conv_mkldnn_op.cc 47.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15 16
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
17 18
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
19
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
20
#include <unordered_map>
21 22 23 24

namespace paddle {
namespace operators {

25 26 27 28 29 30 31 32
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

33 34 35 36 37 38 39 40 41 42
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

60
  size_t GetDstMemorySize() const {
61 62
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
63 64 65 66 67
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
68

69
  size_t GetDiffWeightsMemorySize() const {
70 71 72
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

73
  size_t GetDiffSourceMemorySize() const {
74 75 76
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

77 78
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
79
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
80 81 82 83 84 85 86 87
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
88
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
104
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
105 106 107 108 109 110 111 112
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
113
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
114 115 116 117 118 119
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

X
xiaolil1 已提交
120

Z
Zhang, Guoming 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
X
xiaolil1 已提交
134
  
135 136 137 138 139 140
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

141 142 143 144 145 146 147
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
148
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
149
    auto src_pd = conv_pd_->src_primitive_desc();
150
    auto user_pd = user_memory_p->get_primitive_desc();
151 152 153 154 155 156
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
157
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
158 159 160 161
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
162 163 164 165
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
166 167
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
168 169
  }

170 171
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
172
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
173
      bool is_persistent = false,
X
xiaolil1 已提交
174 175 176
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
177 178 179
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
180 181
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
182 183
  }

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

275 276
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
277 278 279 280 281 282
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
283 284 285 286 287 288 289
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
290 291 292 293
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
294 295
};

296
template <typename T>
297
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
298 299
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
K
Krzysztof Binias 已提交
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                  "It must use CPUPlace.");

    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
332

333 334 335 336 337 338
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    int groups = ctx.Attr<int>("groups");
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const float* filter_data = filter->data<float>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
365

366 367 368 369 370
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";
371

372
    std::vector<primitive> pipeline;
373

374 375
    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
    if(!is_INT8){
376 377 378 379
      auto user_src_md = platform::MKLDNNMemDesc(
          {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<T>(),
380
          (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
381 382 383 384 385 386 387 388 389 390 391 392 393 394

      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
395 396
                               // Currently used whenever bias is != nullptr.

397 398 399 400 401
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      // create a conv primitive descriptor and save it for usage in backward
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416
      if (bias) {
        bias_tz = paddle::framework::vectorize2int(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(
            bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
        conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                       strides, paddings, mkldnn_engine,
                                       fuse_relu, fuse_residual_conn);
      } else {
        conv_pd =
            ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                 mkldnn_engine, fuse_relu, fuse_residual_conn);
      }
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);
X
xiaolil1 已提交
417

418
      ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
419

420 421 422 423
      // create mkldnn memory from input tensors (data/weights)
      auto user_src_memory_p =
          handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler.AcquireWeightsMemory(
424
          user_weights_md, to_void_cast<float>(filter_data));
425

426 427 428 429 430
      // create reorder primitive if the input format is not the preferred one
      auto src_memory_p =
          handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
      auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test);
X
xiaolil1 已提交
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
      std::shared_ptr<mkldnn::memory> dst_memory_p;

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_param_data = residual_param->data<T>();

        PADDLE_ENFORCE(
            residual_param_data != nullptr,
            "Provide data if you want MKLDNN conv+elementwise_add fusion");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");

        if (residual_param->format() != handler.GetDstFormat()) {
          auto output_data =
447
              output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler.GetDstMemorySize());
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());
          auto residual_data_type =
              paddle::framework::ToMKLDNNDataType(residual_param->type());

          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_data_type, residual_param->format());
          auto user_residual_memory_p = handler.AcquireResidualDataMemory(
              user_residual_md, to_void_cast<T>(residual_param_data));

          dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
              user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
        } else {
          output->ShareDataWith(*residual_param);
          auto output_data = output->mutable_data<T>(ctx.GetPlace());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
465
        }
466 467
      } else {
        auto output_data =
468
            output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler.GetDstMemorySize());
469 470 471
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
      }
X
xiaolil1 已提交
472

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
      // create convolution op primitive
      std::shared_ptr<mkldnn::convolution_forward> conv_p;
      if (bias) {
        const T* bias_data = bias->data<T>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
        auto user_bias_memory_p =
            handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

        auto bias_memory_p =
            handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            dst_memory_p);
      }
490

491 492 493
      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
      stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
494

495 496 497
      output->set_layout(DataLayout::kMKLDNN);
      output->set_format(GetMKLDNNFormat(*dst_memory_p));

498
    } else{
499 500 501 502 503 504 505 506 507
      auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
      auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
      auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
      auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;

      bool is_multi_channel = (scale_weights->memory_size() > 1) ? true : false;

      static std::unordered_map<std::string, std::vector<float>> scale_map;

508
      bool scale_reuse = true;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
      auto scale_in_key = key + "@scale_in";
      auto scale_weights_key = key + "@scale_weights";
      auto scale_out_key = key + "@scale_out";
      auto output_shift_scale_key = key + "@output_shift_scale";
      auto sum_scale_key = key + "@sum_scale";
      auto scale_in_eltwise_key = key + "@scale_in_eltwise";
      std::vector<float> scale_in_data;
      std::vector<float> scale_out_data;
      std::vector<float> scale_weights_data;
      std::vector<float> scale_in_eltwise_data;
      std::vector<float> output_shift_scale;
      std::vector<float> sum_scale = {1.0f};
      std::vector<float> none_scale = {0};

      if (GetScaleMap(scale_map, scale_in_key) == none_scale){
524
        scale_reuse = false;
525
      }
526 527

      if(!scale_reuse){
528 529 530 531 532
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
        scale_in_data = {*(scale_in->data<float>())};
        scale_weights_data.resize(count);
        #pragma omp parallel for if (count > 1)
        for(int i=0; i<count; i++){
533
          scale_weights_data[i] =*(scale_weights->data<float>() + i);
X
xiaolil1 已提交
534
        }
535 536 537 538
        scale_out_data = {*(scale_out->data<float>())};
        output_shift_scale.resize(count);
        #pragma omp parallel for if (count > 1)
        for(int i=0; i<count; i++){
539 540 541 542
          if(scale_weights_data[i] == 0.0)
            output_shift_scale[i] = scale_out_data[0];
          else 
            output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
X
xiaolil1 已提交
543
        }
544
        if(fuse_residual_conn){
545 546 547
          scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
          sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
          SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
X
xiaolil1 已提交
548 549
        }

550 551 552 553 554 555 556
        //scale reuse
        SetScaleMap(scale_map, scale_in_key, scale_in_data);
        SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
        SetScaleMap(scale_map, scale_out_key, scale_out_data);
        SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
        SetScaleMap(scale_map, sum_scale_key, sum_scale);
      } else{
557 558 559 560 561 562 563 564
        scale_in_data = GetScaleMap(scale_map, scale_in_key);
        scale_out_data = GetScaleMap(scale_map, scale_out_key);
        scale_weights_data = GetScaleMap(scale_map, scale_weights_key);
        if(fuse_residual_conn){
          scale_in_eltwise_data = GetScaleMap(scale_map, scale_in_eltwise_key);
        }
        output_shift_scale = GetScaleMap(scale_map, output_shift_scale_key);
        sum_scale = GetScaleMap(scale_map, sum_scale_key); 
565 566 567
      }

      std::vector<primitive> pipeline;
568

569 570 571 572 573
      auto user_src_md = platform::MKLDNNMemDesc(
              {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
              {weights_tz}, platform::MKLDNNGetDataType<float>(),
              (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
574
  
575 576 577
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
578
      */
579 580 581
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format = 
          platform::data_format_to_memory_format(data_format);
582
  
583 584 585 586 587
      auto bias_tz = paddle::framework::vectorize2int(bias->dims());

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, memory::data_type::u8, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
588 589 590 591 592 593
          weights_tz, memory::data_type::s8, chosen_memory_format);

      auto dst_dt = fuse_relu?
          paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char)))
          : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));

594
      if(fuse_residual_conn){
595 596 597 598
        auto residual = ctx.Input<Tensor>("ResidualData");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
        if(dst_dt != residual_dt)
          dst_dt = residual_dt;
599 600 601 602
      }
      auto dst_md = platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);

      // create a conv primitive descriptor and save it for usage in backward
603 604
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;

605
      if (bias) {
606 607 608 609 610 611
        auto bias_md = platform::MKLDNNMemDesc(
            bias_tz, memory::data_type::s32, memory::format::x);
        conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                       strides, paddings, mkldnn_engine,
                                       fuse_relu, fuse_residual_conn,
                                       output_shift_scale, sum_scale[0], is_test);
612
      } else {
613 614 615 616
        conv_pd =
            ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                 mkldnn_engine, fuse_relu, fuse_residual_conn,
                                 output_shift_scale, sum_scale[0], is_test);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
      }
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);

      ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);

      // create mkldnn memory from input tensors (data/weights)
      auto user_src_memory_p =
          handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler.AcquireWeightsMemory(
          user_weights_md, to_void_cast<float>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      auto src_memory_p =
          handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
          
      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
635 636
         weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
         user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
637 638 639 640

      std::shared_ptr<mkldnn::memory> dst_memory_p;
      bool need_s8_to_u8 = false;
      if(fuse_residual_conn) {
641 642 643 644 645
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
              "Output and elementwise parameter need to have the "
              "same dimension sizes");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
646 647 648 649 650 651 652 653 654 655 656 657 658
        PADDLE_ENFORCE_EQ(residual_param->format(), handler.GetDstFormat(),
              "Conv input dimension and filter dimension should be the same.");
        output->ShareDataWith(*residual_param);
        if(residual_dt == mkldnn::memory::data_type::u8){
          uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
        } else{
          int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          if(fuse_relu)
            need_s8_to_u8 = true;
659 660 661
        }
      } else {
        if(fuse_relu){
662
          uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler.GetDstMemorySize());
663 664
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
665
        } else{
666
          int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler.GetDstMemorySize());
667 668
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
X
xiaolil1 已提交
669
        }
670
      }
671

672 673 674 675 676 677 678 679 680 681 682 683
      // create convolution op primitive
      std::shared_ptr<mkldnn::convolution_forward> conv_p;
      std::vector<float> scale_bias_data;
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
        const float* bias_data = bias->data<float>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
        auto user_bias_memory_p =
            handler.AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
        std::shared_ptr<mkldnn::memory>  bias_memory_p;
        int mask_reorder = is_multi_channel? 1<<0 : 1;
684 685 686 687 688 689 690 691
        if(!scale_reuse){
          int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
          scale_bias_data.resize(count);
          #pragma omp parallel for if (count > 1)
          for(int i=0; i<count; i++){
            scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
          }
          SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
692
        } else{
693
          scale_bias_data = GetScaleMap(scale_map, scale_bias_key);
694 695 696 697 698 699 700 701 702
        }
        bias_memory_p =
            handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            dst_memory_p);
      }
703

X
xiaolil1 已提交
704

705 706 707
        // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
      stream(stream::kind::eager).submit(pipeline).wait();
708

709
      if(need_s8_to_u8){
710
        output->mutable_data<uint8_t>(ctx.GetPlace());
711
      }
712

713 714 715
      output->set_layout(DataLayout::kMKLDNN);
      output->set_format(GetMKLDNNFormat(*dst_memory_p));
    }
716
  }
717

718
 private:
X
xiaolil1 已提交
719

X
xiaolil1 已提交
720 721
    void SetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
                       const std::string& name, std::vector<float> scale_data) const {
X
xiaolil1 已提交
722 723
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
724
        scale_map[name] = scale_data;  // create new blob
X
xiaolil1 已提交
725
      } else {
X
xiaolil1 已提交
726
        (*it).second = scale_data;  // set data to existing blob
X
xiaolil1 已提交
727 728 729 730
      }
      return;
    }

X
xiaolil1 已提交
731
    std::vector<float> GetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
X
xiaolil1 已提交
732 733 734 735 736
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
737
      return {0};
738 739
    }

Z
Zhang, Guoming 已提交
740
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
741
                          const std::vector<float> output_shift_scale, float sum_scale) const {
742 743
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
744
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
745 746 747 748
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
749
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
750
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
751
      if (fuse_residual_conn) {
752 753 754 755 756
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
757
        constexpr float placeholder = 1.0f; //beta
758 759 760 761 762
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
763
    }
764

X
xiaolil1 已提交
765
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
766 767 768 769

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
770
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
771 772
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
773
      if (fuse_residual_conn) {
774 775 776 777 778 779 780 781 782 783 784 785 786
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
787
    }
M
Michal Gallus 已提交
788

Z
Zhang, Guoming 已提交
789
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
790 791 792 793
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
794
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
795
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
796 797 798
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
799 800
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

801
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
802
          propagation, mkldnn::convolution_direct, src, weights,
803 804 805 806
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
807
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
808 809 810 811 812 813

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
814
    }
M
Michal Gallus 已提交
815

816
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
817 818 819 820
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
821
                         const bool fuse_residual_conn, bool is_test=false) const{
822 823
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
824
 
825
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
826
 
827
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
828
          propagation, mkldnn::convolution_direct, src, weights,
829 830 831
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
832
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
833 834 835 836 837 838 839
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
840 841

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
842 843 844 845 846
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
847
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
848
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
849 850 851
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
852 853
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

854
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
855
          propagation, mkldnn::convolution_direct, src, weights,
856 857 858 859
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
860
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
861 862 863 864 865 866 867 868 869 870 871 872 873 874

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
875
                         const bool fuse_residual_conn, bool is_test=false) const{
876 877 878
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

879
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
880

881
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
882
          propagation, mkldnn::convolution_direct, src, weights,
883 884 885
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
886
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
887 888 889 890 891 892 893

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
894 895 896
};

template <typename T>
897
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
898 899 900 901 902
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

903 904
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
905 906 907 908 909 910 911 912 913 914
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

915 916 917 918 919 920 921 922 923 924 925 926 927
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

928 929 930 931
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

932 933 934 935
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
936 937
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
938 939 940 941 942 943 944 945 946 947 948 949

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

950
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
951
    // as well as attributes of primitive to be created
952 953 954 955 956 957
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
958
    std::vector<primitive> pipeline;
959

960 961 962 963 964 965 966
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
967 968 969 970 971

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
972 973 974 975
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

976
    auto src_md = platform::MKLDNNMemDesc(
977
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
978
    auto diff_src_md = platform::MKLDNNMemDesc(
979
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
980
    auto weights_md = platform::MKLDNNMemDesc(
981
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
982
    auto diff_weights_md = platform::MKLDNNMemDesc(
983
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
984
    auto diff_dst_md = platform::MKLDNNMemDesc(
985
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
986

987
    // Retrieve conv_pd from device context
988 989 990
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
991 992 993
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1020 1021
    // create backward conv primitive for weights
    if (filter_grad) {
1022 1023
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1024

1025 1026 1027 1028
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1029
      const size_t size = handler.GetDiffWeightsMemorySize();
Y
Yu Yang 已提交
1030 1031
      filter_grad_data = filter_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1042 1043

      filter_grad->set_layout(DataLayout::kMKLDNN);
1044
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1045 1046 1047
    }

    if (input_grad) {
1048 1049 1050 1051 1052 1053 1054
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1055
      const size_t size = handler.GetDiffSourceMemorySize();
Y
Yu Yang 已提交
1056 1057
      input_grad_data = input_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
1058

1059 1060 1061 1062 1063 1064 1065
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1066 1067

      input_grad->set_layout(DataLayout::kMKLDNN);
1068
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1069
    }
1070
    stream(stream::kind::eager).submit(pipeline).wait();
1071 1072 1073 1074 1075 1076 1077 1078 1079
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1080 1081
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1082 1083

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1084
                   ops::ConvMKLDNNGradOpKernel<float>);