conv_mkldnn_op.cc 51.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15 16
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
17 18
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
19
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
20
#include <unordered_map>
21 22 23 24

namespace paddle {
namespace operators {

25 26 27 28 29 30 31 32
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

33 34 35 36 37 38 39 40 41 42
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

60
  size_t GetDstMemorySize() const {
61 62
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
63 64 65 66 67
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
68

69
  size_t GetDiffWeightsMemorySize() const {
70 71 72
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

73
  size_t GetDiffSourceMemorySize() const {
74 75 76
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

77 78
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
79
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
80 81 82 83 84 85 86 87
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
88
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
104
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
105 106 107 108 109 110 111 112
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
113
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
114 115 116 117 118 119
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

X
xiaolil1 已提交
120

Z
Zhang, Guoming 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
X
xiaolil1 已提交
134
  
135 136 137 138 139 140
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

141 142 143 144 145 146 147
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
148
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
149
    auto src_pd = conv_pd_->src_primitive_desc();
150
    auto user_pd = user_memory_p->get_primitive_desc();
151 152 153 154 155 156
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
157
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
158 159 160 161
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
162 163 164 165
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
166 167
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
168 169
  }

170 171
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
172
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
173
      bool is_persistent = false,
X
xiaolil1 已提交
174 175 176
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
177 178 179
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
180 181
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
182 183
  }

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

275 276
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
277 278 279 280 281 282
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
283 284 285 286 287 288 289
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
290 291 292 293
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
294 295
};

296
template <typename T>
297
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
298 299
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
K
Krzysztof Binias 已提交
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                  "It must use CPUPlace.");

    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
332

333 334 335 336 337 338
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    int groups = ctx.Attr<int>("groups");
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const float* filter_data = filter->data<float>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
365

366 367 368 369 370
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";
371

372
    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
373 374 375 376 377
    
    bool need_s8_to_u8 = false;
    if (fuse_residual_conn && is_INT8 && fuse_relu) {
      need_s8_to_u8 = true;
    }
378

X
xiaolil1 已提交
379 380
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
381
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
X
xiaolil1 已提交
382 383 384 385 386 387
    std::shared_ptr<mkldnn::memory> dst_memory_p;
    std::vector<primitive> pipeline;
    
    auto prim_key = key + "@conv_p";
    auto dst_key = key + "@dst_mem_p";
    auto src_key = key + "@src_mem_p";
388 389
    auto user_src_key = key + "@user_src_mem_p";
    auto src_reorder_key = key + "@src_mem_p" + "reorder_p";
X
xiaolil1 已提交
390
    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(dev_ctx.GetBlob(prim_key));
391
    auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_reorder_key));
X
xiaolil1 已提交
392
    src_memory_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
393 394 395 396
    if(src_memory_reorder_p){
      user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(user_src_key));
      user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
    } else if(src_memory_p){
X
xiaolil1 已提交
397 398 399
      src_memory_p->set_data_handle(to_void_cast<T>(input_data));
    }
    
400 401
    dst_memory_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
    
X
xiaolil1 已提交
402 403 404 405 406 407 408
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    conv_pd = std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(dev_ctx.GetBlob(key_conv_pd));
    std::shared_ptr<ConvMKLDNNHandler> handler;
    if(conv_pd){
      handler.reset(new ConvMKLDNNHandler(conv_pd, dev_ctx, mkldnn_engine, key));
    }
    if (!is_INT8 && dst_memory_p){
409 410 411
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_param_data = residual_param->data<T>();
X
xiaolil1 已提交
412
        if (residual_param->format() != handler->GetDstFormat()) {
413
          auto output_data =
X
xiaolil1 已提交
414
              output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
415 416 417 418
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());
          auto residual_data_type =
              paddle::framework::ToMKLDNNDataType(residual_param->type());
X
xiaolil1 已提交
419
    
420 421
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_data_type, residual_param->format());
X
xiaolil1 已提交
422
          auto user_residual_memory_p = handler->AcquireResidualDataMemory(
423
              user_residual_md, to_void_cast<T>(residual_param_data));
X
xiaolil1 已提交
424
          dst_memory_p = handler->AcquireDstMemoryFromResidualDataMemory(
425 426 427 428
              user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
        } else {
          output->ShareDataWith(*residual_param);
          auto output_data = output->mutable_data<T>(ctx.GetPlace());
X
xiaolil1 已提交
429
          dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
X
xiaolil1 已提交
430
        }
431 432
      } else {
        auto output_data =
X
xiaolil1 已提交
433 434
            output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
        dst_memory_p->set_data_handle(to_void_cast<T>(output_data)); 
435
      }
X
xiaolil1 已提交
436
    }
X
xiaolil1 已提交
437

X
xiaolil1 已提交
438 439 440 441 442 443 444
    if(!is_INT8){
      if(conv_p == nullptr){
        auto user_src_md = platform::MKLDNNMemDesc(
            {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
        auto user_weights_md = platform::MKLDNNMemDesc(
            {weights_tz}, platform::MKLDNNGetDataType<T>(),
            (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
445

X
xiaolil1 已提交
446 447 448 449 450 451 452
        /* create memory descriptor for convolution without specified format
         * ('any') which lets a primitive (convolution in this case) choose
         * the memory format preferred for best performance
         */
        std::string data_format = ctx.Attr<std::string>("data_format");
        auto chosen_memory_format =
            platform::data_format_to_memory_format(data_format);
X
xiaolil1 已提交
453

X
xiaolil1 已提交
454 455 456 457 458 459
        auto src_md = platform::MKLDNNMemDesc(
            src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
        auto weights_md = platform::MKLDNNMemDesc(
            weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
        std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                                 // Currently used whenever bias is != nullptr.
460

X
xiaolil1 已提交
461 462 463 464 465 466 467 468 469 470
        auto dst_md = platform::MKLDNNMemDesc(
            dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
          bias_tz = paddle::framework::vectorize2int(bias->dims());
          auto bias_md = platform::MKLDNNMemDesc(
              bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
471
                                         fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
472 473 474
        } else {
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
475
                                   mkldnn_engine, fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
476 477 478 479 480 481 482
        }
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx.SetBlob(key_conv_pd, conv_pd);

        handler.reset(new ConvMKLDNNHandler(conv_pd, dev_ctx, mkldnn_engine, key));

        // create mkldnn memory from input tensors (data/weights)
483
        user_src_memory_p =
X
xiaolil1 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
            handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
        auto user_weights_memory_p = handler->AcquireWeightsMemory(
            user_weights_md, to_void_cast<float>(filter_data));

        // create reorder primitive if the input format is not the preferred one
        src_memory_p =
            handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
        auto weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);

        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          auto residual_param_data = residual_param->data<T>();

          PADDLE_ENFORCE(
              residual_param_data != nullptr,
              "Provide data if you want MKLDNN conv+elementwise_add fusion");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");

          if (residual_param->format() != handler->GetDstFormat()) {
            auto output_data =
                output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
            auto residual_data_tz =
                paddle::framework::vectorize2int(residual_param->dims());
            auto residual_data_type =
                paddle::framework::ToMKLDNNDataType(residual_param->type());

            auto user_residual_md = platform::MKLDNNMemDesc(
                residual_data_tz, residual_data_type, residual_param->format());
            auto user_residual_memory_p = handler->AcquireResidualDataMemory(
                user_residual_md, to_void_cast<T>(residual_param_data));
            dst_memory_p = handler->AcquireDstMemoryFromResidualDataMemory(
                user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
          } else {
            output->ShareDataWith(*residual_param);
            auto output_data = output->mutable_data<T>(ctx.GetPlace());
            dst_memory_p =
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
          }
        } else {
          auto output_data =
              output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
          dst_memory_p =
              handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
        }

        // create convolution op primitive
        if (bias) {
          const T* bias_data = bias->data<T>();
          auto user_bias_md = platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
          auto user_bias_memory_p =
              handler->AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

          auto bias_memory_p =
              handler->AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test);
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                              bias_memory_p, dst_memory_p);
        } else {
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                              dst_memory_p);
        }
        // push primitive to stream and wait until it's executed
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();

        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
554 555 556 557
      } else {
        if(src_memory_reorder_p){
          pipeline.push_back(*src_memory_reorder_p);
        } 
X
xiaolil1 已提交
558 559
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();
560

X
xiaolil1 已提交
561 562
        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
X
xiaolil1 已提交
563
      }
X
xiaolil1 已提交
564
    } else{
X
xiaolil1 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
      if(conv_p == nullptr){
        auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
        auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
        auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
        auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;

        bool is_multi_channel = (scale_weights->memory_size() > 1) ? true : false;

        static std::unordered_map<std::string, std::vector<float>> scale_map;

        bool scale_reuse = true;
        auto scale_in_key = key + "@scale_in";
        auto scale_weights_key = key + "@scale_weights";
        auto scale_out_key = key + "@scale_out";
        auto output_shift_scale_key = key + "@output_shift_scale";
        auto sum_scale_key = key + "@sum_scale";
        auto scale_in_eltwise_key = key + "@scale_in_eltwise";
        std::vector<float> scale_in_data;
        std::vector<float> scale_out_data;
        std::vector<float> scale_weights_data;
        std::vector<float> scale_in_eltwise_data;
        std::vector<float> output_shift_scale;
        std::vector<float> sum_scale = {1.0f};
        std::vector<float> none_scale = {0};

        if (GetScaleMap(scale_map, scale_in_key) == none_scale){
          scale_reuse = false;
X
xiaolil1 已提交
592 593
        }

X
xiaolil1 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
        if(!scale_reuse){
          int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
          scale_in_data = {*(scale_in->data<float>())};
          scale_weights_data.resize(count);
          #pragma omp parallel for if (count > 1)
          for(int i=0; i<count; i++){
            scale_weights_data[i] =*(scale_weights->data<float>() + i);
          }
          scale_out_data = {*(scale_out->data<float>())};
          output_shift_scale.resize(count);
          #pragma omp parallel for if (count > 1)
          for(int i=0; i<count; i++){
            if(scale_weights_data[i] == 0.0)
              output_shift_scale[i] = scale_out_data[0];
            else 
              output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
          }
          if(fuse_residual_conn){
            scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
            sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
            SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
          }

          //scale reuse
          SetScaleMap(scale_map, scale_in_key, scale_in_data);
          SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
          SetScaleMap(scale_map, scale_out_key, scale_out_data);
          SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
          SetScaleMap(scale_map, sum_scale_key, sum_scale);
        } else{
          scale_in_data = GetScaleMap(scale_map, scale_in_key);
          scale_out_data = GetScaleMap(scale_map, scale_out_key);
          scale_weights_data = GetScaleMap(scale_map, scale_weights_key);
          if(fuse_residual_conn){
            scale_in_eltwise_data = GetScaleMap(scale_map, scale_in_eltwise_key);
          }
          output_shift_scale = GetScaleMap(scale_map, output_shift_scale_key);
          sum_scale = GetScaleMap(scale_map, sum_scale_key); 
632
        }
633

X
xiaolil1 已提交
634
        std::vector<primitive> pipeline;
635

X
xiaolil1 已提交
636 637 638 639 640
        auto user_src_md = platform::MKLDNNMemDesc(
                {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format());
        auto user_weights_md = platform::MKLDNNMemDesc(
                {weights_tz}, platform::MKLDNNGetDataType<float>(),
                (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
641
  
X
xiaolil1 已提交
642 643 644 645 646 647 648
        /* create memory descriptor for convolution without specified format
         * ('any') which lets a primitive (convolution in this case) choose
         * the memory format preferred for best performance
        */
        std::string data_format = ctx.Attr<std::string>("data_format");
        auto chosen_memory_format = 
            platform::data_format_to_memory_format(data_format);
649
  
X
xiaolil1 已提交
650
        auto bias_tz = paddle::framework::vectorize2int(bias->dims());
651

X
xiaolil1 已提交
652 653 654 655
        auto src_md = platform::MKLDNNMemDesc(
            src_tz, memory::data_type::u8, chosen_memory_format);
        auto weights_md = platform::MKLDNNMemDesc(
            weights_tz, memory::data_type::s8, chosen_memory_format);
656

X
xiaolil1 已提交
657 658 659
        auto dst_dt = fuse_relu?
            paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char)))
            : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
660

X
xiaolil1 已提交
661 662 663 664 665
        if(fuse_residual_conn){
          auto residual = ctx.Input<Tensor>("ResidualData");
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
          if(dst_dt != residual_dt)
            dst_dt = residual_dt;
666
        }
X
xiaolil1 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
        auto dst_md = platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);

        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
          auto bias_md = platform::MKLDNNMemDesc(
              bias_tz, memory::data_type::s32, memory::format::x);
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
                                         fuse_relu, fuse_residual_conn,
                                         output_shift_scale, sum_scale[0], is_test);
        } else {
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                   mkldnn_engine, fuse_relu, fuse_residual_conn,
                                   output_shift_scale, sum_scale[0], is_test);
        }
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx.SetBlob(key_conv_pd, conv_pd);

X
xiaolil1 已提交
686
        handler.reset(new ConvMKLDNNHandler(conv_pd, dev_ctx, mkldnn_engine, key));
X
xiaolil1 已提交
687 688 689

        // create mkldnn memory from input tensors (data/weights)
        auto user_src_memory_p =
X
xiaolil1 已提交
690 691
            handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
        auto user_weights_memory_p = handler->AcquireWeightsMemory(
X
xiaolil1 已提交
692 693 694 695
            user_weights_md, to_void_cast<float>(filter_data));

        // create reorder primitive if the input format is not the preferred one
        src_memory_p =
X
xiaolil1 已提交
696
            handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
X
xiaolil1 已提交
697 698 699
            
        std::shared_ptr<mkldnn::memory> weights_memory_p;
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
700
           weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
701 702 703 704 705 706 707 708
           user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);

        if(fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                "Output and elementwise parameter need to have the "
                "same dimension sizes");
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
X
xiaolil1 已提交
709
          PADDLE_ENFORCE_EQ(residual_param->format(), handler->GetDstFormat(),
X
xiaolil1 已提交
710 711 712 713 714
                "Conv input dimension and filter dimension should be the same.");
          output->ShareDataWith(*residual_param);
          if(residual_dt == mkldnn::memory::data_type::u8){
            uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
            dst_memory_p =
X
xiaolil1 已提交
715
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
X
xiaolil1 已提交
716 717 718
          } else{
            int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
            dst_memory_p =
X
xiaolil1 已提交
719
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
X
xiaolil1 已提交
720 721 722
          }
        } else {
          if(fuse_relu){
X
xiaolil1 已提交
723
            uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
X
xiaolil1 已提交
724
            dst_memory_p =
X
xiaolil1 已提交
725
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
X
xiaolil1 已提交
726
          } else{
X
xiaolil1 已提交
727
            int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
X
xiaolil1 已提交
728
            dst_memory_p =
X
xiaolil1 已提交
729
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
X
xiaolil1 已提交
730
          }
X
xiaolil1 已提交
731
        }
732

X
xiaolil1 已提交
733 734 735 736 737 738 739 740
        // create convolution op primitive
        std::vector<float> scale_bias_data;
        auto scale_bias_key = key + "@scale_bias";
        if (bias) {
          const float* bias_data = bias->data<float>();
          auto user_bias_md = platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
          auto user_bias_memory_p =
X
xiaolil1 已提交
741
              handler->AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
742 743 744 745 746 747 748 749 750 751 752 753
          std::shared_ptr<mkldnn::memory>  bias_memory_p;
          int mask_reorder = is_multi_channel? 1<<0 : 1;
          if(!scale_reuse){
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
            scale_bias_data.resize(count);
            #pragma omp parallel for if (count > 1)
            for(int i=0; i<count; i++){
              scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
            }
            SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
          } else{
            scale_bias_data = GetScaleMap(scale_map, scale_bias_key);
754
          }
X
xiaolil1 已提交
755
          bias_memory_p =
X
xiaolil1 已提交
756 757
              handler->AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
X
xiaolil1 已提交
758 759
                                              bias_memory_p, dst_memory_p);
        } else {
X
xiaolil1 已提交
760
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
X
xiaolil1 已提交
761
                                              dst_memory_p);
762
        }
763

X
xiaolil1 已提交
764

X
xiaolil1 已提交
765 766 767
          // push primitive to stream and wait until it's executed
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();
768

X
xiaolil1 已提交
769 770 771
        if(need_s8_to_u8){
          output->mutable_data<uint8_t>(ctx.GetPlace());
        }
772

X
xiaolil1 已提交
773 774 775 776 777 778 779 780 781
        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
      } else {
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();
      
        if (need_s8_to_u8) {
          output->mutable_data<uint8_t>(ctx.GetPlace());
        }
X
xiaolil1 已提交
782

X
xiaolil1 已提交
783 784 785
        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
      }
786
    }
787
  }
788

789
 private:
X
xiaolil1 已提交
790

X
xiaolil1 已提交
791 792
    void SetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
                       const std::string& name, std::vector<float> scale_data) const {
X
xiaolil1 已提交
793 794
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
795
        scale_map[name] = scale_data;  // create new blob
X
xiaolil1 已提交
796
      } else {
X
xiaolil1 已提交
797
        (*it).second = scale_data;  // set data to existing blob
X
xiaolil1 已提交
798 799 800 801
      }
      return;
    }

X
xiaolil1 已提交
802
    std::vector<float> GetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
X
xiaolil1 已提交
803 804 805 806 807
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
808
      return {0};
809 810
    }

Z
Zhang, Guoming 已提交
811
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
812
                          const std::vector<float> output_shift_scale, float sum_scale) const {
813 814
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
815
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
816 817 818 819
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
820
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
821
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
822
      if (fuse_residual_conn) {
823 824 825 826 827
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
828
        constexpr float placeholder = 1.0f; //beta
829 830 831 832 833
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
834
    }
835

X
xiaolil1 已提交
836
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
837 838 839 840

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
841
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
842 843
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
844
      if (fuse_residual_conn) {
845 846 847 848 849 850 851 852 853 854 855 856 857
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
858
    }
M
Michal Gallus 已提交
859

Z
Zhang, Guoming 已提交
860
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
861 862 863 864
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
865
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
866
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
867 868 869
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
870 871
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

872
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
873
          propagation, mkldnn::convolution_direct, src, weights,
874 875 876 877
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
878
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
879 880 881 882 883 884

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
885
    }
M
Michal Gallus 已提交
886

887
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
888 889 890 891
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
892
                         const bool fuse_residual_conn, bool is_test=false) const{
893 894
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
895
 
896
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
897
 
898
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
899
          propagation, mkldnn::convolution_direct, src, weights,
900 901 902
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
903
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
904 905 906 907 908 909 910
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
911 912

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
913 914 915 916 917
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
918
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
919
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
920 921 922
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
923 924
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

925
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
926
          propagation, mkldnn::convolution_direct, src, weights,
927 928 929 930
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
931
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
932 933 934 935 936 937 938 939 940 941 942 943 944 945

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
946
                         const bool fuse_residual_conn, bool is_test=false) const{
947 948 949
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

950
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
951

952
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
953
          propagation, mkldnn::convolution_direct, src, weights,
954 955 956
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
957
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
958 959 960 961 962 963 964

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
965 966 967
};

template <typename T>
968
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
969 970 971 972 973
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

974 975
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
976 977 978 979 980 981 982 983 984 985
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

986 987 988 989 990 991 992 993 994 995 996 997 998
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

999 1000 1001 1002
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

1003 1004 1005 1006
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
1007 1008
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

1021
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
1022
    // as well as attributes of primitive to be created
1023 1024 1025 1026 1027 1028
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
1029
    std::vector<primitive> pipeline;
1030

1031 1032 1033 1034 1035 1036 1037
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
1038 1039 1040 1041 1042

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
1043 1044 1045 1046
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

1047
    auto src_md = platform::MKLDNNMemDesc(
1048
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1049
    auto diff_src_md = platform::MKLDNNMemDesc(
1050
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1051
    auto weights_md = platform::MKLDNNMemDesc(
1052
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1053
    auto diff_weights_md = platform::MKLDNNMemDesc(
1054
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1055
    auto diff_dst_md = platform::MKLDNNMemDesc(
1056
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1057

1058
    // Retrieve conv_pd from device context
1059 1060 1061
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1062 1063 1064
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1091 1092
    // create backward conv primitive for weights
    if (filter_grad) {
1093 1094
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1095

1096 1097 1098 1099
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1100
      const size_t size = handler.GetDiffWeightsMemorySize();
Y
Yu Yang 已提交
1101 1102
      filter_grad_data = filter_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
1103

1104 1105 1106 1107 1108 1109 1110 1111 1112
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1113 1114

      filter_grad->set_layout(DataLayout::kMKLDNN);
1115
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1116 1117 1118
    }

    if (input_grad) {
1119 1120 1121 1122 1123 1124 1125
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1126
      const size_t size = handler.GetDiffSourceMemorySize();
Y
Yu Yang 已提交
1127 1128
      input_grad_data = input_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
1129

1130 1131 1132 1133 1134 1135 1136
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1137 1138

      input_grad->set_layout(DataLayout::kMKLDNN);
1139
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1140
    }
1141
    stream(stream::kind::eager).submit(pipeline).wait();
1142 1143 1144 1145 1146 1147 1148 1149 1150
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1151 1152
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1153 1154

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1155
                   ops::ConvMKLDNNGradOpKernel<float>);