executor.py 106.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeng Jinle 已提交
15
import logging
16 17
import os
import multiprocessing
C
chengduo 已提交
18
import sys
19
import warnings
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
from .data_feeder import convert_dtype
23
from .framework import Program, default_main_program, Variable, Operator
24
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
25

26
from . import core
27
from . import unique_name
28
from . import compiler
29
from . import set_flags
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33
from . import framework
34
from .incubate.checkpoint import auto_checkpoint as acp
35
from .compiler import _prune_feed_ops
36

R
Ruibiao Chen 已提交
37 38
from functools import lru_cache

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78

79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96

97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
147 148
        raise RuntimeError(
            "Some of your fetched tensors hold LoD information. \
149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
151 152
            return LoDTensor itself directly."
        )
Q
qingqing01 已提交
153
    if tensor._is_initialized():
154 155 156 157
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
158 159
    else:
        return None
D
dzhwinter 已提交
160 161


H
Huihuang Zheng 已提交
162 163 164 165
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
166

H
Huihuang Zheng 已提交
167 168
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
169

H
Huihuang Zheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
186 187
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


215
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
216 217
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
218
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
219 220 221

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
222 223
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
224
       is compatible with any number.
225

H
Huihuang Zheng 已提交
226 227
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
228
        feed (LoDTensor): the fed value, which must be a LoDTensor
229 230
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
231 232 233 234 235 236 237
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
238 239
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
240
            raise ValueError(
T
tianshuo78520a 已提交
241
                'The fed Variable %r should have dimensions = %d, shape = '
242 243 244
                '%r, but received fed shape %r on each device'
                % (var.name, len(var.shape), var.shape, diff_shape)
            )
H
Huihuang Zheng 已提交
245
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
246 247 248 249 250 251 252 253 254 255
            var_dtype_format = (
                convert_dtype(var.dtype)
                if isinstance(var.dtype, core.VarDesc.VarType)
                else var.dtype
            )
            feed_dtype_format = (
                convert_dtype(feed._dtype())
                if isinstance(feed._dtype(), core.VarDesc.VarType)
                else feed._dtype()
            )
256
            raise ValueError(
257 258 259
                'The data type of fed Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format)
            )
H
Huihuang Zheng 已提交
260 261 262
    return True


263
def has_feed_operators(block, feed_targets, feed_holder_name):
264
    """Check whether the block already has feed operators.
265 266 267 268 269 270 271 272 273 274

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
275 276
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
277 278 279
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
280
        A boolean value that indicates whether a block has feed operators
281 282 283 284 285 286 287 288 289 290
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
291 292
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
293 294 295
                        feed_target_name
                    )
                )
296 297 298 299
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
300 301
            "Feed operators in program desc do not match 'feed_targets'"
        )
302 303 304
    return feed_count > 0


305 306 307 308
def has_fetch_operators(
    block, fetch_targets, fetch_holder_name, fetch_op='fetch'
):
    """Check whether the block already has fetch operators.
X
xuwei06 已提交
309

310 311 312 313 314 315 316 317 318
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
319 320 321
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
322
        fetch_op: the operator name of fetch
323

X
xuwei06 已提交
324 325 326
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
327 328 329 330
    """

    fetch_count = 0
    for op in block.ops:
331
        if op.desc.type() == fetch_op:
332 333 334 335
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
336
                var.desc.name() for var in fetch_targets
337
            ]:
338 339
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
340 341 342
                        fetch_target_name
                    )
                )
343 344 345 346
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
347 348
            "Fetch operators in program desc do not match 'fetch_targets'"
        )
349 350 351
    return fetch_count > 0


352 353 354
def _add_feed_fetch_ops(
    program, feed, fetch_list, feed_var_name, fetch_var_name, use_fetch_v2=False
):
R
Ruibiao Chen 已提交
355 356 357 358 359 360 361 362 363 364
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
365 366
            persistable=True,
        )
R
Ruibiao Chen 已提交
367 368 369 370 371 372 373

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
374 375
            persistable=True,
        )
R
Ruibiao Chen 已提交
376 377 378 379 380 381

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
382 383 384 385 386 387
                global_block._prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i},
                )
R
Ruibiao Chen 已提交
388 389 390
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
391 392
                    % name
                )
R
Ruibiao Chen 已提交
393 394 395 396 397 398 399

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
400 401 402
    if not has_fetch_operators(
        global_block, fetch_list, fetch_var_name, fetch_op
    ):
R
Ruibiao Chen 已提交
403 404
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
405 406 407 408 409 410 411 412
                var, str
            ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
            global_block.append_op(
                type=fetch_op,
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i},
            )
R
Ruibiao Chen 已提交
413 414 415 416

    return tmp_program


417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
def _set_micro_batch_fetch(plan):
    if plan.micro_batch_num() <= 1:
        return

    valid_fetch_types = ["fetch", "fetch_v2"]
    for job in plan.job_list():
        idx_to_col_attr = {}
        prog = plan.program(job.type())
        for i in range(prog.block(0).op_size()):
            op = prog.block(0).op(i)
            if op.type() in valid_fetch_types:
                idx_to_col_attr[i] = op.attr('col')

        for idx, col in idx_to_col_attr.items():
            job.set_col_attr_for_fetch_op(
                idx, col * plan.micro_batch_num() + job.micro_batch_id()
            )


def _merge_tensors(tensor, micro_batch_num):
    if micro_batch_num <= 1:
        return tensor
    assert len(tensor) % micro_batch_num == 0
    chunk_tensor = [
        tensor[i : i + micro_batch_num]
        for i in range(0, len(tensor), micro_batch_num)
    ]
    return [np.array(chunk) for chunk in chunk_tensor]


447 448 449
def _apply_inplace_addto_pass(
    program, enable_inplace, enable_addto, skip_var_names
):
R
Ruibiao Chen 已提交
450 451 452 453 454 455 456 457
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
458 459 460
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
461 462
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
463 464 465
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
466 467


W
Wu Yi 已提交
468
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
469
    """
C
chengduoZH 已提交
470 471 472
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
473
    Args:
474 475 476 477
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
478 479 480 481
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
482 483 484
    Returns:
       LodTensor|numpy.ndarray
    """
485
    assert isinstance(name, str)
X
xuwei06 已提交
486 487
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
488
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
489

490
    var = scope.find_var(_to_name_str(name))
491 492 493
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
494 495
        " program."
    )
X
xuwei06 已提交
496 497
    tensor = var.get_tensor()
    if return_numpy:
498
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
499 500 501
    return tensor


X
polish  
Xin Pan 已提交
502
def _to_name_str(var):
503 504 505 506 507
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
508
        elif isinstance(var, str):
509 510
            return str(var)
        elif isinstance(var, Operator):
511
            return str(id(var))
512 513 514 515 516 517 518 519 520 521
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
522
    else:
523
        return _to_str(var)
Q
qiaolongfei 已提交
524 525


526 527
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
528

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


544 545 546 547 548
def _get_strong_program_cache_key_for_new_exe(program, scope, feed, fetch_list):
    return (
        program.desc.cached_hash_str()
        + str(scope.raw_address())
        + _get_program_cache_key(feed, fetch_list)
549
    )
L
Leo Chen 已提交
550 551


552
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
553
    # TODO(zhiqiu): use hash_str to generate cache key as above
554 555 556 557 558 559
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

560 561 562 563 564 565 566 567 568 569
    inner_program = (
        program._program
        if isinstance(program, compiler.CompiledProgram)
        else program
    )
    return (
        _get_varname_from_block(inner_program.blocks[0])
        + str(id(program))
        + _get_program_cache_key(feed, fetch_list)
    )
570 571


X
polish  
Xin Pan 已提交
572
def _get_program_cache_key(feed, fetch_list):
573 574 575 576 577 578
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
579
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
580 581 582
    return str(feed_var_names + fetch_var_names)


583
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
584
    """
585 586
    Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
W
Wu Yi 已提交
587

588 589 590 591 592 593 594
    Examples:
        >>> import paddle.fluid as fluid
        >>> place = fluid.CPUPlace()
        >>> exe = fluid.executor(place)
        >>> data = np.array(size=(100, 200, 300))
        >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
        >>>     ...
W
Wu Yi 已提交
595

596 597 598 599
    Args:
        data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
        data(core.Place): the place of created tensor
        dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
600

601 602 603 604
    Returns:
        LoDTensor
    """
    # NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
605
    if not isinstance(data, np.ndarray):
606 607 608 609 610 611 612 613
        assert (
            dtype is not None
        ), 'The dtype should be given when feed data is not np.ndarray'
        dtype = (
            convert_dtype(dtype)
            if isinstance(dtype, core.VarDesc.VarType)
            else dtype
        )
614
        if np.isscalar(data):
615
            data = np.array(data).astype(dtype)
616 617
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
618
            if data.dtype == np.object_:
619 620 621 622 623 624 625 626 627
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
628 629 630
                    type(data)
                )
            )
631

632
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
633 634 635 636 637
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


638
class FetchHandler:
D
Dong Daxiang 已提交
639
    def __init__(self, var_dict=None, period_secs=60):
640
        assert var_dict is not None
D
Dong Daxiang 已提交
641
        self.var_dict = var_dict
642 643
        self.period_secs = period_secs

D
Dong Daxiang 已提交
644 645 646 647 648
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
649 650 651

    @staticmethod
    def help():
652 653
        print(
            """
D
Dong Daxiang 已提交
654 655 656 657 658 659 660 661
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
662 663
"""
        )
664 665


666
class _StandaloneExecutor:
667
    def __init__(self, place, plan, scope):
668 669
        self._place = core.Place()
        self._place.set_place(place)
670
        self._plan = plan
671
        self._scope = scope
672 673
        self._new_exe = self._create_new_executor()

674
    def run(self, feed_names, return_numpy=True):
675 676
        """
        Args:
677
            feed_names(list): This parameter represents the input names of the model.
678
            fetch_list(list): This parameter represents the Tensors that need to be returned
679
                after the model runs. The default is None.
680 681 682 683
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
684
        tensors = self._new_exe.run(feed_names)._move_to_list()
685
        if return_numpy:
686 687
            tensors = as_numpy(tensors, copy=True)
            return _merge_tensors(tensors, self._plan.micro_batch_num())
688
        else:
689 690 691 692
            if self._plan.micro_batch_num() > 1:
                raise RuntimeError(
                    "`merge_tensor` does not support when return_numpy is False."
                )
693 694 695
            return tensors

    def _create_new_executor(self):
696
        new_exe = core.StandaloneExecutor(self._place, self._plan, self._scope)
697 698 699 700

        return new_exe


701 702
class _ExecutorCache:
    class _CachedData:
703 704 705 706 707 708 709 710 711 712
        def __init__(
            self,
            program,
            feed,
            fetch_list,
            feed_var_name,
            fetch_var_name,
            place,
            scope,
        ):
R
Ruibiao Chen 已提交
713 714 715 716 717 718 719 720 721 722 723
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
724 725 726 727
                if not self.program._program:
                    # The program holds no _program, maybe it is constructed by graph.
                    # Convert graph to program in order to generate key.
                    self.program._program = framework.IrGraph(
728 729
                        self.program._graph
                    ).to_program()
R
Ruibiao Chen 已提交
730 731
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
732 733 734 735
                        self.program._program,
                        self.scope,
                        self.feed,
                        self.fetch_list,
736 737
                    )
                )
R
Ruibiao Chen 已提交
738 739 740
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
741
                        self.program, self.scope, self.feed, self.fetch_list
742 743
                    )
                )
R
Ruibiao Chen 已提交
744 745

        def __eq__(self, other):
746 747 748 749
            return (
                isinstance(other, _ExecutorCache._CachedData)
                and self.key == other.key
            )
R
Ruibiao Chen 已提交
750 751 752 753 754 755 756 757 758

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
759 760
            self._get_program_and_executor
        )
R
Ruibiao Chen 已提交
761 762 763 764

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

765 766 767 768 769 770 771 772 773 774
    def get_program_and_executor(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        place,
        scope,
    ):
R
Ruibiao Chen 已提交
775
        return self._get_cached_program_and_executor(
776 777 778 779 780 781 782 783 784 785
            self._CachedData(
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                place,
                scope,
            )
        )
R
Ruibiao Chen 已提交
786 787 788

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
789 790 791 792 793
        inner_program = (
            program._program
            if isinstance(program, compiler.CompiledProgram)
            else program
        )
R
Ruibiao Chen 已提交
794 795 796 797 798 799 800 801 802
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
803 804 805 806 807 808 809
            program._graph, compiler.CompiledProgram
        ):
            compiled_program = (
                program
                if isinstance(program, compiler.CompiledProgram)
                else program._graph
            )
R
Ruibiao Chen 已提交
810 811
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
812 813 814 815 816 817 818 819 820 821
            use_cuda_graph = False
            # When using cuda graph, the cuda graph preparation logic in PE is not
            # executed, but it is processed in the constructor of new executor.
            if (
                build_strategy is not None
                and build_strategy.allow_cuda_graph_capture
            ):
                use_cuda_graph = True
                build_strategy.allow_cuda_graph_capture = False
                set_flags({"FLAGS_new_executor_use_cuda_graph": True})
R
Ruibiao Chen 已提交
822
            compiled_program._compile(scope, place)
823 824
            if use_cuda_graph:
                build_strategy.allow_cuda_graph_capture = True
R
Ruibiao Chen 已提交
825 826 827
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

828 829
            if hasattr(inner_program, 'lr_scheduler'):
                converted_program.lr_scheduler = inner_program.lr_scheduler
R
Ruibiao Chen 已提交
830 831 832 833 834 835

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
836

R
Ruibiao Chen 已提交
837 838 839 840 841
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

842 843 844 845 846 847 848 849
        program = _add_feed_fetch_ops(
            program=inner_program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            use_fetch_v2=True,
        )
R
Ruibiao Chen 已提交
850 851 852

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
853 854 855 856 857 858 859 860 861 862
        enable_inplace = (
            True
            if build_strategy is None or build_strategy.enable_inplace
            else False
        )
        enable_addto = (
            True
            if build_strategy is not None and build_strategy.enable_addto
            else False
        )
R
Ruibiao Chen 已提交
863 864 865
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
866 867 868
            _apply_inplace_addto_pass(
                program, enable_inplace, enable_addto, skip_var_names
            )
869

R
Ruibiao Chen 已提交
870
        new_program = program.clone()
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
        if (
            new_program._pipeline_opt
            and "standalone_opt" in new_program._pipeline_opt
        ):
            from paddle.distributed.passes.pipeline_scheduler_pass import (
                apply_pass,
            )

            standalone_opt = new_program._pipeline_opt["standalone_opt"]
            pass_name = standalone_opt["schedule_mode"]
            pass_attr = {
                "num_micro_batches": standalone_opt["num_micro_batches"]
            }
            plan = apply_pass(new_program, new_program, pass_name, pass_attr)
        else:
            default_job = core.Job("default")
            type_to_program = {"default": new_program.desc}
            plan = core.Plan([default_job], type_to_program)

        _set_micro_batch_fetch(plan)

        new_exe = _StandaloneExecutor(place, plan, scope)
R
Ruibiao Chen 已提交
893
        return new_program, new_exe
894 895


896
class Executor:
897
    """
898 899
    :api_attr: Static Graph

900
    An Executor in Python, supports single/multiple-GPU running,
901
    and single/multiple-CPU running.
C
chengduo 已提交
902 903

    Args:
904
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
905 906 907 908
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
909
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x``
910 911
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
912
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_
C
chengduo 已提交
913 914 915

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
916

917
    Examples:
S
Fix doc  
sneaxiy 已提交
918 919
        .. code-block:: python

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            compiled_prog = paddle.static.CompiledProgram(
954
                train_program)
955 956
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

957 958
    """

959 960
    def __init__(self, place=None):
        if place is None:
961 962
            expected_place = framework._current_expected_place()
            self.place = expected_place
963
        else:
964
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
965
        self.program_caches = dict()
966
        self.ctx_caches = dict()
967
        self.trainer_caches = dict()
968
        self.scope_caches = dict()
969
        self.micro_scope_cache = dict()
970
        self.var_caches = dict()
971
        self.pruned_program_caches = dict()
972 973 974
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
975
        self._closed = False
976
        self.pruned_program_scope_caches = dict()
977
        self._prepare_to_run_called = False
D
dzhwinter 已提交
978

979
        self._auto_checkpoint_name = unique_name.generate(
980 981
            "__auto_checkpoint_executor__"
        )
982

R
Ruibiao Chen 已提交
983
        self._executor_cache = _ExecutorCache()
984

985
        self._fleet_executor = None
986 987 988
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
989

meteor135's avatar
meteor135 已提交
990 991 992 993 994 995 996
        self.op_role_key = core.op_proto_and_checker_maker.kOpRoleAttrName()

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and int(
            op.all_attrs()[self.op_role_key]
        ) & int(core.op_proto_and_checker_maker.OpRole.Optimize)

R
Ruibiao Chen 已提交
997 998 999 1000 1001 1002
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

1003 1004 1005
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

1006 1007 1008
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

1009 1010 1011
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
1012 1013 1014 1015 1016 1017
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

1030 1031 1032
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

1033 1034 1035
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

1036 1037 1038
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

1039 1040 1041 1042 1043 1044
    def _add_micro_scopes_cache(self, program_cache_key, micro_scopes: list):
        self.micro_scope_cache[program_cache_key] = micro_scopes

    def _get_micro_scopes_cache(self, program_cache_key):
        return self.micro_scope_cache.get(program_cache_key, None)

1045 1046 1047 1048 1049 1050 1051
    # just for testing, will be removed later
    @lru_cache()
    def _log_force_set_program_cache(self, use_program_cache):
        logging.warning(
            f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE"
        )

Q
Qiao Longfei 已提交
1052 1053
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
1054 1055
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
1056 1057 1058
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
1059
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
1060 1061
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
1062 1063 1064
                        cur_feed = _as_lodtensor(
                            cur_feed, self.place, var.dtype
                        )
S
Steffy-zxf 已提交
1065
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
1066 1067 1068 1069 1070 1071 1072 1073
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
1074
            for i in range(len(fetch_list))
Q
Qiao Longfei 已提交
1075 1076 1077
        ]
        return outs

1078 1079
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
1091
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
1102 1103 1104 1105 1106 1107 1108
                        "The operator in fetch_list is not an optimize_op"
                    )
            elif (
                isinstance(item, Variable)
                or isinstance(item, str)
                or isinstance(item, str)
            ):
1109 1110 1111
                _fetch_list.append(item)
            else:
                raise TypeError(
1112
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1113 1114
                    type(item),
                )
1115

1116
        for index, item in enumerate(fetch_list):
1117 1118 1119 1120 1121 1122 1123
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1124 1125
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1126 1127 1128 1129
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".format(
                            index, index, index, type(item[0]).__name__
                        )
                    )
1130 1131 1132 1133 1134 1135 1136
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1137
    @classmethod
1138 1139 1140
    def _prune_program(
        cls, program, feed=None, fetch_list=None, optimize_ops=None
    ):
1141 1142
        """
        Prune operators and variables which are not needed to generate
1143 1144 1145
        :code:`fetch_list` and optimize operators.
        Prune operators and variables which are needed
        to generate variables to be feeded.
1146 1147

        Notes: This is a very low level API. Users should not use this API
1148
        directly.
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1199 1200
    @classmethod
    def _update_feed(cls, program, feed):
1201
        """
1202
        Update the feed dict, remove the feed item which is pruned in program.
1203 1204

        Notes: This is a very low level API. Users should not use this API
1205
        directly.
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
1222
                return feed
1223 1224 1225 1226 1227 1228 1229 1230 1231
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
1232 1233
                        % feed_name
                    )
1234 1235 1236 1237 1238 1239 1240 1241

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
1242 1243
                            % feed_name
                        )
1244 1245
        return feed

S
Fix doc  
sneaxiy 已提交
1246 1247 1248 1249 1250 1251
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1252 1253
    def close(self):
        """
C
chengduo 已提交
1254 1255 1256
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1257

C
chengduo 已提交
1258 1259
        Returns:
            None
1260 1261 1262 1263

        Examples:
            .. code-block:: python

1264
              import paddle
1265

1266 1267
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1268 1269
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1270
        """
1271
        if not self._closed:
Y
Yancey1989 已提交
1272
            self._closed = True
1273 1274 1275 1276
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
    def run(
        self,
        program=None,
        feed=None,
        fetch_list=None,
        feed_var_name='feed',
        fetch_var_name='fetch',
        scope=None,
        return_numpy=True,
        use_program_cache=False,
        use_prune=False,
    ):
1290
        """
C
chengduo 已提交
1291 1292 1293
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1294 1295
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1296

C
chengduo 已提交
1297 1298 1299
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1300
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1301
                The default is None.
1302
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1303
                If it is single card training, the feed is dict type, and if it is multi-card
1304
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1305 1306 1307 1308 1309 1310 1311
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1312
            fetch_list(list): This parameter represents the Tensors that need to be returned
1313
                after the model runs. The default is None.
1314
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1315
                the feed operator. The default is "feed".
1316
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1317
                the fetch operator. The default is "fetch".
1318
            scope(Scope): the scope used to run this program, you can switch
1319 1320 1321
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1322 1323 1324
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1325 1326
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1327
                The default is False.
1328
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
1329
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
1330 1331
                which means the operators and variables in program that generate :code:`feed` and are not
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
1332
                program will not pruned and all the operators and variables will be executed during running.
1333
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
1334
                :code:`use_prune` will be overrided to True, and the program will be pruned.
1335

C
chengduo 已提交
1336 1337 1338 1339
        Returns:

            List: The fetched result list.

1340
        Examples:
1341
            .. code-block:: python
1342
                :name: code-example-1
1343

1344 1345
                import paddle
                import numpy
1346

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
1358
                array = paddle.tensor.array_write(x=loss, i=i)
1359

1360 1361
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1362

1363 1364 1365 1366 1367
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1368 1369

            .. code-block:: python
1370
                :name: code-example-2
Z
Zhen Wang 已提交
1371

1372
                # required: gpu
1373
                import paddle
Z
Zhen Wang 已提交
1374 1375 1376
                import numpy as np

                # First create the Executor.
1377 1378 1379
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1380

1381
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1382
                class_dim = 2
1383 1384 1385
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1386 1387 1388
                adam.minimize(loss)

                # Run the startup program once and only once.
1389 1390 1391
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
1392
                    paddle.static.default_main_program(), build_strategy=build_strategy)
Z
Zhen Wang 已提交
1393 1394 1395
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

1396 1397 1398
                prediction, = exe.run(binary,
                                      feed={'X': x},
                                    fetch_list=[prediction.name])
Z
Zhen Wang 已提交
1399 1400
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1401 1402 1403
                print("The prediction shape: {}".format(
                    np.array(prediction).shape))
                print(prediction)
1404

Z
Zhen Wang 已提交
1405
                # Out:
1406
                # The prediction shape: (6, 2)
Z
Zhen Wang 已提交
1407 1408 1409 1410 1411 1412
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1413

1414
        """
1415 1416
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
1417 1418
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None
        )
1419 1420
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
1421 1422 1423 1424 1425
                1,
                '1',
                True,
                'True',
                'true',
1426
            ]
1427
            self._log_force_set_program_cache(use_program_cache)
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        res = self._run_impl(
            program=program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            scope=scope,
            return_numpy=return_numpy,
            use_program_cache=use_program_cache,
            use_prune=use_prune,
        )
        core.update_autotune_status()
        return res
C
chengduo 已提交
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
    def _run_impl(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
        use_prune,
    ):
Y
Yancey1989 已提交
1455 1456 1457
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1458
        use_default_main_program = program is None
1459 1460
        if program is None:
            program = default_main_program()
1461

1462
        fetch_list = self._check_fetch_list(fetch_list)
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472
        from paddle.distributed.auto_parallel.static.utils import (
            use_new_executor,
        )

        if (
            isinstance(program, Program)
            and program._pipeline_opt
            and not use_new_executor()
        ):
L
LiYuRio 已提交
1473
            if "fleet_opt" in program._pipeline_opt:
1474 1475 1476
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1477 1478 1479 1480
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
1481
                    with_standalone_executor=self._fleet_executor_with_standalone,
1482
                    return_numpy=return_numpy,
1483
                )
1484 1485 1486
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1487 1488 1489 1490 1491
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache,
                )
1492 1493

        if isinstance(program, Program) and program._heter_pipeline_opt:
1494
            # print("program._heter_pipeline_opt: {}".format(
1495
            #    program._heter_pipeline_opt))
1496
            ## change default executor
1497 1498 1499 1500 1501 1502
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1503
            if "startup_program" in program._heter_pipeline_opt:
1504
                # print("get startup_program from _pipeline_opt")
1505 1506
                program = program._heter_pipeline_opt["startup_program"]

1507 1508 1509 1510
        if (
            isinstance(program, Program)
            and len(program.global_block().ops) == 0
        ):
C
chengduo 已提交
1511
            if use_default_main_program:
1512 1513 1514 1515
                error_info = (
                    "Now you are using default_main_program, "
                    "but there are no operators in the program to be executed. "
                    "Please ensure you create model correctly or you can pass "
1516
                    "the Program or the CompiledProgram manually."
1517
                )
1518
            else:
1519 1520 1521
                error_info = (
                    "There are no operators in the program to be executed. "
                    "If you pass Program manually, please use fluid.program_guard "
1522
                    "to ensure the current Program is being used."
1523
                )
C
chengduo 已提交
1524
            warnings.warn(error_info)
1525

1526 1527
        if scope is None:
            scope = global_scope()
1528

1529 1530 1531 1532
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
1533 1534
            fetch_list
        )
1535 1536 1537
        if optimize_ops:
            use_prune = True
        if use_prune:
1538 1539 1540
            cache_key = _get_strong_program_cache_key(
                program, feed, _origin_fetch_list
            )
1541 1542 1543 1544
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
1545 1546
                        str(id(_origin_program))
                    )
1547 1548 1549 1550
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
1551 1552 1553 1554 1555 1556
                    if (
                        self._get_pruned_program_scope_cache(
                            str(id(_origin_program))
                        )
                        is None
                    ):
1557
                        self._add_pruned_program_scope_cache(
1558 1559 1560 1561 1562
                            str(id(_origin_program)), program
                        )
                pruned_program = self._prune_program(
                    program, feed, fetch_list, optimize_ops
                )
1563 1564 1565 1566 1567 1568 1569
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1570
        def _can_use_interpreter_core(program, place):
1571 1572 1573
            compiled = isinstance(
                program, compiler.CompiledProgram
            ) or isinstance(program._graph, compiler.CompiledProgram)
1574
            if compiled:
1575 1576 1577 1578 1579
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
1580

1581
                # Unsupported case 1: inference
1582
                if compiled_program._is_inference:
1583 1584
                    warnings.warn(
                        "Standalone executor is not used for inference",
1585 1586
                        UserWarning,
                    )
1587
                    return False
1588

1589
            return True
1590

1591
        if _can_use_interpreter_core(program, self.place):
1592 1593 1594 1595 1596 1597 1598 1599
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
1600 1601
                    % (type(feed))
                )
1602 1603
            feed = self._update_feed(program, feed)

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
            stored_flag = {}
            if isinstance(program, compiler.CompiledProgram) or isinstance(
                program._graph, compiler.CompiledProgram
            ):
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
                build_strategy = compiled_program._build_strategy
1614
                if build_strategy is not None and build_strategy.sequential_run:
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
                    schedule_flag = [
                        'FLAGS_new_executor_serial_run',
                        'FLAGS_new_executor_sequential_run',
                    ]
                    for flag in schedule_flag:
                        value = os.getenv(flag, False)
                        if isinstance(value, str):
                            value = value.lower()
                            value = True if value == 'true' else False
                        stored_flag[flag] = bool(value)
                    set_flags({f: True for f in schedule_flag})

1627
            program, new_exe = self._executor_cache.get_program_and_executor(
1628 1629 1630 1631 1632 1633 1634 1635
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                self.place,
                scope,
            )
1636 1637

            self._feed_data(program, feed, feed_var_name, scope)
1638
            if hasattr(program, 'lr_scheduler'):
1639
                from paddle.optimizer.lr import LRScheduler
1640 1641

                assert isinstance(
1642
                    program.lr_scheduler, LRScheduler
1643
                ), "must be LRScheduler"
1644 1645 1646
                lr_scheduler = program.lr_scheduler
                lr_value = lr_scheduler()
                lr_var = program.global_block().vars[lr_scheduler._var_name]
1647
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
1648
                tensor = core.get_variable_tensor(scope, lr_scheduler._var_name)
1649 1650
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
1651 1652 1653 1654 1655 1656 1657
                if core.is_cuda_graph_capturing():
                    warnings.warn(
                        "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                        "take any effect! Please set the learning rate manually before each batch!"
                    )
                elif core.is_compiled_with_ipu():
                    # for ipu, tensor is allocated on cpu
1658 1659 1660 1661
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

1662
            ret = new_exe.run(list(feed.keys()), return_numpy)
1663 1664
            set_flags(stored_flag)
            return ret
1665

X
polish  
Xin Pan 已提交
1666
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1667

1668
        # Check if paddle.static.data() variable no feed data
1669 1670 1671 1672 1673 1674
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
1675
                vardesc = global_block.desc.find_var(varname.encode())
1676 1677
                varobj = global_block.vars[varname]

1678 1679 1680 1681 1682 1683 1684 1685 1686
                if (
                    vardesc.persistable() == False
                    and vardesc.type() == core.VarDesc.VarType.LOD_TENSOR
                    and vardesc.need_check_feed() == True
                    and varobj.stop_gradient == True
                    and varobj.is_data == True
                    and varobj.belong_to_optimizer == False
                    and varname not in feed
                ):
1687 1688
                    raise ValueError('Need feed data for variable %s' % varname)

1689 1690
        acp._auto_checkpoint(self, program)

1691
        program._compile(scope, self.place)
1692 1693 1694 1695
        assert (
            program._is_inference
        ), f"Program must have _is_inference = True, but get {program._is_inference}"
        return self._run_inference(program._executor, feed)
1696

X
Xin Pan 已提交
1697 1698
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1699

1700
    def _check_fetch_list(self, fetch_list):
1701
        is_fetch_var = lambda var: isinstance(var, (Variable, str))
1702 1703
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

1704 1705 1706 1707
        if fetch_list is None:
            return []
        if is_fetch_var(fetch_list):
            return [fetch_list]
1708

1709 1710 1711
        assert is_tuple_list(fetch_list), (
            "Currently , The fetch_list type only should be list or tuple, \n"
            "but the input type is {}. For more information please refer to \n"
1712
            "the executor.run(...).".format(type(fetch_list))
1713
        )
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1727 1728 1729 1730
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".format(
                        i, type(var).__name__
                    )
                )
1731 1732 1733

        return res

1734
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
1735 1736
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
1737
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1738 1739 1740
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1741 1742 1743 1744 1745 1746
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
1747 1748
                % (filelist_length, filelist_length)
            )
1749 1750 1751
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
1752 1753 1754 1755 1756
                % (filelist_length // pipeline_num, filelist_length)
            )
            pipeline_opt["concurrency_list"][0] = (
                filelist_length // pipeline_num
            )
1757 1758 1759
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

meteor135's avatar
meteor135 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
    def split_program_by_device(self, program):
        ops_list = []
        type_list = []
        pre = None
        type_cpu = "cpu"
        for op in program.global_block().ops:
            if self._is_optimizer_op(op):
                break
            if op.has_attr("op_device"):
                cur_attr = (
                    op.attr("op_device")
                    if op.attr("op_device") != ""
                    else type_cpu
                )
                if pre is None or pre != cur_attr:
                    ops_list.append([])
                    type_list.append(cur_attr)
                ops_list[-1].append(op)
                pre = cur_attr
        l = len(type_list)
        i = 0
        type_heter = None
        while i < l:
            while i < l and type_list[i] == type_cpu:
                i += 1
            if i == l:
                break

            type_heter = type_list[i]
            i += 1
            start = i
            valid = True
            while i < l and type_list[i] != type_heter:
                if type_list[i] != type_cpu:
                    valid = False
                    break
                i += 1

            if i == l:
                break
            elif not valid:
                continue

            for j in range(start, i):
                for op in ops_list[j]:
                    op._set_attr("op_device", type_heter)
                type_list[j] = type_heter
                j += 1

        pre = None
        merged_ops_list = []
        merged_type_list = []
        for i in range(l):
            if pre is None or pre != type_list[i]:
                merged_ops_list.append([])
                merged_type_list.append(type_list[i])
            merged_ops_list[-1].extend(ops_list[i])
            pre = type_list[i]

        data_vars = set()
        for k in program.global_block().vars:
            var = program.global_block().var(k)
            if not var.persistable:
                data_vars.add(var.name)

        l = len(merged_ops_list)
        inputs_pre = set()
        outputs_pre = set()
        in_from_pre = [[] for i in range(l)]
        for i in range(l):
            inputs = set()
            outputs = set()
            for op in merged_ops_list[i]:
                for input in op.input_names:
                    for tmp in op.input(input):
                        if tmp not in outputs:
                            inputs.add(tmp)
                for output in op.output_names:
                    for tmp in op.output(output):
                        outputs.add(tmp)
            if i == 0:
                in_from_pre[i] = []
            elif i == 1:
                in_from_pre[i] = (outputs_pre | data_vars) & inputs
            else:
                in_from_pre[i] = outputs_pre & inputs
            inputs_pre = copy.deepcopy(inputs)
            outputs_pre = copy.deepcopy(outputs)

        l = len(in_from_pre)
        start_list = []
        end_list = []
        send_list = [[] for i in range(l)]
        sum = 0
        program_list = []
        for i in range(l):
            start_list.append(sum)
            end_list.append(sum + len(merged_ops_list[i]) - 1)
            sum += len(merged_ops_list[i])
            if i < l - 1:
                send_list[i].extend(list(in_from_pre[i + 1]))
            prog = program.clone()
            if merged_type_list[i] != type_cpu:
                prog = prog._prune_with_input(
                    list(in_from_pre[i]), list(send_list[i])
                )
                program_list.append(prog)
            else:
                program_list.append(prog)
        recv_list = [list(i) for i in in_from_pre]
        found = False
        heter_index = None
        for i in range(len(merged_type_list)):
            t = merged_type_list[i]
            if t != type_cpu:
                if found:
                    print("only one region of program can be heter")
                found = True
                heter_index = i
        if heter_index is None:
            print("warning: non heter program")
            return None
        else:
            return [
                start_list[heter_index],
                end_list[heter_index],
                send_list[heter_index],
                recv_list[heter_index],
                program_list[heter_index],
            ]

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
    def _prepare_trainer(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
    ):
T
Thunderbrook 已提交
1902
        is_heter = 0
T
Thunderbrook 已提交
1903
        use_ps_gpu = 0
T
Thunderbrook 已提交
1904 1905 1906
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1907
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1908
                is_heter = 1
T
Thunderbrook 已提交
1909 1910
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1911 1912 1913 1914
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1915 1916 1917
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1918
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1919
        if is_heter:
meteor135's avatar
meteor135 已提交
1920
            ret = self.split_program_by_device(program)
D
dongdaxiang 已提交
1921
        if not compiled:
H
hutuxian 已提交
1922 1923 1924
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1925 1926
                    program._pipeline_opt
                )
1927 1928
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1929 1930
                    program._heter_pipeline_opt
                )
H
hutuxian 已提交
1931 1932
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1933
                trainer._set_thread_barrier(program._is_distributed)
1934
            trainer._set_program(program)
T
Thunderbrook 已提交
1935 1936
            if is_heter:
                trainer._set_heter_info(ret)
1937
        else:
H
hutuxian 已提交
1938 1939
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1940 1941
                    program.program._pipeline_opt
                )
1942 1943
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1944 1945
                    program.program._heter_pipeline_opt
                )
H
hutuxian 已提交
1946 1947
            else:
                trainer = TrainerFactory()._create_trainer(
1948 1949
                    program.program._fleet_opt
                )
1950
            trainer._set_program(program.program)
H
hutuxian 已提交
1951

1952
        if thread <= 0:
T
Thunderbrook 已提交
1953 1954 1955
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1956
                raise RuntimeError(
1957
                    "You should set thread num first, either in Dataset"
1958 1959
                    "or in Executor.train_from_dataset"
                )
D
dongdaxiang 已提交
1960
            else:
1961
                trainer._set_thread(dataset.thread_num)
1962
        else:
1963
            trainer._set_thread(thread)
H
hutuxian 已提交
1964

1965 1966
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1967
        return scope, trainer
1968

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
    def _run_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
1982 1983
        if program._pipeline_opt is not None:
            import paddle
1984

1985 1986
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
1987
            # The following fake dataset is created to call
1988 1989 1990 1991 1992
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1993 1994 1995
            dataset = paddle.fluid.DatasetFactory().create_dataset(
                'FileInstantDataset'
            )
1996 1997 1998 1999
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
2000 2001
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
2002
            # print("test_fl_stage_id: {}".format(stage_id))
2003
            heter_place = program._heter_pipeline_opt["heter_place"]
2004
            if stage_id != 0:
2005 2006
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
2007

2008 2009
                    if dataset is not None:
                        raise RuntimeError(
2010 2011
                            "dataset should be None for heter pipeline mode"
                        )
2012
                    # The following fake dataset is created to call
2013 2014 2015 2016 2017 2018
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
2019 2020
                        'InMemoryDataset'
                    )
2021 2022 2023 2024
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
2025 2026 2027
            else:
                if dataset is None:
                    raise RuntimeError(
2028 2029
                        "dataset is need and should be initialized"
                    )
2030 2031 2032 2033 2034
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
2035 2036 2037
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
2038 2039

        dataset._prepare_to_run()
2040 2041
        real_fetch_list = []
        if program._pipeline_opt:
2042
            real_program = program._pipeline_opt["section_program"]
2043 2044 2045 2046 2047 2048 2049 2050
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2051
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
2052 2053 2054 2055
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
2056 2057
                fetch_var_name='fetch',
            )
2058 2059 2060 2061 2062 2063 2064
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2065 2066
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2067
            fetch_list = None
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2078 2079 2080 2081

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2082
        if program._pipeline_opt is None:
2083 2084
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2085 2086 2087
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2088

T
tangwei12 已提交
2089
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2090

2091
        if program._heter_pipeline_opt is None:
2092 2093 2094 2095 2096
            trainer_instance = (
                self._default_executor.init_for_dataset(  # -->InitForDataset
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
            )
2097 2098
        else:
            # cache trainer instance for heterps pipeline training
2099
            if fetch_list is None:
2100 2101 2102 2103 2104
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
2105 2106 2107
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
                # print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2108 2109 2110
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2111

T
tangwei12 已提交
2112 2113 2114 2115 2116 2117
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2118 2119
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2120 2121
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2122 2123
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2124 2125

        dataset._dynamic_adjust_after_train()
2126
        dataset._finish_to_run()
2127 2128 2129 2130
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2131

2132 2133
        return None

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
    def _prepare_pipeline_ctx(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
2165 2166 2167
            dataset = paddle.fluid.DatasetFactory().create_dataset(
                'FileInstantDataset'
            )
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2188 2189 2190 2191 2192 2193 2194
            real_program = _add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch',
            )
2195 2196 2197 2198 2199 2200 2201
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2202 2203
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2204 2205 2206 2207 2208 2209 2210
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2221 2222 2223 2224 2225 2226 2227

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2228 2229 2230
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2231 2232 2233
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2234
        trainer_instance = self._default_executor.init_for_dataset(
2235 2236
            program.desc, trainer_desc, scope, dataset.dataset
        )
2237 2238

        ctx = [scope, real_fetch_list, trainer_instance]
2239 2240
        if use_program_cache:
            self._add_ctx_cache(cache_key, ctx)
2241

2242 2243
        return ctx

2244 2245 2246 2247 2248 2249
    def _prepare_fleet_executor_carrier(
        self,
        carrier_id="",
        program=None,
        scope=None,
        fleet_opt=None,
L
LiYuRio 已提交
2250
        micro_scope_list=[],
2251 2252 2253 2254 2255 2256 2257
        with_standalone_executor=False,
    ):
        num_micro_batches = (
            fleet_opt["num_micro_batches"]
            if "num_micro_batches" in fleet_opt
            else 1
        )
2258
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2259
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2260
        nrank = len(trainer_endpoints)
2261

2262 2263
        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, (
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. "
2264
            "Or you can provide a list of task nodes to init fleet executor directly."
2265
        )
2266
        if 'tasks' in fleet_opt:
2267 2268 2269 2270
            assert 'task_id_to_rank' in fleet_opt, (
                "If you provide tasks to init fleet executor,"
                " task_id_to_rank should also be provided."
            )
2271 2272 2273
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2274
        else:
2275 2276
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
2277 2278 2279 2280 2281 2282 2283 2284 2285
                from paddle.distributed.fleet.fleet_executor_utils import (
                    run1f1b,
                )

                if (
                    "dist_strategy" not in fleet_opt
                    or "pp_degree" not in fleet_opt["dist_strategy"]
                    or fleet_opt["dist_strategy"]["pp_degree"] == 1
                ):
2286 2287
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2288 2289 2290 2291 2292 2293 2294
                    program,
                    cur_rank,
                    fleet_opt.get('num_micro_batches', 1),
                    fleet_opt.get('dist_strategy', {}),
                    nrank,
                    with_standalone_executor,
                )
2295 2296
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
2297 2298 2299 2300 2301 2302 2303 2304

                if (
                    "dist_strategy" in fleet_opt
                    and "pp_degree" in fleet_opt["dist_strategy"]
                ):
                    assert (
                        fleet_opt["dist_strategy"]["pp_degree"] == 1
                    ), "For pipeline mode, the scheduler should be 1F1B instead of Origin."
2305
                if "num_micro_batches" in fleet_opt:
2306 2307 2308
                    assert (
                        fleet_opt["num_micro_batches"] == 1
                    ), "For origin scheduler mode, the num micro batches should be 1."
2309 2310
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
2311 2312 2313
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " "but received " + str(
                    scheduler
                ) + "."
2314 2315 2316
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2317 2318
        place = core.Place()
        place.set_place(self.place)
L
LiYuRio 已提交
2319

2320 2321 2322
        inference_root_scope_vars = (
            fleet_opt["fetch_var"] if "fetch_var" in fleet_opt else []
        )
2323 2324 2325 2326 2327 2328 2329 2330
        self._fleet_executor.init(
            carrier_id,
            program.desc,
            scope,
            place,
            num_micro_batches,
            tasks,
            task_id_to_rank,
2331
            inference_root_scope_vars,
L
LiYuRio 已提交
2332
            micro_scope_list,
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
        )

    def _run_using_fleet_executor(
        self,
        program=None,
        feed=None,
        feed_var_name="feed",
        fetch_var_name="fetch",
        fetch_list=None,
        with_standalone_executor=False,
2343
        return_numpy=True,
2344
    ):
2345 2346
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2347
        cached_scope = self._get_scope_cache(cache_key)
2348 2349
        micro_cached_scopes = self._get_micro_scopes_cache(cache_key)
        fleet_opt = program._pipeline_opt["fleet_opt"]
2350 2351 2352
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
2353 2354 2355 2356 2357 2358 2359 2360 2361
        if micro_cached_scopes is None:
            micro_cached_scopes = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for _ in range(int(fleet_opt["num_micro_batches"])):
                    micro_cached_scopes.append(cached_scope.new_scope())
                self._add_micro_scopes_cache(cache_key, micro_cached_scopes)
2362
        if cached_program is None:
2363 2364 2365
            assert (
                program._pipeline_opt
            ), "program should have _pipeline_opt to start carrier"
2366
            real_feed = [] if feed is None else feed
2367 2368 2369
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
2370 2371 2372 2373 2374 2375 2376
            cached_program = _add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
2377 2378 2379 2380 2381 2382 2383
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2384 2385
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2386
            self._add_program_cache(cache_key, cached_program)
2387
            fleet_opt = program._pipeline_opt["fleet_opt"]
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2399 2400 2401 2402 2403
                feed_program = self._add_feed_ops(
                    program=feed_program,
                    feed=real_feed,
                    feed_var_name=feed_var_name,
                )
2404 2405 2406 2407 2408 2409 2410 2411 2412
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
2413 2414
                    fetch_var_name=fetch_var_name,
                )
2415 2416 2417 2418 2419 2420 2421
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
2422 2423
                            core.op_proto_and_checker_maker.OpRole.Optimize,
                        )
2424 2425
                fetch_task.set_program(fetch_program)

L
LiYuRio 已提交
2426 2427 2428 2429 2430 2431 2432 2433
            micro_scope_list = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for i in range(int(fleet_opt["num_micro_batches"])):
                    micro_scope_list.append(cached_scope.new_scope())

2434 2435 2436 2437 2438
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
2439
                micro_scope_list=micro_cached_scopes,
2440 2441
                with_standalone_executor=with_standalone_executor,
            )
2442

2443
        if feed:
2444 2445 2446
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2447
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2448 2449

        from paddle.optimizer.lr import LRScheduler
2450

2451 2452 2453 2454 2455
        if hasattr(program, 'lr_scheduler'):
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_scheduler()
            lr_var = program.global_block().vars[lr_scheduler._var_name]
2456
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2457
            tensor = core.get_variable_tensor(
2458
                cached_scope, lr_scheduler._var_name
2459
            )
2460 2461
            tensor.set(data, self.place)

2462
        self._fleet_executor.run(cache_key)
L
LiYuRio 已提交
2463 2464 2465 2466 2467 2468
        if "fetch_var" in fleet_opt:
            # If we speed up the generation in evaluation, we need to generate
            # multiple queries at the same time. Each query will in separate scope in order
            # not mix up. It indicate that final result will in multiple scopes and need to
            # fetch each.
            result_list = []
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
            for scope in micro_cached_scopes:
                scope_result_list = []
                for varname in fleet_opt["fetch_var"]:
                    tensor = None
                    try:
                        tensor = core.get_variable_tensor(scope, varname)
                        if return_numpy:
                            tensor = as_numpy(tensor)
                    except:
                        var = scope.find_var(varname)
                        tensor = var.get_lod_tensor_array()
                        if return_numpy:
                            tensor = as_numpy(tensor)
                        else:
                            tensor = [t for t in tensor]

                    if tensor:
                        scope_result_list.append(tensor)

                if scope_result_list:
                    result_list.append(scope_result_list)
L
LiYuRio 已提交
2490 2491
            return result_list

2492 2493 2494 2495
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2496 2497
        return None

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
2509 2510
                persistable=True,
            )
2511 2512 2513 2514 2515 2516

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2517 2518 2519 2520 2521 2522
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i},
                    )
2523 2524 2525
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
2526 2527
                        % name
                    )
2528 2529 2530

        return tmp_program

2531
    @classmethod
2532 2533 2534
    def _add_fetch_ops(
        cls, program, fetch_list, fetch_var_name, use_fetch_v2=False
    ):
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
2545 2546
                persistable=True,
            )
2547 2548 2549 2550 2551 2552 2553

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
2554 2555 2556
        if not has_fetch_operators(
            global_block, fetch_list, fetch_var_name, fetch_op
        ):
2557 2558
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2559 2560 2561 2562 2563 2564 2565 2566
                    var, str
                ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
                global_block.append_op(
                    type=fetch_op,
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i},
                )
2567 2568 2569

        return tmp_program

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
    def _run_pipeline(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
        scope, real_fetch_list, trainer_instance = self._prepare_pipeline_ctx(
            program,
            dataset,
            scope,
            thread,
            is_infer,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
            use_program_cache,
        )
2608

2609
        from paddle.optimizer.lr import LRScheduler
2610

2611 2612 2613 2614 2615
        if hasattr(program, 'lr_scheduler'):
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_scheduler()
            lr_var = program.global_block().vars[lr_scheduler._var_name]
2616
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2617
            tensor = core.get_variable_tensor(scope, lr_scheduler._var_name)
2618 2619
            tensor.set(data, self.place)

2620 2621
        self._default_executor.run_from_dataset(trainer_instance)

2622 2623 2624
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2625 2626 2627 2628 2629 2630 2631
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
    def infer_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2644
        """
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2656

2657 2658
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2659
                if not provided, then default_main_program (not compiled) will be used.
2660
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2661 2662
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2663
            scope(Scope): the scope used to run this program, you can switch it to different scope
2664 2665 2666
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2667
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2668
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2669
                training, default is None
2670
            fetch_info(String List): print information for each Tensor, default is None
2671
            print_period(int): the number of mini-batches for each print, default is 100
2672
            fetch_handler(FetchHandler): a user define class for fetch output.
2673

2674 2675 2676 2677
        Returns:
            None

        Examples:
2678 2679

            .. code-block:: python
2680

2681
                import paddle
2682

2683 2684 2685 2686 2687 2688
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2689
                dataset.set_use_var([x, y])
2690
                dataset.set_thread(1)
2691 2692
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2693
                dataset.set_filelist(filelist)
2694 2695 2696
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2697

2698
        """
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            True,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )

    def start_heter_trainer(
        self,
        program=None,
        scope=None,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
T
Thunderbrook 已提交
2732

2733
        trainer._set_infer(False)
T
Thunderbrook 已提交
2734 2735 2736 2737 2738
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
2739 2740
            program.desc, trainer._desc(), scope, None
        )
T
Thunderbrook 已提交
2741

2742
        # if fetch_handler is not None:
T
Thunderbrook 已提交
2743 2744 2745 2746 2747 2748
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
2749
        # else:
T
Thunderbrook 已提交
2750 2751

        self._default_executor.run_from_dataset(trainer_instance)
2752
        # self._default_executor.release_trainer(trainer_instance)
T
Thunderbrook 已提交
2753 2754 2755

        return trainer_instance

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
    def train_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2768 2769 2770 2771 2772 2773 2774 2775
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2776

2777 2778 2779 2780
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2781
                if not provided, then default_main_program (not compiled) will be used.
2782
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2783 2784
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2785
            scope(Scope): the scope used to run this program, you can switch it to different scope
2786 2787 2788
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2789
            debug(bool): whether a user wants to run train_from_dataset
2790
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2791
                during training
2792
            fetch_info(String List): print information for each Tensor, its length should be equal
2793 2794
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2795
            fetch_handler(FetchHandler): a user define class for fetch output.
2796 2797 2798

        Returns:
            None
2799

2800
        Examples:
2801

2802 2803
            .. code-block:: python

2804
              import paddle
2805

2806 2807 2808 2809 2810 2811
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2812
              dataset.set_use_var([x, y])
2813
              dataset.set_thread(1)
2814 2815
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2816
              dataset.set_filelist(filelist)
2817 2818
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2819
                                     dataset=dataset)
2820 2821

        """
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            False,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )