Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f88713e1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f88713e1
编写于
12月 08, 2022
作者:
W
Wilber
提交者:
GitHub
12月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Inference] Enable infer shape cache. (#48312)
上级
fe86771a
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
104 addition
and
23 deletion
+104
-23
paddle/fluid/framework/ir/runtime_context_cache_pass.cc
paddle/fluid/framework/ir/runtime_context_cache_pass.cc
+20
-1
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+74
-6
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+5
-3
paddle/fluid/inference/analysis/passes/ir_graph_to_program_pass.cc
...uid/inference/analysis/passes/ir_graph_to_program_pass.cc
+3
-3
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+2
-10
未找到文件。
paddle/fluid/framework/ir/runtime_context_cache_pass.cc
浏览文件 @
f88713e1
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/runtime_context_cache_pass.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
...
...
@@ -21,10 +22,28 @@ namespace framework {
namespace
ir
{
void
RuntimeContextCachePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
static
constexpr
char
kNotAllowInferShapeCahce
[]
=
"@NOT_ALLOW_INFERSHAPE_CACHE@"
;
VLOG
(
3
)
<<
"Applies Runtime Context Cache strategy."
;
for
(
const
Node
*
n
:
graph
->
Nodes
())
{
if
(
n
->
IsOp
()
&&
n
->
Op
())
{
n
->
Op
()
->
SetAttr
(
kEnableCacheRuntimeContext
,
true
);
n
->
Op
()
->
SetAttr
(
framework
::
kEnableCacheRuntimeContext
,
true
);
}
}
// if op1 -> var0 and op2 -> var0, then op1 and op2 not support
// InferShapeCache.
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
Node
*>>
var2ops
;
for
(
auto
*
op_node
:
TopologySortOperations
(
*
graph
))
{
for
(
auto
*
var_node
:
op_node
->
outputs
)
{
var2ops
[
var_node
->
Name
()].
push_back
(
op_node
);
}
}
for
(
auto
&
it
:
var2ops
)
{
if
(
it
.
second
.
size
()
>
1
)
{
for
(
auto
op_node
:
it
.
second
)
{
op_node
->
Op
()
->
SetAttr
(
kNotAllowInferShapeCahce
,
true
);
}
}
}
}
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
f88713e1
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include <sstream>
#include <string>
#include <unordered_set>
#include "gflags/gflags.h"
#include "paddle/fluid/framework/convert_utils.h"
...
...
@@ -36,6 +37,7 @@ limitations under the License. */
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/kernel_context.h"
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
...
...
@@ -562,6 +564,14 @@ phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
}
}
OperatorWithKernel
::
OperatorWithKernel
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
OperatorWithKernel
::~
OperatorWithKernel
()
=
default
;
bool
ExecutionContext
::
HasInput
(
const
std
::
string
&
name
)
const
{
auto
*
var
=
InputVar
(
name
);
return
var
!=
nullptr
;
...
...
@@ -1204,19 +1214,54 @@ class RuntimeInferShapeContext : public InferShapeContext {
};
struct
OperatorWithKernel
::
CacheImpl
{
static
const
char
kNotAllowInferShapeCahce
[];
explicit
CacheImpl
(
phi
::
KernelContext
*
kernel_ctx
,
RuntimeInferShapeContext
*
infer_shape_ctx
)
:
kernel_ctx_
(
kernel_ctx
),
infer_shape_ctx_
(
infer_shape_ctx
)
{}
RuntimeInferShapeContext
*
infer_shape_ctx
,
const
std
::
vector
<
phi
::
DenseTensor
*>&
tensors
,
bool
not_allow_infer_shape_cache
)
:
kernel_ctx_
(
kernel_ctx
),
infer_shape_ctx_
(
infer_shape_ctx
),
tensors_
(
tensors
),
not_allow_infer_shape_cache_
(
not_allow_infer_shape_cache
)
{}
phi
::
KernelContext
*
getKernelContext
()
{
return
kernel_ctx_
.
get
();
}
RuntimeInferShapeContext
*
getRuntimeInferShapeContext
()
{
return
infer_shape_ctx_
.
get
();
}
bool
NeedInferShape
()
{
if
(
not_allow_infer_shape_cache_
)
return
true
;
bool
ret
{
false
};
if
(
last_ddims_
.
empty
()
||
tensors_
.
empty
())
ret
=
true
;
if
(
!
ret
)
{
CHECK_EQ
(
last_ddims_
.
size
(),
tensors_
.
size
());
for
(
size_t
i
=
0
;
i
<
last_ddims_
.
size
();
++
i
)
{
if
(
tensors_
[
i
]
->
dims
()
!=
last_ddims_
[
i
])
{
ret
=
true
;
break
;
}
}
}
if
(
ret
)
{
last_ddims_
.
resize
(
tensors_
.
size
());
for
(
size_t
i
=
0
;
i
<
last_ddims_
.
size
();
++
i
)
{
last_ddims_
[
i
]
=
tensors_
[
i
]
->
dims
();
}
}
VLOG
(
3
)
<<
"need infer shape is "
<<
ret
;
return
ret
;
}
private:
std
::
unique_ptr
<
phi
::
KernelContext
>
kernel_ctx_
;
std
::
unique_ptr
<
RuntimeInferShapeContext
>
infer_shape_ctx_
;
std
::
vector
<
phi
::
DenseTensor
*>
tensors_
;
bool
not_allow_infer_shape_cache_
;
std
::
vector
<
phi
::
DDim
>
last_ddims_
;
};
const
char
OperatorWithKernel
::
CacheImpl
::
kNotAllowInferShapeCahce
[]
=
"@NOT_ALLOW_INFERSHAPE_CACHE@"
;
static
void
CheckTensorNANOrInf
(
const
std
::
string
&
op_type
,
const
std
::
string
&
name
,
...
...
@@ -1524,8 +1569,9 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
pre_scope_
=
cur_scope
;
}
else
if
(
run_phi_kernel_
&&
impl_
!=
nullptr
&&
!
need_prepare_data_
&&
!
need_prepare_phi_data_
)
{
if
(
!
all_kernels_must_compute_runtime_shape_
)
if
(
!
all_kernels_must_compute_runtime_shape_
&&
impl_
->
NeedInferShape
())
{
this
->
Info
().
infer_shape_
(
impl_
->
getRuntimeInferShapeContext
());
}
(
*
phi_kernel_
)(
impl_
->
getKernelContext
());
}
else
{
if
(
runtime_ctx_
.
get
()
==
nullptr
||
pre_scope_
!=
cur_scope
)
{
...
...
@@ -1828,9 +1874,31 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
phi
::
KernelContext
phi_kernel_context
;
if
(
enable_cache_runtime_context_
&&
!
need_prepare_phi_data_
&&
!
need_prepare_data_
)
{
impl_
=
// TODO(inference): Now we only suppor dense_tensor cache, we may be
// support ScalarTensor, SparseTensor in future.
bool
all_dense_tensor_input_
{
true
};
for
(
auto
&
iter
:
Inputs
())
{
for
(
auto
&
name
:
iter
.
second
)
{
all_dense_tensor_input_
&=
scope
.
FindVar
(
name
)
->
IsType
<
phi
::
DenseTensor
>
();
}
}
std
::
vector
<
phi
::
DenseTensor
*>
tensors
;
if
(
all_dense_tensor_input_
)
{
for
(
auto
&
iter
:
Inputs
())
{
for
(
auto
&
name
:
iter
.
second
)
{
auto
*
t
=
scope
.
FindVar
(
name
)
->
GetMutable
<
phi
::
DenseTensor
>
();
tensors
.
push_back
(
t
);
}
}
}
impl_
.
reset
(
new
CacheImpl
(
new
phi
::
KernelContext
(),
new
RuntimeInferShapeContext
(
*
this
,
*
runtime_ctx
));
new
RuntimeInferShapeContext
(
*
this
,
*
runtime_ctx
),
tensors
,
HasAttr
(
CacheImpl
::
kNotAllowInferShapeCahce
)));
BuildPhiKernelContext
(
*
runtime_ctx
,
dev_ctx
,
impl_
->
getKernelContext
());
(
*
phi_kernel_
)(
impl_
->
getKernelContext
());
}
else
{
...
...
@@ -3246,6 +3314,7 @@ void OperatorWithKernel::BuildPhiKernelContext(
if
(
phi
::
OneDNNContext
::
classof
(
dev_ctx
))
{
phi
::
OneDNNContext
*
one_dnn_ctx
=
static_cast
<
phi
::
OneDNNContext
*>
(
dev_ctx
);
one_dnn_ctx
->
ClearDnnAttr
();
if
(
!
RuntimeAttrs
().
empty
())
need_prepare_phi_data_
=
true
;
}
#endif
...
...
@@ -3267,7 +3336,6 @@ void OperatorWithKernel::BuildPhiKernelContext(
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
auto
&
runtime_attrs
=
RuntimeAttrs
();
for
(
const
auto
&
attr_iter
:
runtime_attrs
)
{
need_prepare_phi_data_
=
true
;
auto
&
attr_name
=
attr_iter
.
first
;
auto
&
attr
=
attr_iter
.
second
;
auto
attr_propertys
=
paddle
::
operators
::
GetExtraAttrProperties
(
attr_name
);
...
...
paddle/fluid/framework/operator.h
浏览文件 @
f88713e1
...
...
@@ -612,8 +612,9 @@ class OperatorWithKernel : public OperatorBase {
OperatorWithKernel
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
const
AttributeMap
&
attrs
);
virtual
~
OperatorWithKernel
();
static
paddle
::
flat_hash_map
<
std
::
string
/* op_type */
,
OpKernelMap
>&
AllOpKernels
()
{
...
...
@@ -785,8 +786,9 @@ class OperatorWithKernel : public OperatorBase {
mutable
std
::
unique_ptr
<
phi
::
Kernel
>
phi_kernel_
;
mutable
std
::
unique_ptr
<
phi
::
ArgumentMappingFn
>
arg_map_fn_
;
private:
struct
CacheImpl
;
mutable
CacheImpl
*
impl_
{
nullptr
}
;
mutable
std
::
unique_ptr
<
CacheImpl
>
impl_
;
};
extern
bool
OpSupportGPU
(
const
std
::
string
&
op_type
);
...
...
paddle/fluid/inference/analysis/passes/ir_graph_to_program_pass.cc
浏览文件 @
f88713e1
...
...
@@ -23,6 +23,8 @@ namespace inference {
namespace
analysis
{
void
IrGraphToProgramPass
::
RunImpl
(
Argument
*
argument
)
{
auto
cache_pass
=
framework
::
ir
::
PassRegistry
::
Instance
().
Get
(
"runtime_context_cache_pass"
);
auto
pass
=
framework
::
ir
::
PassRegistry
::
Instance
().
Get
(
"graph_to_program_pass"
);
...
...
@@ -31,14 +33,12 @@ void IrGraphToProgramPass::RunImpl(Argument *argument) {
new
int
(
argument
->
memory_optim_sort_kind
()));
}
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
graph
(
argument
->
main_graph_ptr
());
// Direct using ProgramDesc desc(argument->main_program()) may cause
// incomplete copies of information.
framework
::
ProgramDesc
desc
;
desc
.
CopyFrom
(
*
argument
->
main_program
().
Proto
());
pass
->
SetNotOwned
(
"program"
,
&
desc
);
pass
->
Apply
(
graph
.
release
());
// the argument still own the graph.
pass
->
Apply
(
cache_pass
->
Apply
(
argument
->
main_graph_ptr
()));
argument
->
SetIrAnalyzedProgram
(
new
framework
::
proto
::
ProgramDesc
(
*
desc
.
Proto
()));
...
...
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
f88713e1
...
...
@@ -188,7 +188,6 @@ const std::vector<std::string> kGpuLowerPrecisionPasses{
"fc_fuse_pass"
,
"fc_elementwise_layernorm_fuse_pass"
,
"embedding_eltwise_layernorm_fuse_pass"
,
"runtime_context_cache_pass"
,
};
const
std
::
vector
<
std
::
string
>
kTrtLowerPrecisionPasses
{
...
...
@@ -254,10 +253,7 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
#endif //
"transpose_flatten_concat_fuse_pass"
,
//
"constant_folding_pass"
,
//
// following pass should be located in the last, since it will
// work on all fused ops.
"float_to_half_pass"
,
//
"runtime_context_cache_pass"
"float_to_half_pass"
,
//
});
use_gpu_
=
true
;
...
...
@@ -322,10 +318,7 @@ CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
"conv_transpose_bn_fuse_pass"
,
//
"conv_transpose_eltwiseadd_bn_fuse_pass"
,
//
"is_test_pass"
,
//
"constant_folding_pass"
,
// following pass should be located in the last, since
// it will work on all fused ops.
"runtime_context_cache_pass"
});
"constant_folding_pass"
});
use_gpu_
=
false
;
}
...
...
@@ -475,7 +468,6 @@ void CpuPassStrategy::EnableMkldnnInt8() {
passes_
.
push_back
(
"int8_scale_calculation_mkldnn_pass"
);
passes_
.
push_back
(
"params_quantization_mkldnn_pass"
);
passes_
.
push_back
(
"mkldnn_inplace_pass"
);
passes_
.
push_back
(
"runtime_context_cache_pass"
);
}
use_mkldnn_int8_
=
true
;
#else
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录