors::InvalidArgument(
                        "The number of input variables do not match the "
                        "number of input dimensions, the number of variables "
                        "is %zu, the number of dimensions is %zu.",
                        length,
                        dims.size()));
  for (size_t i = 0; i < length; ++i) {
    if (vars[i] == nullptr) {
      continue;
    }
    SetDim(vars[i], dims[i]);
  }
}

void RuntimeInferShapeContext::SetRepeatedDims(const std::string& name,
                                               const std::vector<DDim>& dims) {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetRepeatedDims method only can be used in compile time."));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetVarTypes(
    const std::vector<Variable*>& vars) const {
  std::vector<proto::VarType::Type> retv;
  retv.resize(vars.size());
  std::transform(vars.begin(),
                 vars.end(),
                 retv.begin(),
                 std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                           this,
                           std::placeholders::_1));
  return retv;
}

proto::VarType::Type RuntimeInferShapeContext::GetVarType(Variable* var) const {
  return ToVarType(var->Type());
}

const std::vector<Variable*>& RuntimeInferShapeContext::InputVars(
    const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.inputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the input (%s).", op_.Type(), name));
  return it->second;
}

const std::vector<Variable*>& RuntimeInferShapeContext::OutputVars(
    const std::string& name) const {
  auto it = ctx_.outputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.outputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
  return it->second;
}

747
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
748 749 750
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
751
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
752 753 754 755
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
756
#else
757
      auto dev_id = place.device;
P
peizhilin 已提交
758
      platform::SetDeviceId(dev_id);
759 760 761
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
762 763 764 765
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
766
#else
767
      auto dev_id = place.device;
768
      platform::SetXPUDeviceId(dev_id);
769 770 771 772 773 774 775 776
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
777
      phi::DeviceManager::SetDevice(place);
778
#endif
P
peizhilin 已提交
779
    }
P
peizhilin 已提交
780

781
    {
782 783 784
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
785
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
786
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
787 788
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
789 790
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
791
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
792
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
793 794
      RunImpl(scope, place);
    }
795

Z
Zhang Ting 已提交
796
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
797
  } catch (platform::EnforceNotMet& exception) {
798
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
799
    throw std::move(exception);
800 801 802 803 804 805
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
806
  } catch (...) {
807
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
808
    std::rethrow_exception(std::current_exception());
809
  }
810 811
}

812
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
813
  return inputs_.find(name) != inputs_.end();
814 815
}

816
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
817
  auto& ins = Inputs(name);
818
  PADDLE_ENFORCE_LE(
819 820
      ins.size(),
      1UL,
821
      platform::errors::InvalidArgument(
822 823
          "Operator %s's input %s should contain only one variable.",
          type_,
824
          name));
Y
Yu Yang 已提交
825
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
826 827
}

Y
Yu Yang 已提交
828 829
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
830
  auto it = inputs_.find(name);
831
  PADDLE_ENFORCE_NE(
832 833 834 835
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
836
  return it->second;
Y
Yan Chunwei 已提交
837 838
}

839
bool OperatorBase::HasOutputs(const std::string& name) const {
840
  if (outputs_.find(name) != outputs_.end()) {
841 842 843 844 845 846
    return true;
  } else {
    return false;
  }
}

847
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
848
  auto& outs = Outputs(name);
849
  PADDLE_ENFORCE_LE(
850 851
      outs.size(),
      1UL,
852
      platform::errors::InvalidArgument(
853 854
          "Operator %s's output %s should contain only one variable.",
          type_,
855
          name));
Y
Yu Yang 已提交
856
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
857 858
}

Y
Yu Yang 已提交
859 860
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
861
  auto it = outputs_.find(name);
862
  PADDLE_ENFORCE_NE(
863 864
      it,
      outputs_.end(),
865 866
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
867
  return it->second;
Y
Yan Chunwei 已提交
868 869
}

870
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
871
  std::stringstream ss;
Y
Yu Yang 已提交
872
  ss << "Op(" << type_ << "), inputs:{";
873

874
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
875 876
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
877 878
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
879 880
  }

Y
Yu Yang 已提交
881 882
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
883 884
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
885 886
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
887 888
      auto var_name = input.second[i];
      ss << var_name;
889
      if (scope) {
Q
Qiao Longfei 已提交
890 891 892 893 894 895 896
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
897 898 899
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
900 901 902
          std::string place = is_no_need_buffer_var
                                  ? "unknown_place"
                                  : GetPlace(*scope, var_name);
Q
Qiao Longfei 已提交
903
          ss << ":" << dtype;
904 905
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
906
          ss << "(" << place << ")";
907
        }
908
      }
Y
Yu Yang 已提交
909 910 911
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
912
    }
Y
Yu Yang 已提交
913
    ss << "]";
Y
Yu Yang 已提交
914 915
    ++it;
    if (it != inputs_.end()) {
916 917
      ss << ", ";
    }
Q
Qiao Longfei 已提交
918
  }
Y
Yu Yang 已提交
919
  ss << "}, outputs:{";
Y
Yu Yang 已提交
920 921
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
922 923
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
924 925
      auto var_name = output.second[i];
      ss << var_name;
926
      if (scope) {
Q
Qiao Longfei 已提交
927 928 929 930 931 932 933
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
934 935
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
936 937
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
938
          ss << "(" << GetPlace(*scope, var_name) << ")";
939
        }
940
      }
Y
Yu Yang 已提交
941 942 943
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
944
    }
Y
Yu Yang 已提交
945
    ss << "]";
Y
Yu Yang 已提交
946 947
    ++it;
    if (it != outputs_.end()) {
948 949
      ss << ", ";
    }
Q
Qiao Longfei 已提交
950
  }
Y
Yu Yang 已提交
951
  ss << "}.";
Q
Qiao Longfei 已提交
952 953 954
  return ss.str();
}

Y
Yu Yang 已提交
955
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
956 957
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
958
                           const AttributeMap& attrs)
S
sneaxiy 已提交
959 960 961 962 963 964
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
965 966 967 968 969 970 971 972
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
973 974 975 976 977

  // canonicalize attrs
  if (info_ && info_->proto_) {
    CanonicalizeScalarAttrs(*info_->proto_, &attrs_);
  }
978
  // In OperatorBase level, all attributes with VarDesc type will be considered
979 980 981 982 983 984
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
985
}
986

Q
qijun 已提交
987 988
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
989
  for (auto& o : inputs_) {
Q
qijun 已提交
990 991 992 993 994 995
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
1006
  auto& info = Info();
Y
Yu Yang 已提交
1007 1008

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
1009
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
1019 1020
}

1021
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
1022
  if (info_ == nullptr || info_->proto_ == nullptr) return;
1023

S
sneaxiy 已提交
1024
  for (auto& in : info_->Proto().inputs()) {
1025
    if (!in.dispensable() && !in.extra()) {
1026
      PADDLE_ENFORCE_NE(
1027 1028 1029 1030
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
1031
    }
1032 1033
  }

S
sneaxiy 已提交
1034
  for (auto& out : info_->Proto().outputs()) {
1035
    if (!out.dispensable() && !out.extra() && !out.intermediate()) {
1036
      PADDLE_ENFORCE_NE(
1037 1038 1039 1040
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
1041
    }
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
1057

1058 1059
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
1060 1061
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
1062 1063
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
1064
  } else {
1065
    PADDLE_THROW(platform::errors::InvalidArgument(
1066
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1067
        ToTypeName(var.Type())));
Q
QI JUN 已提交
1068 1069 1070
  }
}

1071
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
1072 1073
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
1074 1075
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
1076
  } else {
1077
    PADDLE_THROW(platform::errors::InvalidArgument(
1078
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1079
        ToTypeName(var->Type())));
Q
QI JUN 已提交
1080 1081 1082
  }
}

1083 1084 1085 1086 1087 1088 1089 1090
OperatorWithKernel::OperatorWithKernel(const std::string& type,
                                       const VariableNameMap& inputs,
                                       const VariableNameMap& outputs,
                                       const AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

OperatorWithKernel::~OperatorWithKernel() = default;

1091
bool ExecutionContext::HasInput(const std::string& name) const {
1092
  auto* var = InputVar(name);
1093 1094 1095
  return var != nullptr;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

1110
bool ExecutionContext::HasOutput(const std::string& name) const {
1111
  auto* var = OutputVar(name);
1112 1113 1114
  return var != nullptr;
}

X
Xin Pan 已提交
1115
const Variable* ExecutionContext::InputVar(const std::string& name) const {
1116 1117
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
1118 1119 1120
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

1121
  PADDLE_ENFORCE_LE(
1122 1123
      it->second.size(),
      1UL,
1124
      platform::errors::InvalidArgument(
1125
          "Operator %s's input %s should contain only one variable.",
1126 1127
          op_.Type(),
          name));
X
Xin Pan 已提交
1128 1129 1130
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
1131
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
1132 1133 1134
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

1135
  PADDLE_ENFORCE_LE(
1136 1137
      it->second.size(),
      1UL,
1138 1139
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
1140 1141
          op_.Type(),
          name));
X
Xin Pan 已提交
1142 1143 1144
  return it->second.empty() ? nullptr : it->second[0];
}

1145
template <>
1146 1147
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
1148 1149
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
1150 1151
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
1152 1153
    return {};
  }
1154
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
1155
  res.reserve(vars.size());
1156 1157 1158
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1159
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
1160
                   if (var == nullptr) return nullptr;
1161 1162 1163 1164 1165 1166 1167 1168
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
1169 1170 1171 1172
                 });
  return res;
}

1173
template <>
1174
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
1175
    const std::string& name) const {
H
hong 已提交
1176 1177 1178
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
1179 1180
    return {};
  }
1181
  std::vector<phi::DenseTensor*> res;
1182
  res.reserve(vars.size());
1183 1184 1185
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1186
                 [&](Variable* var) -> phi::DenseTensor* {
1187
                   return var == nullptr ? nullptr
1188
                                         : var->GetMutable<phi::DenseTensor>();
1189
                 });
1190 1191 1192
  return res;
}

Y
Yu Yang 已提交
1193
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
1194
  // check in new Function kernel first
1195
  bool has_phi_kernel = false;
1196
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
1197
  auto kernel_key_map =
1198
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
1199
  for (auto& kernel : kernel_key_map) {
1200
    has_phi_kernel = true;
1201
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
1202 1203 1204 1205
      return true;
    }
  }

Y
Yu Yang 已提交
1206 1207
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
1221 1222 1223
      return true;
    }
  }
H
hong 已提交
1224

Y
Yu Yang 已提交
1225 1226 1227
  return false;
}

1228
struct OperatorWithKernel::CacheImpl {
1229
  static const char kNotAllowInferShapeCahce[];
1230
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
1231 1232 1233 1234 1235 1236 1237
                     RuntimeInferShapeContext* infer_shape_ctx,
                     const std::vector<phi::DenseTensor*>& tensors,
                     bool not_allow_infer_shape_cache)
      : kernel_ctx_(kernel_ctx),
        infer_shape_ctx_(infer_shape_ctx),
        tensors_(tensors),
        not_allow_infer_shape_cache_(not_allow_infer_shape_cache) {}
1238 1239 1240 1241 1242 1243

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
  bool NeedInferShape() {
    if (not_allow_infer_shape_cache_) return true;

    bool ret{false};
    if (last_ddims_.empty() || tensors_.empty()) ret = true;
    if (!ret) {
      CHECK_EQ(last_ddims_.size(), tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        if (tensors_[i]->dims() != last_ddims_[i]) {
          ret = true;
          break;
        }
      }
    }
    if (ret) {
      last_ddims_.resize(tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        last_ddims_[i] = tensors_[i]->dims();
      }
    }
    VLOG(3) << "need infer shape is " << ret;
    return ret;
  }

1268 1269 1270
 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
1271 1272 1273
  std::vector<phi::DenseTensor*> tensors_;
  bool not_allow_infer_shape_cache_;
  std::vector<phi::DDim> last_ddims_;
1274
};
1275 1276
const char OperatorWithKernel::CacheImpl::kNotAllowInferShapeCahce[] =
    "@NOT_ALLOW_INFERSHAPE_CACHE@";
1277

1278 1279
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1280
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1281 1282 1283
  if (tensor.memory_size() == 0) {
    return;
  }
1284 1285
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1286 1287
    return;
  }
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1300 1301
}

1302 1303 1304 1305
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1306 1307
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1320 1321
          op_kernels.begin(),
          op_kernels.end(),
1322 1323 1324 1325 1326 1327 1328
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
Q
QingshuChen 已提交
1352 1353 1354 1355
                   paddle::platform::is_xpu_support_op(
                       type_,
                       framework::TransToPhiDataType(
                           kern_pair.first.data_type_));
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1367
bool OperatorWithKernel::SupportsMKLDNN(const phi::DataType data_type) const {
1368 1369 1370 1371 1372
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1373 1374
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
1375
                           kern_pair.first.dtype() == data_type;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
1391 1392
                   kern_pair.first.data_type_ ==
                       paddle::framework::TransToProtoVarType(data_type);
1393 1394
          });
    }
1395
  }
1396 1397
}

1398
bool OperatorWithKernel::SupportsCUDNN(const phi::DataType data_type) const {
1399 1400
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
1401 1402 1403 1404 1405 1406 1407
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPUDNN &&
                           kern_pair.first.dtype() == data_type;
                  });
1408 1409 1410 1411 1412 1413 1414 1415
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
1416 1417
      proto::VarType::Type fluid_data_type =
          framework::TransToProtoVarType(data_type);
1418 1419 1420
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
1421
          [fluid_data_type](OpKernelMap::const_reference kern_pair) {
1422 1423
            return platform::is_gpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kCUDNN &&
1424
                   kern_pair.first.data_type_ == fluid_data_type;
1425 1426 1427 1428 1429
          });
    }
  }
}

1430
bool OperatorWithKernel::SupportsKernelType(
1431
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1432 1433
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1434 1435 1436 1437 1438
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1439
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1440
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1441 1442
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1443 1444
  }
#endif
1445 1446 1447 1448 1449

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
1450
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1451
            type_, framework::TransToPhiDataType(kernel_type.data_type_));
1452 1453 1454 1455 1456 1457 1458 1459 1460
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1461 1462
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1463 1464 1465
  }
#endif

1466
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1467 1468 1469 1470 1471
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1472
#ifdef PADDLE_WITH_MKLDNN
1473
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1474 1475 1476
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
1477
    tmp_kernel_type.data_layout_ = framework::DataLayout::ONEDNN;
1478 1479 1480 1481
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1482 1483 1484 1485 1486 1487 1488 1489
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kCUDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1490
  return kernel_iter != kernels.end();
1491 1492
}

1493
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
1494
                                         phi::DataType data_type) const {
1495
  return ctx.HasAttr("use_mkldnn") && ctx.Attr<bool>("use_mkldnn") &&
1496 1497
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1498 1499
}

1500 1501 1502 1503 1504
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
  return this->CanMKLDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1505
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
1506
                                        phi::DataType data_type) const {
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
  bool use_cudnn = ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn") &&
                   paddle::platform::is_gpu_place(ctx.GetPlace());

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
    use_cudnn &= (dev_ctx.cudnn_handle() != nullptr);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#if defined(PADDLE_WITH_CUDA)
1518
  if (use_cudnn && data_type == phi::DataType::BFLOAT16) {
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
    PADDLE_ENFORCE_GE(
        platform::DnnVersion(),
        8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA

  return use_cudnn && this->SupportsCUDNN(data_type);
}

1530 1531 1532 1533 1534
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                                        proto::VarType::Type data_type) const {
  return this->CanCUDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1535 1536 1537 1538 1539 1540 1541
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1542
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1543 1544
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1545
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1546
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1547 1548
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
template <typename T>
bool HasSameTensorType(phi::TensorBase* phi_tensor, Variable* var) {
  if (phi_tensor == nullptr && var == nullptr) {
    return true;
  } else if (phi_tensor != nullptr && var != nullptr) {
    if (T::classof(phi_tensor) && var->IsType<T>()) {
      return true;
    }
  }
  return false;
}

// TODO(YuanRisheng): We need collect all `need_prepare_phi_data_`
// into this function.
void OperatorWithKernel::CheckWhetherPreparePhiData(
    const VariableNameMap& innames,
    const VariableNameMap& outnames,
    const Scope& scope) const {
  if (run_phi_kernel_ && impl_ != nullptr) {
    const auto& phi_kernel_context = impl_->getKernelContext();
    size_t phi_tensor_index = 0;
    // Check each tensor in KernelContext, if there is a tensor that has
    // different type with variable. The PhiKernelContext need be reconstructed.
    // We use kernel_signature_'s output to retrieve tensor. Because the tensor
    // in phi_kernel_context stored in the order of kernel_signature_'s output.
    if (phi_kernel_context->OutputsSize() >= phi_tensor_index ||
        kernel_signature_ == nullptr) {
      need_prepare_phi_data_ = true;
      return;
    }

    const auto& phi_output_names = kernel_signature_->output_names;
    for (auto& phi_output_name : phi_output_names) {
      const auto& iter = outnames.find(phi_output_name);
      if (iter != outnames.end()) {
        for (auto& var_name : iter->second) {
          auto var_output = scope.FindVar(var_name);
          auto phi_output =
              phi_kernel_context->MutableOutputAt<phi::TensorBase>(
                  phi_tensor_index);
          if (phi_output == nullptr) {
            continue;
          }
          if (!(HasSameTensorType<phi::DenseTensor>(phi_output, var_output) ||
                HasSameTensorType<phi::SparseCooTensor>(phi_output,
                                                        var_output) ||
                HasSameTensorType<framework::Strings>(phi_output,
                                                      var_output))) {
            need_prepare_phi_data_ = true;
          }
          phi_tensor_index++;
        }
      }
    }
  }
}

L
luotao1 已提交
1606 1607
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1608 1609
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1610 1611 1612
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1613
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1614
    all_kernels_must_compute_runtime_shape_ = true;
C
csy0225 已提交
1615
  const Scope* cur_scope = &scope;
1616
  CheckWhetherPreparePhiData(Inputs(), Outputs(), scope);
1617
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1618 1619
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1620 1621
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
1622
    if (!all_kernels_must_compute_runtime_shape_ && impl_->NeedInferShape()) {
1623
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
1624
    }
1625
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1626
  } else {
C
csy0225 已提交
1627
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
1628
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
C
csy0225 已提交
1629 1630 1631 1632
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1633
    }
1634
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1635 1636 1637 1638 1639 1640
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1641
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1642
  bool fallback_to_cpu = false;
1643
  auto* dev_ctx = pool.Get(place);
1644 1645 1646 1647
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
H
HongyuJia 已提交
1648
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1649

1650 1651 1652 1653 1654 1655
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1656 1657 1658 1659 1660
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1661 1662
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1663
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1664
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1665 1666 1667 1668 1669 1670
      if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
        kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
      } else {
        kernel_signature_.reset(new phi::KernelSignature(
            std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      }
1671

1672 1673
      VLOG(6) << *kernel_signature_.get();
      phi_kernel_name = kernel_signature_->name;
1674 1675 1676
      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);
1677 1678 1679 1680 1681 1682 1683
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1684
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1685
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1700
                  << phi_kernel_name
1701
                  << ", using_kernel_key:" << *kernel_type_.get();
1702
          auto try_phi_kernel_key =
1703
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1704 1705
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1706 1707
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1708
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1709 1710 1711
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1712
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1713 1714 1715 1716
          }
        }
      }
#endif
1717 1718
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1719
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1720
              phi_kernel_name, phi_kernel_key)));
1721

1722
      if (phi_kernel_->IsValid()) {
1723
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
1724 1725
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1726
      } else {
1727 1728
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `"
                << phi_kernel_name << "` not found.";
1729
      }
1730
    } else {
1731
      phi_kernel_name = kernel_signature_->name;
1732
// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
1733
// LibraryType::kMKLDNN and data_layout_ = DataLayout::ONEDNN. But the default
1734
// values are kPlain, so we need to modify the library_type and data_layout_
1735 1736 1737 1738
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1739
#ifdef PADDLE_WITH_MKLDNN
1740 1741
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1742 1743
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
1744
        kernel_type_->data_layout_ = framework::DataLayout::ONEDNN;
1745 1746 1747
      }
#endif

1748 1749 1750 1751 1752 1753
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (this->CanCUDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kCUDNN;
      }
#endif

1754 1755 1756
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1757 1758 1759 1760
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1761
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1762
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1776
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1777
                  << phi_kernel_name
1778
                  << ", using_kernel_key:" << *kernel_type_.get();
1779
          auto try_phi_kernel_key =
1780
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1781 1782
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1783
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1784
            VLOG(3) << "modify XPU KP kernel in static graph: "
1785
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1786 1787 1788
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1789
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1790 1791 1792 1793
          }
        }
      }
#endif
1794
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1795
    }
1796 1797 1798 1799

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1800
#if defined(PADDLE_WITH_XPU)
1801 1802
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
Q
QingshuChen 已提交
1803 1804
        !paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1805
#endif
1806 1807 1808 1809
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
1810
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1811
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1812 1813 1814 1815 1816 1817
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1818 1819 1820 1821 1822 1823
    bool in_custom_back_list = false;
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    in_custom_back_list =
        phi::backends::custom_device::is_in_custom_black_list(phi_kernel_name);
#endif
    if (phi_kernel_->IsValid() && !in_custom_back_list
1824
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1825 1826
        && !is_xpu_unsupport
#endif
1827 1828 1829
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1830
    ) {
1831
      run_phi_kernel_ = true;
1832 1833 1834
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1835 1836 1837 1838 1839 1840 1841 1842 1843

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif
1844 1845 1846
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1847
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1848
          || is_xpu_unsupport
1849
#endif
1850 1851
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
1852 1853 1854
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
          || in_custom_back_list
1855
#endif
1856
      ) {
1857
        fallback_to_cpu = true;
1858 1859 1860
        if (in_custom_back_list) {
          VLOG(3) << "fluid in black list: " << phi_kernel_name;
        }
H
HongyuJia 已提交
1861
        auto phi_cpu_kernel_key = FallBackToCpu(phi_kernel_key, *this);
1862
        phi_kernel_.reset(
1863
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1864
                phi_kernel_name, phi_cpu_kernel_key)));
1865 1866

        dev_ctx = pool.Get(platform::CPUPlace());
1867
        if (phi_kernel_->IsValid()) {
1868
          VLOG(6) << "Static graph mode PrepareImpl - kernel name: "
1869 1870
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1871
          run_phi_kernel_ = true;
1872 1873
        }
      }
1874 1875
    }
  }
1876
  if (!run_phi_kernel_) {
1877 1878
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1879
      dev_ctx = pool.Get(kernel_type_->place_);
1880
    }
1881 1882
  }

Y
yuyang18 已提交
1883 1884
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1885 1886
  Scope* transfer_scope = nullptr;
  {
1887
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1888
                                       platform::TracerEventType::OperatorInner,
1889 1890
                                       1,
                                       platform::EventRole::kInnerOp);
1891
    if (need_prepare_data_) {
1892 1893 1894 1895 1896 1897
      transfer_scope =
          PrepareData(scope,
                      framework::TransOpKernelTypeToPhiKernelKey(*kernel_type_),
                      &transfered_inplace_vars,
                      runtime_ctx,
                      dev_ctx->GetPlace());
1898
    }
1899
  }
Y
yuyang18 已提交
1900 1901 1902 1903
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1904
  if (!all_kernels_must_compute_runtime_shape_) {
1905
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1906
                                       platform::TracerEventType::OperatorInner,
1907 1908
                                       1,
                                       platform::EventRole::kInnerOp);
1909
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1910
    this->Info().infer_shape_(&infer_shape_ctx);
1911 1912
    record_event.End();
    platform::RecordOpInfoSupplement(
1913
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx, Id());
1914
  }
1915 1916 1917 1918 1919

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1920 1921
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1922
  {
1923
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1924
                                       platform::TracerEventType::OperatorInner,
1925 1926
                                       1,
                                       platform::EventRole::kInnerOp);
1927 1928
    if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                               phi::KernelRegisteredType::FUNCTION) {
1929
      phi::KernelContext phi_kernel_context;
1930 1931
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
        // TODO(inference): Now we only suppor dense_tensor cache, we may be
        // support ScalarTensor, SparseTensor in future.
        bool all_dense_tensor_input_{true};
        for (auto& iter : Inputs()) {
          for (auto& name : iter.second) {
            all_dense_tensor_input_ &=
                scope.FindVar(name)->IsType<phi::DenseTensor>();
          }
        }

        std::vector<phi::DenseTensor*> tensors;
        if (all_dense_tensor_input_) {
          for (auto& iter : Inputs()) {
            for (auto& name : iter.second) {
              auto* t = scope.FindVar(name)->GetMutable<phi::DenseTensor>();
              tensors.push_back(t);
            }
          }
        }

        impl_.reset(
1953
            new CacheImpl(new phi::KernelContext(),
1954 1955 1956
                          new RuntimeInferShapeContext(*this, *runtime_ctx),
                          tensors,
                          HasAttr(CacheImpl::kNotAllowInferShapeCahce)));
1957
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1958
        (*phi_kernel_)(impl_->getKernelContext());
1959
      } else {
1960
        phi::KernelContext phi_kernel_context;
1961 1962
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1963 1964
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1965
      }
1966 1967 1968 1969 1970
    } else if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                                      phi::KernelRegisteredType::STRUCTURE) {
      ExecutionContext execution_context(
          *this, exec_scope, *dev_ctx, *runtime_ctx);
      (*phi_kernel_)(&execution_context);
1971 1972 1973 1974
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1975 1976 1977
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
1978
  }
D
dzhwinter 已提交
1979

Y
yuyang18 已提交
1980
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1981
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1982
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1983
  }
1984 1985 1986 1987 1988 1989 1990

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1991 1992 1993 1994 1995 1996 1997 1998
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1999

D
dzhwinter 已提交
2000
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
2001
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
2002
    dev_ctx->Wait();
2003 2004
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
2005 2006
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
2007
  }
C
chengduoZH 已提交
2008 2009

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
2010
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
2011
  }
2012 2013 2014 2015

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
C
csy0225 已提交
2016 2017
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
2018
  }
Q
Qiao Longfei 已提交
2019
}
X
Xin Pan 已提交
2020

2021 2022
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
2023 2024 2025
  phi::KernelKey phi_kernel_key = this->GetExpectedKernelType(ctx);
  auto expected_kernel_key =
      framework::TransPhiKernelKeyToOpKernelType(phi_kernel_key);
2026 2027 2028

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
2029
// data_layout_ of expected_kernel_key need to be adjusted. There are three
2030
// statements in if condition:
2031 2032 2033
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
2034
#ifdef PADDLE_WITH_MKLDNN
2035
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
2036 2037
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
2038
    expected_kernel_key.data_layout_ = framework::DataLayout::ONEDNN;
2039 2040 2041
  }
#endif

2042 2043 2044 2045 2046 2047
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN;
  }
#endif

2048 2049 2050
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
2061 2062 2063
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
2064 2065
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2066
      if (SupportGPU()) {
2067
        auto& dev_ctx = ctx.device_context();
2068
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2069 2070
      }
#endif
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
张春乔 已提交
2090

2091
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
2092 2093
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
2120 2121 2122
      }
    }
  }
2123 2124 2125 2126 2127 2128

  if (platform::places_are_same_class(expected_kernel_key.place_,
                                      ctx.GetPlace())) {
    expected_kernel_key.place_ = ctx.GetPlace();
  }

C
cc 已提交
2129 2130
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
2131 2132 2133
  return expected_kernel_key;
}

2134
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2135
    const ExecutionContext& ctx) const {
2136 2137 2138 2139 2140 2141 2142
  std::string phi_kernel_name;
  if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
    kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
  } else {
    kernel_signature_.reset(
        new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  }
2143
  VLOG(6) << *kernel_signature_.get();
2144
  phi_kernel_name = kernel_signature_->name;
2145 2146 2147
  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2148 2149 2150
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2151

2152
  if (phi_kernel_->IsValid()) {
2153 2154
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
            << phi_kernel_name << " | kernel key: " << phi_kernel_key
2155
            << " | kernel: " << *phi_kernel_;
2156
  } else {
2157
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `" << phi_kernel_name
2158 2159
            << "` not found.";
  }
2160
  return phi_kernel_key;
2161 2162 2163 2164 2165 2166 2167
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2168 2169
      kernels_iter,
      all_op_kernels.end(),
2170
      platform::errors::Unimplemented(
2171 2172 2173 2174 2175 2176
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2177 2178

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2179

L
Liu Yiqun 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2189
#endif
2190 2191

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2192
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2193
      (kernel_iter == kernels.end() ||
Q
QingshuChen 已提交
2194 2195 2196
       !paddle::platform::is_xpu_support_op(
           type_,
           framework::TransToPhiDataType(expected_kernel_key.data_type_)))) {
2197
    VLOG(3) << "fluid missing XPU kernel: " << type_
2198 2199 2200 2201 2202
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2203
#endif
L
Liu-xiandong 已提交
2204 2205

#ifdef PADDLE_WITH_XPU_KP
2206 2207 2208
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
2209
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
2210 2211
            type_,
            framework::TransToPhiDataType(expected_kernel_key.data_type_));
2212 2213 2214
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2215
      VLOG(3) << "fluid xpu_kp using rt mode ";
2216 2217
    }
    if (use_xpu_kp_kernel_debug) {
2218
      VLOG(3) << "fluid xpu_kp using debug mode ";
2219 2220 2221
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2222 2223
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2224 2225
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2226
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2227
      // if the fluid do not register related kernel, it can't work and have
2228 2229 2230 2231 2232 2233 2234
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2235
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2236 2237
                << ", using_kernel_key:" << expected_kernel_key;
      }
2238
    }
Q
QingshuChen 已提交
2239 2240
    bool is_xpu_unsupport = (!paddle::platform::is_xpu_support_op(
        type_, framework::TransToPhiDataType(expected_kernel_key.data_type_)));
2241 2242
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2243
      VLOG(3) << "fluid missing XPU kernel: " << type_
2244 2245 2246 2247 2248
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2249 2250 2251
  }
#endif

A
Allen Guo 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
张春乔 已提交
2262

2263 2264 2265 2266 2267 2268 2269
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2270 2271 2272
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2273
#endif
2274 2275 2276 2277 2278 2279
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2280

2281 2282 2283 2284 2285
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2286 2287
}

Y
yuyang18 已提交
2288
void OperatorWithKernel::TransferInplaceVarsBack(
2289 2290
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2291 2292
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2293
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2294
    auto* origin_var = scope.FindVar(var_name);
2295 2296 2297
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2298
    auto* original_tensor =
C
chengduo 已提交
2299
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2300
    auto* var = transfer_scope.FindVar(var_name);
2301 2302 2303
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2304
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
2305 2306 2307 2308
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2338
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2358
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2369
      phi::DenseTensor out;
2370 2371 2372 2373 2374 2375
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2376
Scope* OperatorWithKernel::PrepareData(
2377
    const Scope& scope,
2378
    const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
2379
    std::vector<std::string>* transfered_inplace_vars,
2380 2381
    RuntimeContext* ctx,
    const phi::Place& place) const {
Y
yuyang18 已提交
2382
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2383

2384
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2385 2386 2387 2388
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2389 2390
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2391 2392 2393
    }
  }

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
  auto has_infer_varkernel_fn =
      (run_phi_kernel_ && phi_kernel_->get_kerneltype_forvar_fn_ != nullptr);
  phi::AttributeMap infer_attrs{};
  auto fluid_attrs = Attrs();
  phi::GetKernelTypeForVarContext infer_varkernel_context =
      BuildGetKernelTypeForVarContext(expected_kernel_key,
                                      fluid_attrs,
                                      &infer_attrs,
                                      has_infer_varkernel_fn);

2404 2405 2406 2407 2408 2409 2410 2411 2412
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2413

Y
yuyang18 已提交
2414
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2415
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2416 2417 2418
        continue;
      }

C
chengduo 已提交
2419
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2420

2421
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2422 2423 2424 2425 2426 2427 2428
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
2429
        // oneDNN shape of Var may differ from kNHWC Var
2430 2431
        // In such situation corressponding resized Var
        // has to be created and registered
2432
        if ((tensor_in->layout() == DataLayout::ONEDNN) &&
2433
            (var->IsType<phi::DenseTensor>() == true) &&
2434
            (expected_kernel_key.layout() != DataLayout::ONEDNN) &&
2435 2436
            (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
             DataLayout::kNHWC) &&
2437
            (tensor_in->dims().size() >= 3)) {
2438
          // Mixed execution : oneDNN and GPU is not supported!
2439 2440 2441 2442
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2443
          in_vars->at(i) = trans_var;
2444
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2445
          out->Resize(tensor_in->dims());
2446
          phi::funcs::MatchShapeToLayout(
2447
              out, tensor_in->layout(), DataLayout::kNHWC);
2448
          VLOG(7) << "Created reshaped dummy input based on oneDNN "
2449
                     "phi::DenseTensor , "
2450
                     "but kNHWC layout"
2451
                  << in_name << " in Operator " << type_;
2452
        } else {
2453 2454
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2455 2456 2457 2458 2459
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2460 2461 2462 2463
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2464 2465
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
2466 2467 2468 2469 2470 2471 2472
      if (has_infer_varkernel_fn) {
        infer_varkernel_context.SetVarName(const_cast<std::string*>(&in_name));
        infer_varkernel_context.SetDenseTensor(
            const_cast<phi::DenseTensor*>(tensor_in));
        kernel_type_for_var =
            phi_kernel_->get_kerneltype_forvar_fn_(&infer_varkernel_context);
      }
2473
      bool need_trans_dtype =
2474
          NeedTransformDataType(expected_kernel_key, kernel_type_for_var);
2475
      bool need_trans_layout = NeedTransformLayout(
2476
          kernel_type_for_var.layout(), expected_kernel_key.layout());
2477 2478
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
2479 2480
            backends_are_same_class(kernel_type_for_var.backend(),
                                    expected_kernel_key.backend())) {
2481 2482 2483
          continue;
        }
      }
Y
yuyang18 已提交
2484

2485
      std::unique_ptr<phi::KernelKey> new_expected_kernel_key = nullptr;
2486 2487
      if (run_phi_kernel_ && in_def != nullptr &&
          in_def->backend != phi::Backend::ALL_BACKEND) {
2488 2489
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
2490 2491 2492 2493 2494 2495
             !(in_def->backend == phi::Backend::GPUDNN &&
               tensor_backend == phi::Backend::GPU) &&
             !(in_def->backend == phi::Backend::KPS &&
               tensor_backend == phi::Backend::XPU) &&
             !(in_def->backend == phi::Backend::ONEDNN &&
               tensor_backend == phi::Backend::CPU)) ||
2496
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
2497 2498 2499 2500
          new_expected_kernel_key =
              std::make_unique<phi::KernelKey>(in_def->backend,
                                               expected_kernel_key.layout(),
                                               expected_kernel_key.dtype());
2501 2502 2503 2504 2505 2506 2507
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2508 2509
      }

M
minqiyang 已提交
2510
      VLOG(3) << "Transform Variable " << var_name << " from "
2511 2512 2513
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2514

H
HongyuJia 已提交
2515 2516 2517
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2518
      // We use a thread_local cache to fix that issue, the key in the cache is
2519 2520 2521 2522 2523
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2524 2525
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2526
      // variables, that behavior a lot different.
2527 2528 2529 2530 2531 2532
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2533 2534
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
2535 2536 2537 2538
          if (kernel_type_for_var.backend() == phi::Backend::GPU ||
              kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
              new_expected_kernel_key->backend() == phi::Backend::GPU ||
              new_expected_kernel_key->backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2539
            new_scope = TryCreateTransferScope(
2540 2541 2542
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
2543 2544 2545 2546
        } else if (kernel_type_for_var.backend() == phi::Backend::GPU ||
                   kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
                   expected_kernel_key.backend() == phi::Backend::GPU ||
                   expected_kernel_key.backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2547
          new_scope = TryCreateTransferScope(
2548 2549 2550
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2551
      }
2552

2553
      if (!new_scope) {
Y
yuyang18 已提交
2554 2555
        new_scope = &scope.NewScope();
      }
C
csy0225 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2566 2567

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2568
      auto* trans_var = new_scope->Var(var_name);
2569
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2570 2571 2572 2573 2574 2575 2576

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2577
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2587
      phi::DenseTensor out;
2588 2589 2590 2591 2592 2593 2594 2595 2596
      TransformData(
          new_expected_kernel_key ? *new_expected_kernel_key
                                  : expected_kernel_key,
          kernel_type_for_var,
          *tensor_in,
          &out,
          new_expected_kernel_key
              ? phi::TransToPhiPlace(new_expected_kernel_key->backend())
              : place);
Y
yuyang18 已提交
2597 2598
      SetTensorToVariable(*var, out, trans_var);
    }
2599 2600
  };

2601 2602
  if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                             phi::KernelRegisteredType::FUNCTION) {
2603
    const auto& input_names = kernel_signature_->input_names;
2604
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
2621 2622 2623 2624 2625 2626 2627 2628 2629

      phi::TensorArgDef in_def = input_defs.at(i);
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      // When the backend of input tensor arg_def is CUSTOM, we need to set it
      // to the actual backend by expected_kernel_key.
      if (in_def.backend == phi::Backend::CUSTOM) {
        in_def.SetBackend(expected_kernel_key.backend());
      }
#endif
2630 2631
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2648 2649 2650 2651 2652 2653 2654 2655 2656
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2657
  }
L
Leo Chen 已提交
2658

C
csy0225 已提交
2659 2660 2661 2662
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
2663 2664
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
C
csy0225 已提交
2665

W
wenbin 已提交
2666 2667 2668 2669
  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
C
csy0225 已提交
2670
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2671 2672
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2673 2674 2675

  return new_scope;
}
Q
Qiao Longfei 已提交
2676

2677
void OperatorWithKernel::ParseInputDataType(
2678 2679
    const Variable* var,
    const std::string& name,
2680 2681
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2682 2683 2684
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2685 2686
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2687 2688
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2689 2690 2691 2692
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2708 2709
    const std::vector<Variable*>& vars,
    const std::string& name,
2710
    proto::VarType::Type* data_type) const {
2711
  proto::VarType::Type default_data_type =
2712 2713 2714 2715
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2716 2717 2718
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2719 2720
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2744
      } else if (var->IsType<LoDTensorArray>()) {
2745 2746 2747 2748
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2749 2750
          }
        }
2751 2752
      }
      if (t != nullptr) {
2753 2754 2755 2756 2757 2758 2759
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2760 2761
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2762 2763 2764 2765 2766 2767 2768
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2769 2770 2771
                           Type(),
                           name,
                           DataTypeToString(tmp),
2772
                           DataTypeToString(*data_type)));
2773 2774 2775 2776 2777 2778
        *data_type = tmp;
      }
    }
  }
}

2779
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2780
    const ExecutionContext& ctx) const {
2781 2782 2783
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2784

2785
  for (auto* name : ctx.InNameList()) {
2786 2787 2788 2789 2790
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2791
  }
2792
  PADDLE_ENFORCE_NE(
2793 2794
      data_type,
      dafault_data_type,
2795 2796
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2797 2798 2799 2800 2801 2802 2803 2804
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2805 2806 2807 2808 2809
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2810
  PADDLE_ENFORCE_NE(
2811 2812
      data_type,
      dafault_data_type,
2813 2814
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2815
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2816
          "LoDTensorArray.",
2817 2818
          name,
          Type()));
2819
  return data_type;
Y
Yu Yang 已提交
2820
}
2821

2822
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2835 2836 2837
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2838 2839
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2840 2841 2842 2843
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2844 2845 2846 2847 2848 2849 2850
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2851
      platform::errors::InvalidArgument(
2852 2853 2854 2855 2856
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2868 2869
    const ExecutionContext& ctx,
    const std::string& name1,
2870 2871 2872 2873 2874 2875
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2876 2877
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2878 2879 2880 2881 2882 2883 2884

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2885
phi::KernelKey OperatorWithKernel::GetExpectedKernelType(
2886
    const ExecutionContext& ctx) const {
2887
  return phi::KernelKey(IndicateDataType(ctx), ctx.GetPlace());
2888 2889
}

2890
phi::KernelKey OperatorWithKernel::GetKernelTypeForVar(
2891
    const std::string& var_name,
2892
    const phi::DenseTensor& tensor,
2893
    const phi::KernelKey& expected_kernel_type) const {
2894 2895 2896 2897
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
2898
  if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
2899
      (tensor.layout() != phi::DataLayout::ONEDNN) &&
2900 2901
      phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
          phi::DataLayout::kNHWC) {
2902 2903
    return phi::KernelKey(
        tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
2904 2905
  }
#endif
2906 2907
  return phi::KernelKey(
      tensor.place(), tensor.layout(), expected_kernel_type.dtype());
2908 2909
}

2910
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2911
    const ExecutionContext& ctx) const {
2912
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2913
  if (arg_map_fn_ == nullptr) {
2914 2915 2916 2917
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2918 2919 2920
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2921 2922 2923 2924
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2925 2926
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2927 2928
}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

2988
void OperatorWithKernel::BuildPhiKernelContext(
2989 2990
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
2991 2992
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
2993

2994 2995 2996
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2997

2998 2999 3000
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
3001

3002 3003 3004 3005 3006 3007 3008 3009 3010
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

3011 3012
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
3013 3014 3015
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
3016 3017
                        input_names.size(),
                        input_defs.size()));
3018

3019 3020
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
3021 3022 3023
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
3024 3025
                        output_names.size(),
                        output_defs.size()));
3026

3027 3028
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
3029 3030 3031
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
3032 3033
                        attr_names.size(),
                        attr_defs.size()));
3034
  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
3035
    auto it = ctx.inputs.find(input_names[i]);
3036 3037 3038

    // calcute the start and end index of the input tensors
    size_t start_idx =
3039
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
3040
    // deal with optional here
3041
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
3042
        (input_defs[i].type_index ==
3043
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
3044
         input_defs[i].type_index ==
3045
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
3046
         input_defs[i].type_index ==
3047 3048
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
3049
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
3050
      auto end_idx = start_idx + 1;
3051 3052
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
3053

H
hong 已提交
3054 3055 3056 3057
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
3058
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
3059
      const phi::TensorBase* tensor_in = nullptr;
3060
      auto* var = ins_vector[offset];
3061 3062
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
3063
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3064 3065
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
3066
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3067 3068 3069
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3070
      } else if (var->IsType<framework::LoDTensorArray>()) {
3071
        need_prepare_phi_data_ = true;
3072 3073
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3074 3075 3076
      } else if (var->IsType<framework::Vocab>()) {
        tensor_in = &(var->Get<framework::Vocab>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3077 3078 3079
      } else if (var->IsType<framework::FeedList>()) {
        tensor_in = &(var->Get<framework::FeedList>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3080 3081 3082 3083
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
3084
      }
3085
    }
3086
    // Note: here cannot deal with vector<LoDTensorArray> input
3087
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
3088
  }
3089
  VLOG(4) << "Done inputs";
3090
  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
3091
    auto it = ctx.outputs.find(output_names[i]);
3092
    size_t start_idx =
3093
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
3094 3095

    if (it == ctx.outputs.end() || it->second.empty()) {
3096
      VLOG(4) << "Output " << output_names[i] << " not found";
H
hong 已提交
3097 3098 3099 3100
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
3101
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
3102
      auto end_idx = start_idx + 1;
3103 3104
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
3105 3106 3107 3108
      continue;
    }
    auto& outs_vector = it->second;

3109
    size_t end_idx = start_idx + outs_vector.size();
3110 3111

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
3112
      phi::TensorBase* tensor_out = nullptr;
3113
      auto* var = outs_vector[offset];
3114
      if (var) {
3115 3116
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
3117
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3118 3119
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
3120
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3121 3122 3123
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3124
        } else if (var->template IsType<framework::LoDTensorArray>()) {
3125
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
3126 3127
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
3128
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3129 3130 3131
        } else if (var->template IsType<framework::Strings>()) {
          tensor_out = var->template GetMutable<framework::Strings>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3132 3133 3134 3135 3136 3137 3138
        } else if (var->template IsType<paddle::framework::RawTensor>()) {
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (!var->IsInitialized()) {
          // The following is for RAW type of var
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3139 3140 3141 3142 3143
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
3144
      } else {
3145
        VLOG(4) << "Output " << output_names[i] << " is nullptr";
3146
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3147
      }
3148
    }
3149 3150
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
3151
  }
3152
  VLOG(4) << "Done outputs";
3153
  for (size_t i = 0; i < attr_names.size(); ++i) {
3154 3155
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
3156 3157
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
3158 3159 3160 3161 3162 3163 3164
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
3165
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3166
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
3167
              break;
3168 3169 3170 3171
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
3172
            case proto::AttrType::INT:
3173
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3174
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
3175
              break;
3176 3177 3178 3179
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
3180
            case proto::AttrType::STRING:
3181
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
3182
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
3183
              break;
3184 3185 3186 3187
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
3188 3189 3190 3191 3192
            case proto::AttrType::SCALAR:
              phi_kernel_context->EmplaceBackAttr(
                  std::move(phi::Scalar(PADDLE_GET_CONST(
                      paddle::experimental::Scalar, attr_iter->second))));
              break;
3193 3194 3195 3196 3197 3198 3199
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
3200
          need_prepare_phi_data_ = true;
3201
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
3202 3203
          phi_kernel_context->EmplaceBackAttr(
              std::move(framework::MakePhiScalarFromVar(*ins_vector.front())));
3204
        }
3205 3206 3207 3208 3209
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
3210
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3211
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
3212 3213
              break;
            case proto::AttrType::LONGS:
3214
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3215
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
3216 3217
              break;
            case proto::AttrType::INT:
3218
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3219
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
3220 3221
              break;
            case proto::AttrType::LONG:
3222
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3223
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
3224 3225 3226 3227 3228 3229 3230 3231
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
3232
          need_prepare_phi_data_ = true;
3233 3234
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
3235
            phi_kernel_context->EmplaceBackAttr(std::move(
3236
                framework::MakePhiIntArrayFromVar(*ins_vector.front())));
3237
          } else {  // ShapeTensorList
3238 3239
            phi_kernel_context->EmplaceBackAttr(
                std::move(framework::MakePhiIntArrayFromVarList(ins_vector)));
3240
          }
3241
        }
3242
        break;
3243

3244 3245
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3246 3247
            attr_iter,
            Attrs().end(),
3248 3249 3250 3251 3252 3253
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3254
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3255 3256 3257 3258 3259
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3260
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3261 3262 3263
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3264
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3265 3266 3267 3268 3269
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3270
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3271 3272 3273
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3274
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3275 3276 3277 3278 3279
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3280
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3281 3282 3283
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3284
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3285 3286 3287 3288 3289
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3290
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3291 3292 3293
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3294
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3295 3296 3297 3298 3299
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3300
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3301
          } break;
3302 3303 3304 3305 3306 3307
          case proto::AttrType::SCALARS: {
            const auto& vec = PADDLE_GET_CONST(
                std::vector<paddle::experimental::Scalar>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list{vec.begin(), vec.end()};
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
3308 3309 3310 3311
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3312 3313
                attr_names[i]));
        }
3314 3315
      } break;
      default: {
3316
        if (attr_iter == Attrs().end()) {
3317
          // TODO(chenweihang): remove this backup searching later
3318 3319 3320 3321 3322 3323 3324 3325 3326
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3327 3328
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3329
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3330
                PADDLE_GET_CONST(float, attr_iter->second));
3331
            break;
3332 3333 3334 3335
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3336
          case phi::AttributeType::INT32:
3337
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3338
                PADDLE_GET_CONST(int, attr_iter->second));
3339 3340
            break;
          case phi::AttributeType::BOOL:
3341
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3342
                PADDLE_GET_CONST(bool, attr_iter->second));
3343 3344
            break;
          case phi::AttributeType::INT64:
3345
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3346
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3347 3348
            break;
          case phi::AttributeType::INT32S:
3349
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3350
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3351
            break;
3352 3353 3354 3355
          case phi::AttributeType::BOOLS:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second));
            break;
3356 3357 3358
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3359
                    PADDLE_GET_CONST(int, attr_iter->second)));
3360
            phi_kernel_context->EmplaceBackAttr(data_type);
3361 3362
          } break;
          case phi::AttributeType::STRING:
3363
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3364
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3365 3366 3367 3368
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3369
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3370
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3371 3372 3373
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3374
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3375 3376
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3377
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3388
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3389
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3390 3391
            break;
          case phi::AttributeType::STRINGS:
3392
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3393
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3394 3395 3396 3397 3398 3399
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3400
        }
3401 3402 3403
      }
    }
  }
3404
  VLOG(4) << "Done attributes";
3405

3406 3407 3408 3409 3410 3411
// Clear All old attrs before add new attrs,
// because sometimes old attrs may be misused.
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->ClearDnnAttr();
3412
    if (!RuntimeAttrs().empty()) need_prepare_phi_data_ = true;
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
  }
#endif

  // Note(YuanRisheng): Now, we can't open code below.
  // Because some unittest run OLD dygraph and ExtraAttr is not supported in OLD
  // dygraph. So, here we use trick that dev_ctx is a global object. We can
  // store ExtraAttr in static graph and when unittest run OLD dygraph, it can
  // obtain these ExtraAttr. We can open this code when OLD dygraph is no longer
  // used.
  /*
  #if defined(PADDLE_WITH_CUDA)
    if(phi::GPUContext::classof(dev_ctx)) {
      phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
      gpu_dnn_ctx->ClearDnnAttr();
    }
  #endif
  */
3430 3431 3432 3433 3434 3435
  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3436
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3437 3438 3439 3440 3441 3442
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
S
Shuangchi He 已提交
3443
  // which increases the cost of development and understanding, so we
3444 3445 3446 3447 3448 3449 3450
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3451
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
      if (it == ctx.inputs.end() || it->second.size() == 0) {
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3486 3487
}

Q
Qiao Longfei 已提交
3488
}  // namespace framework
L
liaogang 已提交
3489
}  // namespace paddle