conv_mkldnn_op.cc 54.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15 16
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
17 18
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
19
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
20
#include <unordered_map>
21 22 23 24

namespace paddle {
namespace operators {

25 26 27 28 29 30 31 32
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

33 34 35 36 37 38 39 40 41 42
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

60
  size_t GetDstMemorySize() const {
61 62
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
63 64 65 66 67
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
68

69
  size_t GetDiffWeightsMemorySize() const {
70 71 72
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

73
  size_t GetDiffSourceMemorySize() const {
74 75 76
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

77 78
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
79
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
80 81 82 83 84 85 86 87
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
88
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
104
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
105 106 107 108 109 110 111 112
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
113
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
114 115 116 117 118 119
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

X
xiaolil1 已提交
120

Z
Zhang, Guoming 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
X
xiaolil1 已提交
134
  
135 136 137 138 139 140
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

141 142 143 144 145 146 147
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
148
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
149
    auto src_pd = conv_pd_->src_primitive_desc();
150
    auto user_pd = user_memory_p->get_primitive_desc();
151 152 153 154 155 156
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
157
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
158 159 160 161
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
162 163 164 165
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
166 167
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
168 169
  }

170 171
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
172
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
173
      bool is_persistent = false,
X
xiaolil1 已提交
174 175 176
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
177 178 179
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
180 181
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
182 183
  }

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

275 276
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
277 278 279 280 281 282
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
283 284 285 286 287 288 289
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
290 291 292 293
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
294 295
};

296
template <typename T>
297
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
298 299
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
K
Krzysztof Binias 已提交
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                  "It must use CPUPlace.");
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
331

332 333 334 335 336
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
X
xiaolil1 已提交
337
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
338
    int groups = ctx.Attr<int>("groups");
X
xiaolil1 已提交
339 340 341 342 343
//std::cout<<"force_fp32_output = "<<force_fp32_output<<std::endl;
    if (fuse_residual_conn) {
      PADDLE_ENFORCE(force_fp32_output != true,
                     "residual fusion does not support force output with fp32");
    }
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const float* filter_data = filter->data<float>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
370

371 372 373 374 375
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";
X
xiaolil1 已提交
376
//std::cout<<key<<std::endl;
377
    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
378 379 380 381 382
    
    bool need_s8_to_u8 = false;
    if (fuse_residual_conn && is_INT8 && fuse_relu) {
      need_s8_to_u8 = true;
    }
383

X
xiaolil1 已提交
384 385
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
386
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
X
xiaolil1 已提交
387 388 389 390 391 392
    std::shared_ptr<mkldnn::memory> dst_memory_p;
    std::vector<primitive> pipeline;
    
    auto prim_key = key + "@conv_p";
    auto dst_key = key + "@dst_mem_p";
    auto src_key = key + "@src_mem_p";
393 394
    auto user_src_key = key + "@user_src_mem_p";
    auto src_reorder_key = key + "@src_mem_p" + "reorder_p";
X
xiaolil1 已提交
395
    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(dev_ctx.GetBlob(prim_key));
396
    auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_reorder_key));
X
xiaolil1 已提交
397
    src_memory_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
398 399 400 401
    if(src_memory_reorder_p){
      user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(user_src_key));
      user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
    } else if(src_memory_p){
X
xiaolil1 已提交
402 403 404
      src_memory_p->set_data_handle(to_void_cast<T>(input_data));
    }
    
405 406
    dst_memory_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
    
X
xiaolil1 已提交
407 408 409 410 411 412 413
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    conv_pd = std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(dev_ctx.GetBlob(key_conv_pd));
    std::shared_ptr<ConvMKLDNNHandler> handler;
    if(conv_pd){
      handler.reset(new ConvMKLDNNHandler(conv_pd, dev_ctx, mkldnn_engine, key));
    }
    if (!is_INT8 && dst_memory_p){
414 415 416
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_param_data = residual_param->data<T>();
X
xiaolil1 已提交
417
        if (residual_param->format() != handler->GetDstFormat()) {
418
          auto output_data =
X
xiaolil1 已提交
419
              output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
420 421 422 423
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());
          auto residual_data_type =
              paddle::framework::ToMKLDNNDataType(residual_param->type());
X
xiaolil1 已提交
424
    
425 426
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_data_type, residual_param->format());
X
xiaolil1 已提交
427
          auto user_residual_memory_p = handler->AcquireResidualDataMemory(
428
              user_residual_md, to_void_cast<T>(residual_param_data));
X
xiaolil1 已提交
429
          dst_memory_p = handler->AcquireDstMemoryFromResidualDataMemory(
430 431 432 433
              user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
        } else {
          output->ShareDataWith(*residual_param);
          auto output_data = output->mutable_data<T>(ctx.GetPlace());
X
xiaolil1 已提交
434
          dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
X
xiaolil1 已提交
435
        }
436 437
      } else {
        auto output_data =
X
xiaolil1 已提交
438 439
            output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
        dst_memory_p->set_data_handle(to_void_cast<T>(output_data)); 
440
      }
X
xiaolil1 已提交
441 442 443 444 445 446 447 448 449 450 451 452
    } else if(is_INT8 && dst_memory_p){
      if(fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
        output->ShareDataWith(*residual_param);
        if(residual_dt == mkldnn::memory::data_type::u8){
          uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
          dst_memory_p->set_data_handle(to_void_cast<uint8_t>(output_data));
        } else{
          int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
          dst_memory_p->set_data_handle(to_void_cast<int8_t>(output_data));
        }
X
xiaolil1 已提交
453
      } else if(!force_fp32_output){
X
xiaolil1 已提交
454 455 456 457 458 459 460
        if(fuse_relu){
          uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
          dst_memory_p->set_data_handle(to_void_cast<uint8_t>(output_data));
        } else{
          int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
          dst_memory_p->set_data_handle(to_void_cast<int8_t>(output_data));
        }
X
xiaolil1 已提交
461 462 463
      } else {
          float* output_data = output->mutable_data<float>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
          dst_memory_p->set_data_handle(to_void_cast<float>(output_data));
X
xiaolil1 已提交
464
      }
X
xiaolil1 已提交
465
    }
X
xiaolil1 已提交
466

X
xiaolil1 已提交
467 468 469 470 471 472 473
    if(!is_INT8){
      if(conv_p == nullptr){
        auto user_src_md = platform::MKLDNNMemDesc(
            {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
        auto user_weights_md = platform::MKLDNNMemDesc(
            {weights_tz}, platform::MKLDNNGetDataType<T>(),
            (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
474

X
xiaolil1 已提交
475 476 477 478 479 480 481
        /* create memory descriptor for convolution without specified format
         * ('any') which lets a primitive (convolution in this case) choose
         * the memory format preferred for best performance
         */
        std::string data_format = ctx.Attr<std::string>("data_format");
        auto chosen_memory_format =
            platform::data_format_to_memory_format(data_format);
X
xiaolil1 已提交
482

X
xiaolil1 已提交
483 484 485 486 487 488
        auto src_md = platform::MKLDNNMemDesc(
            src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
        auto weights_md = platform::MKLDNNMemDesc(
            weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
        std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                                 // Currently used whenever bias is != nullptr.
489

X
xiaolil1 已提交
490 491 492 493 494 495 496 497 498 499
        auto dst_md = platform::MKLDNNMemDesc(
            dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
          bias_tz = paddle::framework::vectorize2int(bias->dims());
          auto bias_md = platform::MKLDNNMemDesc(
              bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
500
                                         fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
501 502 503
        } else {
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
504
                                   mkldnn_engine, fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
505 506 507 508 509 510 511
        }
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx.SetBlob(key_conv_pd, conv_pd);

        handler.reset(new ConvMKLDNNHandler(conv_pd, dev_ctx, mkldnn_engine, key));

        // create mkldnn memory from input tensors (data/weights)
512
        user_src_memory_p =
X
xiaolil1 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
            handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
        auto user_weights_memory_p = handler->AcquireWeightsMemory(
            user_weights_md, to_void_cast<float>(filter_data));

        // create reorder primitive if the input format is not the preferred one
        src_memory_p =
            handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
        auto weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);

        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          auto residual_param_data = residual_param->data<T>();

          PADDLE_ENFORCE(
              residual_param_data != nullptr,
              "Provide data if you want MKLDNN conv+elementwise_add fusion");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");

          if (residual_param->format() != handler->GetDstFormat()) {
            auto output_data =
                output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
            auto residual_data_tz =
                paddle::framework::vectorize2int(residual_param->dims());
            auto residual_data_type =
                paddle::framework::ToMKLDNNDataType(residual_param->type());

            auto user_residual_md = platform::MKLDNNMemDesc(
                residual_data_tz, residual_data_type, residual_param->format());
            auto user_residual_memory_p = handler->AcquireResidualDataMemory(
                user_residual_md, to_void_cast<T>(residual_param_data));
            dst_memory_p = handler->AcquireDstMemoryFromResidualDataMemory(
                user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
          } else {
            output->ShareDataWith(*residual_param);
            auto output_data = output->mutable_data<T>(ctx.GetPlace());
            dst_memory_p =
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
          }
        } else {
          auto output_data =
              output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
          dst_memory_p =
              handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
        }

        // create convolution op primitive
        if (bias) {
          const T* bias_data = bias->data<T>();
          auto user_bias_md = platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
          auto user_bias_memory_p =
              handler->AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

          auto bias_memory_p =
              handler->AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test);
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                              bias_memory_p, dst_memory_p);
        } else {
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                              dst_memory_p);
        }
        // push primitive to stream and wait until it's executed
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();

        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
583 584 585 586
      } else {
        if(src_memory_reorder_p){
          pipeline.push_back(*src_memory_reorder_p);
        } 
X
xiaolil1 已提交
587 588
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();
589

X
xiaolil1 已提交
590 591
        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
X
xiaolil1 已提交
592
      }
X
xiaolil1 已提交
593
    } else{
X
xiaolil1 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
      if(conv_p == nullptr){
        auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
        auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
        auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
        auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;

        bool is_multi_channel = (scale_weights->memory_size() > 1) ? true : false;

        static std::unordered_map<std::string, std::vector<float>> scale_map;

        bool scale_reuse = true;
        auto scale_in_key = key + "@scale_in";
        auto scale_weights_key = key + "@scale_weights";
        auto scale_out_key = key + "@scale_out";
        auto output_shift_scale_key = key + "@output_shift_scale";
        auto sum_scale_key = key + "@sum_scale";
        auto scale_in_eltwise_key = key + "@scale_in_eltwise";
        std::vector<float> scale_in_data;
X
xiaolil1 已提交
612
        std::vector<float> scale_out_data = {1.0f};
X
xiaolil1 已提交
613 614 615 616 617 618 619 620
        std::vector<float> scale_weights_data;
        std::vector<float> scale_in_eltwise_data;
        std::vector<float> output_shift_scale;
        std::vector<float> sum_scale = {1.0f};
        std::vector<float> none_scale = {0};

        if (GetScaleMap(scale_map, scale_in_key) == none_scale){
          scale_reuse = false;
X
xiaolil1 已提交
621 622
        }

X
xiaolil1 已提交
623 624 625 626 627 628 629 630
        if(!scale_reuse){
          int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
          scale_in_data = {*(scale_in->data<float>())};
          scale_weights_data.resize(count);
          #pragma omp parallel for if (count > 1)
          for(int i=0; i<count; i++){
            scale_weights_data[i] =*(scale_weights->data<float>() + i);
          }
X
xiaolil1 已提交
631 632
          if(!force_fp32_output)
            scale_out_data = {*(scale_out->data<float>())};
X
xiaolil1 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
          output_shift_scale.resize(count);
          #pragma omp parallel for if (count > 1)
          for(int i=0; i<count; i++){
            if(scale_weights_data[i] == 0.0)
              output_shift_scale[i] = scale_out_data[0];
            else 
              output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
          }
          if(fuse_residual_conn){
            scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
            sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
            SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
          }

          //scale reuse
          SetScaleMap(scale_map, scale_in_key, scale_in_data);
          SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
          SetScaleMap(scale_map, scale_out_key, scale_out_data);
          SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
          SetScaleMap(scale_map, sum_scale_key, sum_scale);
        } else{
          scale_in_data = GetScaleMap(scale_map, scale_in_key);
          scale_out_data = GetScaleMap(scale_map, scale_out_key);
          scale_weights_data = GetScaleMap(scale_map, scale_weights_key);
          if(fuse_residual_conn){
            scale_in_eltwise_data = GetScaleMap(scale_map, scale_in_eltwise_key);
          }
          output_shift_scale = GetScaleMap(scale_map, output_shift_scale_key);
          sum_scale = GetScaleMap(scale_map, sum_scale_key); 
662
        }
663

X
xiaolil1 已提交
664
        std::vector<primitive> pipeline;
665

X
xiaolil1 已提交
666 667 668 669 670
        auto user_src_md = platform::MKLDNNMemDesc(
                {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format());
        auto user_weights_md = platform::MKLDNNMemDesc(
                {weights_tz}, platform::MKLDNNGetDataType<float>(),
                (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
671
  
X
xiaolil1 已提交
672 673 674 675 676 677 678
        /* create memory descriptor for convolution without specified format
         * ('any') which lets a primitive (convolution in this case) choose
         * the memory format preferred for best performance
        */
        std::string data_format = ctx.Attr<std::string>("data_format");
        auto chosen_memory_format = 
            platform::data_format_to_memory_format(data_format);
679
  
X
xiaolil1 已提交
680
        auto bias_tz = paddle::framework::vectorize2int(bias->dims());
681

X
xiaolil1 已提交
682 683 684 685
        auto src_md = platform::MKLDNNMemDesc(
            src_tz, memory::data_type::u8, chosen_memory_format);
        auto weights_md = platform::MKLDNNMemDesc(
            weights_tz, memory::data_type::s8, chosen_memory_format);
686

X
xiaolil1 已提交
687 688 689
        auto dst_dt = fuse_relu?
            paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char)))
            : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
690

X
xiaolil1 已提交
691 692 693 694
        if(force_fp32_output){
          dst_dt = paddle::framework::ToMKLDNNDataType(std::type_index(typeid(float)));
        }

X
xiaolil1 已提交
695 696 697 698 699
        if(fuse_residual_conn){
          auto residual = ctx.Input<Tensor>("ResidualData");
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
          if(dst_dt != residual_dt)
            dst_dt = residual_dt;
700
        }
X
xiaolil1 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
        auto dst_md = platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);

        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
          auto bias_md = platform::MKLDNNMemDesc(
              bias_tz, memory::data_type::s32, memory::format::x);
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
                                         fuse_relu, fuse_residual_conn,
                                         output_shift_scale, sum_scale[0], is_test);
        } else {
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                   mkldnn_engine, fuse_relu, fuse_residual_conn,
                                   output_shift_scale, sum_scale[0], is_test);
        }
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx.SetBlob(key_conv_pd, conv_pd);

X
xiaolil1 已提交
720
        handler.reset(new ConvMKLDNNHandler(conv_pd, dev_ctx, mkldnn_engine, key));
X
xiaolil1 已提交
721 722

        // create mkldnn memory from input tensors (data/weights)
X
xiaolil1 已提交
723
        user_src_memory_p =
X
xiaolil1 已提交
724 725
            handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
        auto user_weights_memory_p = handler->AcquireWeightsMemory(
X
xiaolil1 已提交
726 727 728 729
            user_weights_md, to_void_cast<float>(filter_data));

        // create reorder primitive if the input format is not the preferred one
        src_memory_p =
X
xiaolil1 已提交
730
            handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
X
xiaolil1 已提交
731 732 733
            
        std::shared_ptr<mkldnn::memory> weights_memory_p;
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
734
           weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
735 736 737 738 739 740 741 742
           user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);

        if(fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                "Output and elementwise parameter need to have the "
                "same dimension sizes");
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
X
xiaolil1 已提交
743
          PADDLE_ENFORCE_EQ(residual_param->format(), handler->GetDstFormat(),
X
xiaolil1 已提交
744 745 746 747 748
                "Conv input dimension and filter dimension should be the same.");
          output->ShareDataWith(*residual_param);
          if(residual_dt == mkldnn::memory::data_type::u8){
            uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
            dst_memory_p =
X
xiaolil1 已提交
749
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
X
xiaolil1 已提交
750 751 752
          } else{
            int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
            dst_memory_p =
X
xiaolil1 已提交
753
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
X
xiaolil1 已提交
754
          }
X
xiaolil1 已提交
755
        } else if(!force_fp32_output){
X
xiaolil1 已提交
756
          if(fuse_relu){
X
xiaolil1 已提交
757
            uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
X
xiaolil1 已提交
758
            dst_memory_p =
X
xiaolil1 已提交
759
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
X
xiaolil1 已提交
760
          } else{
X
xiaolil1 已提交
761
            int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
X
xiaolil1 已提交
762
            dst_memory_p =
X
xiaolil1 已提交
763
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
X
xiaolil1 已提交
764
          }
X
xiaolil1 已提交
765 766 767 768
        } else {
            float* output_data = output->mutable_data<float>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
            dst_memory_p =
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<float>(output_data));
X
xiaolil1 已提交
769
        }
770

X
xiaolil1 已提交
771 772 773 774 775 776 777 778
        // create convolution op primitive
        std::vector<float> scale_bias_data;
        auto scale_bias_key = key + "@scale_bias";
        if (bias) {
          const float* bias_data = bias->data<float>();
          auto user_bias_md = platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
          auto user_bias_memory_p =
X
xiaolil1 已提交
779
              handler->AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
780 781 782 783 784 785 786 787 788 789 790 791
          std::shared_ptr<mkldnn::memory>  bias_memory_p;
          int mask_reorder = is_multi_channel? 1<<0 : 1;
          if(!scale_reuse){
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
            scale_bias_data.resize(count);
            #pragma omp parallel for if (count > 1)
            for(int i=0; i<count; i++){
              scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
            }
            SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
          } else{
            scale_bias_data = GetScaleMap(scale_map, scale_bias_key);
792
          }
X
xiaolil1 已提交
793
          bias_memory_p =
X
xiaolil1 已提交
794 795
              handler->AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
X
xiaolil1 已提交
796 797
                                              bias_memory_p, dst_memory_p);
        } else {
X
xiaolil1 已提交
798
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
X
xiaolil1 已提交
799
                                              dst_memory_p);
800
        }
801

X
xiaolil1 已提交
802

X
xiaolil1 已提交
803 804 805
          // push primitive to stream and wait until it's executed
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();
806

X
xiaolil1 已提交
807 808 809
        if(need_s8_to_u8){
          output->mutable_data<uint8_t>(ctx.GetPlace());
        }
810

X
xiaolil1 已提交
811 812 813
        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
      } else {
X
xiaolil1 已提交
814
//std::cout<<"this is int8 init"<<std::endl;
X
xiaolil1 已提交
815 816 817
        if(src_memory_reorder_p){
          pipeline.push_back(*src_memory_reorder_p);
        }
X
xiaolil1 已提交
818 819 820 821 822 823
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();
      
        if (need_s8_to_u8) {
          output->mutable_data<uint8_t>(ctx.GetPlace());
        }
X
xiaolil1 已提交
824

X
xiaolil1 已提交
825 826 827
        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
      }
828
    }
829
  }
830

831
 private:
X
xiaolil1 已提交
832

X
xiaolil1 已提交
833 834
    void SetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
                       const std::string& name, std::vector<float> scale_data) const {
X
xiaolil1 已提交
835 836
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
837
        scale_map[name] = scale_data;  // create new blob
X
xiaolil1 已提交
838
      } else {
X
xiaolil1 已提交
839
        (*it).second = scale_data;  // set data to existing blob
X
xiaolil1 已提交
840 841 842 843
      }
      return;
    }

X
xiaolil1 已提交
844
    std::vector<float> GetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
X
xiaolil1 已提交
845 846 847 848 849
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
850
      return {0};
851 852
    }

Z
Zhang, Guoming 已提交
853
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
854
                          const std::vector<float> output_shift_scale, float sum_scale) const {
855 856
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
857
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
858 859 860 861
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
862
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
863
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
864
      if (fuse_residual_conn) {
865 866 867 868 869
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
870
        constexpr float placeholder = 1.0f; //beta
871 872 873 874 875
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
876
    }
877

X
xiaolil1 已提交
878
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
879 880 881 882

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
883
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
884 885
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
886
      if (fuse_residual_conn) {
887 888 889 890 891 892 893 894 895 896 897 898 899
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
900
    }
M
Michal Gallus 已提交
901

Z
Zhang, Guoming 已提交
902
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
903 904 905 906
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
907
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
908
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
909 910 911
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
912 913
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

914
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
915
          propagation, mkldnn::convolution_direct, src, weights,
916 917 918 919
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
920
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
921 922 923 924 925 926

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
927
    }
M
Michal Gallus 已提交
928

929
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
930 931 932 933
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
934
                         const bool fuse_residual_conn, bool is_test=false) const{
935 936
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
937
 
938
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
939
 
940
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
941
          propagation, mkldnn::convolution_direct, src, weights,
942 943 944
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
945
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
946 947 948 949 950 951 952
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
953 954

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
955 956 957 958 959
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
960
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
961
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
962 963 964
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
965 966
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

967
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
968
          propagation, mkldnn::convolution_direct, src, weights,
969 970 971 972
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
973
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
974 975 976 977 978 979 980 981 982 983 984 985 986 987

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
988
                         const bool fuse_residual_conn, bool is_test=false) const{
989 990 991
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

992
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
993

994
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
995
          propagation, mkldnn::convolution_direct, src, weights,
996 997 998
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
999
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
1000 1001 1002 1003 1004 1005 1006

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
1007 1008 1009
};

template <typename T>
1010
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
1011 1012 1013 1014 1015
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

1016 1017
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

1041 1042 1043 1044
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

1045 1046 1047 1048
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
1049 1050
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

1063
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
1064
    // as well as attributes of primitive to be created
1065 1066 1067 1068 1069 1070
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
1071
    std::vector<primitive> pipeline;
1072

1073 1074 1075 1076 1077 1078 1079
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
1080 1081 1082 1083 1084

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
1085 1086 1087 1088
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

1089
    auto src_md = platform::MKLDNNMemDesc(
1090
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1091
    auto diff_src_md = platform::MKLDNNMemDesc(
1092
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1093
    auto weights_md = platform::MKLDNNMemDesc(
1094
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1095
    auto diff_weights_md = platform::MKLDNNMemDesc(
1096
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1097
    auto diff_dst_md = platform::MKLDNNMemDesc(
1098
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1099

1100
    // Retrieve conv_pd from device context
1101 1102 1103
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1104 1105 1106
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1133 1134
    // create backward conv primitive for weights
    if (filter_grad) {
1135 1136
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1137

1138 1139 1140 1141
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1142
      const size_t size = handler.GetDiffWeightsMemorySize();
Y
Yu Yang 已提交
1143 1144
      filter_grad_data = filter_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1155 1156

      filter_grad->set_layout(DataLayout::kMKLDNN);
1157
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1158 1159 1160
    }

    if (input_grad) {
1161 1162 1163 1164 1165 1166 1167
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1168
      const size_t size = handler.GetDiffSourceMemorySize();
Y
Yu Yang 已提交
1169 1170
      input_grad_data = input_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
1171

1172 1173 1174 1175 1176 1177 1178
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1179 1180

      input_grad->set_layout(DataLayout::kMKLDNN);
1181
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1182
    }
1183
    stream(stream::kind::eager).submit(pipeline).wait();
1184 1185 1186 1187 1188 1189 1190 1191 1192
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1193
                   ops::ConvMKLDNNOpKernel<float>,
X
xiaolil1 已提交
1194 1195
                   ops::ConvMKLDNNOpKernel<uint8_t>,
                   ops::ConvMKLDNNOpKernel<int8_t>);
1196 1197

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1198
                   ops::ConvMKLDNNGradOpKernel<float>);