conv_mkldnn_op.cc 52.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
18 19
#include <unordered_map>
#include <map>
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

32 33 34 35 36 37 38 39 40 41
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

59
  size_t GetDstMemorySize() const {
60 61
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
62 63 64 65 66
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
67

68
  size_t GetDiffWeightsMemorySize() const {
69 70 71
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

72
  size_t GetDiffSourceMemorySize() const {
73 74 75
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

76 77
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
78
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
79 80 81 82 83 84 85 86
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
87
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
103
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
104 105 106 107 108 109 110 111
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
112
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
113 114 115 116 117 118
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

X
xiaolil1 已提交
119

Z
Zhang, Guoming 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
X
xiaolil1 已提交
133
  
134 135 136 137 138 139
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

140 141 142 143 144 145 146
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
147
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
148
    auto src_pd = conv_pd_->src_primitive_desc();
149
    auto user_pd = user_memory_p->get_primitive_desc();
150 151 152 153 154 155
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
156
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
157 158 159 160
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
161 162 163 164
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
165 166
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
167 168
  }

169 170
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
171
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
172
      bool is_persistent = false,
X
xiaolil1 已提交
173 174 175
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
176 177 178
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
179 180
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
181 182
  }

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

274 275
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
276 277 278 279 280 281
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
282 283 284 285 286 287 288
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
289 290 291 292
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
293 294
};

295
template <typename T>
296
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
297 298
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
K
Krzysztof Binias 已提交
299

300
    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
301

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    if(!is_INT8){
      PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                    "It must use CPUPlace.");

      const bool is_test = ctx.Attr<bool>("is_test");

      auto& dev_ctx =
          ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
      const auto& mkldnn_engine = dev_ctx.GetEngine();

      auto* input = ctx.Input<Tensor>("Input");
      auto* filter = ctx.Input<Tensor>("Filter");
      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
      auto* output = ctx.Output<Tensor>("Output");

      PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                         input->format() != memory::format::format_undef,
                     "Wrong layout/format set for Input tensor");
      PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                         filter->format() != memory::format::format_undef,
                     "Wrong layout/format set for Filter tensor");
      PADDLE_ENFORCE(input->dims().size() == 4,
                     "Input must be with 4 dimensions, i.e. NCHW");
      PADDLE_ENFORCE(filter->dims().size() == 4,
                     "Filter must be with 4 dimensions, i.e. OIHW");
      if (bias) {
        PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                           bias->format() != memory::format::format_undef,
                       "Wrong layout/format set for Bias tensor");
        PADDLE_ENFORCE(bias->dims().size() == 1,
                       "Bias must only have 1 dimension, i.e. X");
      }
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
      std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
      std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
      bool fuse_relu = ctx.Attr<bool>("fuse_relu");
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      int groups = ctx.Attr<int>("groups");

      // TODO(tpatejko): add support for dilation
      PADDLE_ENFORCE(
          dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
          "dilation in convolution is not implemented yet");

      const T* input_data = input->data<T>();
      const T* filter_data = filter->data<T>();

      std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
      std::vector<int> weights_tz =
          paddle::framework::vectorize2int(filter->dims());
      int g = std::max(groups, 1);
      if (g > 1) {
        int o = weights_tz[0];
        int i = weights_tz[1];
        int h = weights_tz[2];
        int w = weights_tz[3];
        weights_tz.resize(5);
        weights_tz[0] = g;
        weights_tz[1] = o / g;
        weights_tz[2] = i;
        weights_tz[3] = h;
        weights_tz[4] = w;
      }
      std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

      // Get unique name for storing MKLDNN primitives
      const std::string key = ConvMKLDNNHandler::GetHash(
          src_tz, weights_tz, strides, paddings, dilations, groups,
          ctx.op().Output("Output"));
      const std::string key_conv_pd = key + "@conv_pd";

      std::vector<primitive> pipeline;

      auto user_src_md = platform::MKLDNNMemDesc(
          {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<T>(),
          (g == 1) ? filter->format() : mkldnn::memory::format::goihw);

      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                                 // Currently used whenever bias is != nullptr.
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      // create a conv primitive descriptor and save it for usage in backward
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
      if (bias) {
        bias_tz = paddle::framework::vectorize2int(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(
            bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
        conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                       strides, paddings, mkldnn_engine,
                                       fuse_relu, fuse_residual_conn);
      } else {
        conv_pd =
            ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                 mkldnn_engine, fuse_relu, fuse_residual_conn);
      }
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);
X
xiaolil1 已提交
415

416
      ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
417

418 419 420 421 422
      // create mkldnn memory from input tensors (data/weights)
      auto user_src_memory_p =
          handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler.AcquireWeightsMemory(
          user_weights_md, to_void_cast<T>(filter_data));
423

424 425 426 427 428
      // create reorder primitive if the input format is not the preferred one
      auto src_memory_p =
          handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
      auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test);
X
xiaolil1 已提交
429

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
      std::shared_ptr<mkldnn::memory> dst_memory_p;

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_param_data = residual_param->data<T>();

        PADDLE_ENFORCE(
            residual_param_data != nullptr,
            "Provide data if you want MKLDNN conv+elementwise_add fusion");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");

        if (residual_param->format() != handler.GetDstFormat()) {
          auto output_data =
              output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());
          auto residual_data_type =
              paddle::framework::ToMKLDNNDataType(residual_param->type());

          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_data_type, residual_param->format());
          auto user_residual_memory_p = handler.AcquireResidualDataMemory(
              user_residual_md, to_void_cast<T>(residual_param_data));

          dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
              user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
        } else {
          output->ShareDataWith(*residual_param);
          auto output_data = output->mutable_data<T>(ctx.GetPlace());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
463
        }
464 465 466 467 468 469
      } else {
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
      }
X
xiaolil1 已提交
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
      // create convolution op primitive
      std::shared_ptr<mkldnn::convolution_forward> conv_p;
      if (bias) {
        const T* bias_data = bias->data<T>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
        auto user_bias_memory_p =
            handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

        auto bias_memory_p =
            handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            dst_memory_p);
      }
488

489 490 491
      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
      stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
492

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
      output->set_layout(DataLayout::kMKLDNN);
      output->set_format(GetMKLDNNFormat(*dst_memory_p));
    } else{
      PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                     "It must use CPUPlace.");
      const bool is_test = ctx.Attr<bool>("is_test");

      auto& dev_ctx =
          ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
      const auto& mkldnn_engine = dev_ctx.GetEngine();

      auto* input = ctx.Input<Tensor>("Input");
      auto* filter = ctx.Input<Tensor>("Filter");
      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
      auto* output = ctx.Output<Tensor>("Output");

      auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
      auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
      auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
      auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;

      bool is_multi_channel = (scale_weights->memory_size() > 1) ? true : false;

      PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                         input->format() != memory::format::format_undef,
                     "Wrong layout/format set for Input tensor");
      PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                         filter->format() != memory::format::format_undef,
                     "Wrong layout/format set for Filter tensor");
      PADDLE_ENFORCE(input->dims().size() == 4,
                     "Input must be with 4 dimensions, i.e. NCHW");
      PADDLE_ENFORCE(filter->dims().size() == 4,
                     "Filter must be with 4 dimensions, i.e. OIHW");
      if (bias) {
        PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                           bias->format() != memory::format::format_undef,
                       "Wrong layout/format set for Bias tensor");
        PADDLE_ENFORCE(bias->dims().size() == 1,
                       "Bias must only have 1 dimension, i.e. X");
      }

      std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
      std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
      bool fuse_relu = ctx.Attr<bool>("fuse_relu");
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      int groups = ctx.Attr<int>("groups");

      // TODO(tpatejko): add support for dilation
      PADDLE_ENFORCE(
          dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
          "dilation in convolution is not implemented yet");

      const T* input_data = input->data<T>();
      const float* filter_data = filter->data<float>();

      std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
      std::vector<int> weights_tz =
          paddle::framework::vectorize2int(filter->dims());
      int g = std::max(groups, 1);
      if (g > 1) {
        int o = weights_tz[0];
        int i = weights_tz[1];
        int h = weights_tz[2];
        int w = weights_tz[3];
        weights_tz.resize(5);
        weights_tz[0] = g;
        weights_tz[1] = o / g;
        weights_tz[2] = i;
        weights_tz[3] = h;
        weights_tz[4] = w;
      }
      std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

      // Get unique name for storing MKLDNN primitives
      const std::string key = ConvMKLDNNHandler::GetHash(
          src_tz, weights_tz, strides, paddings, dilations, groups,
          ctx.op().Output("Output"));
      const std::string key_conv_pd = key + "@conv_pd";
      static std::unordered_map<std::string, std::vector<float>> scale_map;

      bool scale_reuse = false;
      auto scale_in_key = key + "@scale_in";
      auto scale_weights_key = key + "@scale_weights";
      auto scale_out_key = key + "@scale_out";
      auto output_shift_scale_key = key + "@output_shift_scale";
      auto sum_scale_key = key + "@sum_scale";
      auto scale_in_eltwise_key = key + "@scale_in_eltwise";
      std::vector<float> scale_in_data;
      std::vector<float> scale_out_data;
      std::vector<float> scale_weights_data;
      std::vector<float> scale_in_eltwise_data;
      std::vector<float> output_shift_scale;
      std::vector<float> sum_scale = {1.0f};
      std::vector<float> none_scale = {0};

      if (GetScaleMap(scale_map, scale_in_key) == none_scale){
          scale_reuse = true;
      }
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
      if(scale_reuse){
//std::cout<<"load scale!!!!!!!!"<<std::endl;
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
        scale_in_data = {*(scale_in->data<float>())};
        scale_weights_data.resize(count);
        #pragma omp parallel for if (count > 1)
        for(int i=0; i<count; i++){
            scale_weights_data[i] =*(scale_weights->data<float>() + i);
X
xiaolil1 已提交
601
        }
602 603 604 605 606 607 608 609
        scale_out_data = {*(scale_out->data<float>())};
        output_shift_scale.resize(count);
        #pragma omp parallel for if (count > 1)
        for(int i=0; i<count; i++){
            if(scale_weights_data[i] == 0.0)
                output_shift_scale[i] = scale_out_data[0];
            else 
                output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
X
xiaolil1 已提交
610
        }
611 612 613 614
        if(fuse_residual_conn){
            scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
            sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
            SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
X
xiaolil1 已提交
615 616
        }

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
        //scale reuse
        SetScaleMap(scale_map, scale_in_key, scale_in_data);
        SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
        SetScaleMap(scale_map, scale_out_key, scale_out_data);
        SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
        SetScaleMap(scale_map, sum_scale_key, sum_scale);
      } else{
          scale_in_data = GetScaleMap(scale_map, scale_in_key);
          scale_out_data = GetScaleMap(scale_map, scale_out_key);
          scale_weights_data = GetScaleMap(scale_map, scale_weights_key);
          if(fuse_residual_conn){
              scale_in_eltwise_data = GetScaleMap(scale_map, scale_in_eltwise_key);
          }
          output_shift_scale = GetScaleMap(scale_map, output_shift_scale_key);
          sum_scale = GetScaleMap(scale_map, sum_scale_key); 
          //printf("pause!!!");
      }

      std::vector<primitive> pipeline;
      auto user_src_md = platform::MKLDNNMemDesc(
              {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
              {weights_tz}, platform::MKLDNNGetDataType<float>(),
              (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);

      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format = 
          platform::data_format_to_memory_format(data_format);

      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
      auto bias_tz = paddle::framework::vectorize2int(bias->dims());

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, memory::data_type::u8, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8,
          (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
      auto dst_dt = fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
      if(fuse_residual_conn){
          auto residual = ctx.Input<Tensor>("ResidualData");
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
          if(dst_dt != residual_dt)
              dst_dt = residual_dt;
      }
      auto dst_md = platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);

      // create a conv primitive descriptor and save it for usage in backward
      if (bias) {
          auto bias_md = platform::MKLDNNMemDesc(
              bias_tz, memory::data_type::s32, memory::format::x);
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
                                         fuse_relu, fuse_residual_conn,
                                         output_shift_scale, sum_scale[0], is_test);
      } else {
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                   mkldnn_engine, fuse_relu, fuse_residual_conn,
                                   output_shift_scale, sum_scale[0], is_test);
      }
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);

      ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);

      // create mkldnn memory from input tensors (data/weights)
      auto user_src_memory_p =
          handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler.AcquireWeightsMemory(
          user_weights_md, to_void_cast<float>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      auto src_memory_p =
          handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
          
      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
      weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);

      std::shared_ptr<mkldnn::memory> dst_memory_p;
      bool need_s8_to_u8 = false;
      if(fuse_residual_conn) {
704 705 706 707 708 709
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
              "Output and elementwise parameter need to have the "
              "same dimension sizes");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
        if(residual_param->format() != handler.GetDstFormat()) {
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());
          auto residual_data_type =
              paddle::framework::ToMKLDNNDataType(residual_param->type());
          auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
            if(residual_dt == mkldnn::memory::data_type::u8){
              auto residual_param_data = residual_param->data<uint8_t>();
              auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                  user_residual_md, to_void_cast<uint8_t>(residual_param_data));
              PADDLE_ENFORCE(
                    residual_param_data != nullptr,
                    "Provide data if you want MKLDNN conv+elementwise_add fusion");
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
              dst_memory_p =
                  handler.AcquireDstMemoryFromResidualDataMemory(
                      user_residual_memory_p, to_void_cast<uint8_t>(output_data), pipeline);
727
            } else{
728 729 730 731 732 733 734 735 736 737 738 739
              auto residual_param_data = residual_param->data<int8_t>();
              auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                  user_residual_md, to_void_cast<int8_t>(residual_param_data));
              PADDLE_ENFORCE(
                    residual_param_data != nullptr,
                    "Provide data if you want MKLDNN conv+elementwise_add fusion");
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
              dst_memory_p =
                  handler.AcquireDstMemoryFromResidualDataMemory(
                      user_residual_memory_p, to_void_cast<int8_t>(output_data), pipeline);
              if(fuse_relu)
                need_s8_to_u8 = true;
740
            }
X
xiaolil1 已提交
741
        } else {
742 743 744 745 746
          output->ShareDataWith(*residual_param);
          if(residual_dt == mkldnn::memory::data_type::u8){
            uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
            dst_memory_p =
                handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
X
xiaolil1 已提交
747
          } else{
748 749 750 751 752
            int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
            dst_memory_p =
                handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
            if(fuse_relu)
              need_s8_to_u8 = true;
X
xiaolil1 已提交
753
          }
754 755 756 757 758 759
        }
      } else {
        if(fuse_relu){
          uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
760
        } else{
761 762 763
          int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
X
xiaolil1 已提交
764
        }
765
      }
766

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
      // create convolution op primitive
      std::shared_ptr<mkldnn::convolution_forward> conv_p;
      std::vector<float> scale_bias_data;
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
        const float* bias_data = bias->data<float>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
        auto user_bias_memory_p =
            handler.AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
        std::shared_ptr<mkldnn::memory>  bias_memory_p;
        int mask_reorder = is_multi_channel? 1<<0 : 1;
        if(scale_reuse){
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
            scale_bias_data.resize(count);
            #pragma omp parallel for if (count > 1)
            for(int i=0; i<count; i++){
                scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
            }
            SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
        } else{
            scale_bias_data = GetScaleMap(scale_map, scale_bias_key);
        }
        bias_memory_p =
            handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            dst_memory_p);
      }
798

X
xiaolil1 已提交
799

800 801 802
        // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
      stream(stream::kind::eager).submit(pipeline).wait();
803

804 805 806
      if(need_s8_to_u8){
          output->mutable_data<uint8_t>(ctx.GetPlace());
      }
807

808 809 810
      output->set_layout(DataLayout::kMKLDNN);
      output->set_format(GetMKLDNNFormat(*dst_memory_p));
    }
811
  }
812

813
 private:
X
xiaolil1 已提交
814

X
xiaolil1 已提交
815 816
    void SetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
                       const std::string& name, std::vector<float> scale_data) const {
X
xiaolil1 已提交
817 818
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
819
        scale_map[name] = scale_data;  // create new blob
X
xiaolil1 已提交
820
      } else {
X
xiaolil1 已提交
821
        (*it).second = scale_data;  // set data to existing blob
X
xiaolil1 已提交
822 823 824 825
      }
      return;
    }

X
xiaolil1 已提交
826
    std::vector<float> GetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
X
xiaolil1 已提交
827 828 829 830 831
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
832
      return {0};
833 834
    }

Z
Zhang, Guoming 已提交
835
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
836
                          const std::vector<float> output_shift_scale, float sum_scale) const {
837 838
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
839
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
840 841 842 843
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
844
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
845
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
846
      if (fuse_residual_conn) {
847 848 849 850 851
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
852
        constexpr float placeholder = 1.0f; //beta
853 854 855 856 857
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
858
    }
859

X
xiaolil1 已提交
860
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
861 862 863 864

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
865
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
866 867
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
868
      conv_attr.set_output_scales(0, {1.0f});
X
xiaolil1 已提交
869
      if (fuse_residual_conn) {
870 871 872 873 874 875 876 877 878 879 880 881 882
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
883
    }
M
Michal Gallus 已提交
884

Z
Zhang, Guoming 已提交
885
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
886 887 888 889
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
890
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
891
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
892 893 894
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
895 896
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

897
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
898
          propagation, mkldnn::convolution_direct, src, weights,
899 900 901 902
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
903
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
904 905 906 907 908 909

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
910
    }
M
Michal Gallus 已提交
911

912
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
913 914 915 916
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
917
                         const bool fuse_residual_conn, bool is_test=false) const{
918 919
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
920 921 922
 
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;
 
923
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
924
          propagation, mkldnn::convolution_direct, src, weights,
925 926 927
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
928
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
929 930 931 932 933 934 935
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
936 937

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
938 939 940 941 942
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
943
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
944
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
945 946 947
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
948 949
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

950
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
951
          propagation, mkldnn::convolution_direct, src, weights,
952 953 954 955
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
956
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
957 958 959 960 961 962 963 964 965 966 967 968 969 970

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
971
                         const bool fuse_residual_conn, bool is_test=false) const{
972 973 974
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
975 976
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

977
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
978
          propagation, mkldnn::convolution_direct, src, weights,
979 980 981
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
982
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
983 984 985 986 987 988 989 990

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

991 992 993
};

template <typename T>
994
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
995 996 997 998 999
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

1000 1001
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

1025 1026 1027 1028
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
1029 1030
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

1043
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
1044
    // as well as attributes of primitive to be created
1045 1046 1047 1048 1049 1050
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
1051
    std::vector<primitive> pipeline;
1052

1053 1054 1055 1056 1057 1058 1059
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
1060 1061 1062 1063 1064

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
1065 1066 1067 1068
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

1069
    auto src_md = platform::MKLDNNMemDesc(
1070
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1071
    auto diff_src_md = platform::MKLDNNMemDesc(
1072
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1073
    auto weights_md = platform::MKLDNNMemDesc(
1074
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1075
    auto diff_weights_md = platform::MKLDNNMemDesc(
1076
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1077
    auto diff_dst_md = platform::MKLDNNMemDesc(
1078
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1079

1080
    // Retrieve conv_pd from device context
1081 1082 1083
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1084 1085 1086
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1113 1114
    // create backward conv primitive for weights
    if (filter_grad) {
1115 1116
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1117

1118 1119 1120 1121
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1122
      const size_t size = handler.GetDiffWeightsMemorySize();
1123 1124
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

1125 1126 1127 1128 1129 1130 1131 1132 1133
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1134 1135

      filter_grad->set_layout(DataLayout::kMKLDNN);
1136
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1137 1138 1139
    }

    if (input_grad) {
1140 1141 1142 1143 1144 1145 1146
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1147
      const size_t size = handler.GetDiffSourceMemorySize();
1148 1149
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

1150 1151 1152 1153 1154 1155 1156
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1157 1158

      input_grad->set_layout(DataLayout::kMKLDNN);
1159
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1160
    }
1161
    stream(stream::kind::eager).submit(pipeline).wait();
1162 1163 1164 1165 1166 1167 1168 1169 1170
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1171 1172
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1173 1174

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1175
                   ops::ConvMKLDNNGradOpKernel<float>);