executor.py 110.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeng Jinle 已提交
15
import logging
16 17
import os
import multiprocessing
C
chengduo 已提交
18
import sys
19
import warnings
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
from .data_feeder import convert_dtype
23
from .framework import Program, default_main_program, Variable, Operator
24
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
25

26
from . import core
27
from . import unique_name
28
from . import compiler
29
from . import set_flags
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33
from . import framework
34
from .incubate.checkpoint import auto_checkpoint as acp
35
from .compiler import _prune_feed_ops
36

R
Ruibiao Chen 已提交
37 38
from functools import lru_cache

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78

79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96

97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
147 148
        raise RuntimeError(
            "Some of your fetched tensors hold LoD information. \
149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
151 152
            return LoDTensor itself directly."
        )
Q
qingqing01 已提交
153
    if tensor._is_initialized():
154 155 156 157
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
158 159
    else:
        return None
D
dzhwinter 已提交
160 161


H
Huihuang Zheng 已提交
162 163 164 165
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
166

H
Huihuang Zheng 已提交
167 168
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
169

H
Huihuang Zheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
186 187
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


215
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
216 217
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
218
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
219 220 221

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
222 223
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
224
       is compatible with any number.
225

H
Huihuang Zheng 已提交
226 227
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
228
        feed (LoDTensor): the fed value, which must be a LoDTensor
229 230
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
231 232 233 234 235 236 237
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
238 239
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
240
            raise ValueError(
T
tianshuo78520a 已提交
241
                'The fed Variable %r should have dimensions = %d, shape = '
242 243 244
                '%r, but received fed shape %r on each device'
                % (var.name, len(var.shape), var.shape, diff_shape)
            )
H
Huihuang Zheng 已提交
245
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
246 247 248 249 250 251 252 253 254 255
            var_dtype_format = (
                convert_dtype(var.dtype)
                if isinstance(var.dtype, core.VarDesc.VarType)
                else var.dtype
            )
            feed_dtype_format = (
                convert_dtype(feed._dtype())
                if isinstance(feed._dtype(), core.VarDesc.VarType)
                else feed._dtype()
            )
256
            raise ValueError(
257 258 259
                'The data type of fed Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format)
            )
H
Huihuang Zheng 已提交
260 261 262
    return True


263
def has_feed_operators(block, feed_targets, feed_holder_name):
264
    """Check whether the block already has feed operators.
265 266 267 268 269 270 271 272 273 274

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
275 276
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
277 278 279
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
280
        A boolean value that indicates whether a block has feed operators
281 282 283 284 285 286 287 288 289 290
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
291 292
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
293 294 295
                        feed_target_name
                    )
                )
296 297 298 299
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
300 301
            "Feed operators in program desc do not match 'feed_targets'"
        )
302 303 304
    return feed_count > 0


305 306 307 308
def has_fetch_operators(
    block, fetch_targets, fetch_holder_name, fetch_op='fetch'
):
    """Check whether the block already has fetch operators.
X
xuwei06 已提交
309

310 311 312 313 314 315 316 317 318
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
319 320 321
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
322
        fetch_op: the operator name of fetch
323

X
xuwei06 已提交
324 325 326
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
327 328 329 330
    """

    fetch_count = 0
    for op in block.ops:
331
        if op.desc.type() == fetch_op:
332 333 334 335
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
336
                var.desc.name() for var in fetch_targets
337
            ]:
338 339
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
340 341 342
                        fetch_target_name
                    )
                )
343 344 345 346
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
347 348
            "Fetch operators in program desc do not match 'fetch_targets'"
        )
349 350 351
    return fetch_count > 0


352 353 354
def _add_feed_fetch_ops(
    program, feed, fetch_list, feed_var_name, fetch_var_name, use_fetch_v2=False
):
R
Ruibiao Chen 已提交
355 356 357 358 359 360 361 362 363 364
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
365 366
            persistable=True,
        )
R
Ruibiao Chen 已提交
367 368 369 370 371 372 373

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
374 375
            persistable=True,
        )
R
Ruibiao Chen 已提交
376 377 378 379 380 381

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
382 383 384 385 386 387
                global_block._prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i},
                )
R
Ruibiao Chen 已提交
388 389 390
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
391 392
                    % name
                )
R
Ruibiao Chen 已提交
393 394 395 396 397 398 399

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
400 401 402
    if not has_fetch_operators(
        global_block, fetch_list, fetch_var_name, fetch_op
    ):
R
Ruibiao Chen 已提交
403 404
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
405 406 407 408 409 410 411 412
                var, str
            ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
            global_block.append_op(
                type=fetch_op,
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i},
            )
R
Ruibiao Chen 已提交
413 414 415 416

    return tmp_program


417 418 419
def _apply_inplace_addto_pass(
    program, enable_inplace, enable_addto, skip_var_names
):
R
Ruibiao Chen 已提交
420 421 422 423 424 425 426 427
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
428 429 430
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
431 432
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
433 434 435
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
436 437


W
Wu Yi 已提交
438
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
439
    """
C
chengduoZH 已提交
440 441 442
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
443
    Args:
444 445 446 447
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
448 449 450 451
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
452 453 454
    Returns:
       LodTensor|numpy.ndarray
    """
455
    assert isinstance(name, str)
X
xuwei06 已提交
456 457
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
458
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
459

460
    var = scope.find_var(_to_name_str(name))
461 462 463
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
464 465
        " program."
    )
X
xuwei06 已提交
466 467
    tensor = var.get_tensor()
    if return_numpy:
468
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
469 470 471
    return tensor


X
polish  
Xin Pan 已提交
472
def _to_name_str(var):
473 474 475 476 477
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
478
        elif isinstance(var, str):
479 480
            return str(var)
        elif isinstance(var, Operator):
481
            return str(id(var))
482 483 484 485 486 487 488 489 490 491
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
492
    else:
493
        return _to_str(var)
Q
qiaolongfei 已提交
494 495


496
def _is_enable_standalone_executor():
497 498 499 500 501
    return (
        framework._enable_standalone_executor_ is None
        or framework._enable_standalone_executor_
        in [1, '1', True, 'True', 'true']
    )
502 503


504 505
def _is_dy2st_enable_standalone_executor():
    return framework._dy2st_enable_standalone_executor_ in [
506 507 508 509 510
        1,
        '1',
        True,
        'True',
        'true',
511 512 513
    ]


514 515 516 517 518 519 520 521 522 523
def _is_cuda_graph_enable_standalone_executor():
    return framework._cuda_graph_enable_standalone_executor_ in [
        1,
        '1',
        True,
        'True',
        'true',
    ]


524 525
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


L
Leo Chen 已提交
542 543
def _get_strong_program_cache_key_for_new_exe(program, feed, fetch_list):
    return program.desc.cached_hash_str() + _get_program_cache_key(
544 545
        feed, fetch_list
    )
L
Leo Chen 已提交
546 547


548
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
549
    # TODO(zhiqiu): use hash_str to generate cache key as above
550 551 552 553 554 555
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

556 557 558 559 560 561 562 563 564 565
    inner_program = (
        program._program
        if isinstance(program, compiler.CompiledProgram)
        else program
    )
    return (
        _get_varname_from_block(inner_program.blocks[0])
        + str(id(program))
        + _get_program_cache_key(feed, fetch_list)
    )
566 567


X
polish  
Xin Pan 已提交
568
def _get_program_cache_key(feed, fetch_list):
569 570 571 572 573 574
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
575
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
576 577 578
    return str(feed_var_names + fetch_var_names)


579
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
580
    """
581 582
    Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
W
Wu Yi 已提交
583

584 585 586 587 588 589 590
    Examples:
        >>> import paddle.fluid as fluid
        >>> place = fluid.CPUPlace()
        >>> exe = fluid.executor(place)
        >>> data = np.array(size=(100, 200, 300))
        >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
        >>>     ...
W
Wu Yi 已提交
591

592 593 594 595
    Args:
        data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
        data(core.Place): the place of created tensor
        dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
596

597 598 599 600
    Returns:
        LoDTensor
    """
    # NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
601
    if not isinstance(data, np.ndarray):
602 603 604 605 606 607 608 609
        assert (
            dtype is not None
        ), 'The dtype should be given when feed data is not np.ndarray'
        dtype = (
            convert_dtype(dtype)
            if isinstance(dtype, core.VarDesc.VarType)
            else dtype
        )
610 611
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
612 613
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
614
            if data.dtype == np.object_:
615 616 617 618 619 620 621 622 623
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
624 625 626
                    type(data)
                )
            )
627

628
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
629 630 631 632 633
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


634
class FetchHandler:
D
Dong Daxiang 已提交
635
    def __init__(self, var_dict=None, period_secs=60):
636
        assert var_dict is not None
D
Dong Daxiang 已提交
637
        self.var_dict = var_dict
638 639
        self.period_secs = period_secs

D
Dong Daxiang 已提交
640 641 642 643 644
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
645 646 647

    @staticmethod
    def help():
648 649
        print(
            """
D
Dong Daxiang 已提交
650 651 652 653 654 655 656 657
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
658 659
"""
        )
660 661


662
class _StandaloneExecutor:
663
    def __init__(self, place, main_program, scope):
664 665 666
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
667
        self._scope = scope
668 669
        self._new_exe = self._create_new_executor()

670
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
671 672
        """
        Args:
673
            feed_names(list): This parameter represents the input names of the model.
674
            fetch_list(list): This parameter represents the Tensors that need to be returned
675
                after the model runs. The default is None.
676 677 678 679 680 681
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

682 683 684
        tensors = self._new_exe.run(
            scope, feed_names, fetch_list
        )._move_to_list()
685 686 687 688 689 690
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
L
Leo Chen 已提交
691
        new_exe = core.StandaloneExecutor(self._place, self._main_program.desc)
692 693 694 695 696

        return new_exe

    def _update_feed(self, feed):
        """
697
        Update the feed dict, remove the feed item which is pruned in program.
698 699

        Notes: This is a very low level API. Users should not use this API
700
        directly.
701 702 703 704 705 706 707 708 709

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
710 711 712 713 714 715
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
716 717 718
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
719 720 721 722 723 724 725

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
726 727
                    % feed_name
                )
728 729 730 731 732 733 734 735 736 737 738 739 740

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
741 742 743 744
                    "Required fetch_var shall be str|Variable, but received {}".format(
                        type(fetch_var).__name__
                    )
                )
745 746 747 748 749

            res.append(fetch_var)
        return res


750 751
class _ExecutorCache:
    class _CachedData:
752 753 754 755 756 757 758 759 760 761
        def __init__(
            self,
            program,
            feed,
            fetch_list,
            feed_var_name,
            fetch_var_name,
            place,
            scope,
        ):
R
Ruibiao Chen 已提交
762 763 764 765 766 767 768 769 770 771 772
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
773 774 775 776
                if not self.program._program:
                    # The program holds no _program, maybe it is constructed by graph.
                    # Convert graph to program in order to generate key.
                    self.program._program = framework.IrGraph(
777 778
                        self.program._graph
                    ).to_program()
R
Ruibiao Chen 已提交
779 780
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
781 782 783
                        self.program._program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
784 785 786
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
787 788 789
                        self.program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
790 791

        def __eq__(self, other):
792 793 794 795
            return (
                isinstance(other, _ExecutorCache._CachedData)
                and self.key == other.key
            )
R
Ruibiao Chen 已提交
796 797 798 799 800 801 802 803 804

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
805 806
            self._get_program_and_executor
        )
R
Ruibiao Chen 已提交
807 808 809 810

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

811 812 813 814 815 816 817 818 819 820
    def get_program_and_executor(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        place,
        scope,
    ):
R
Ruibiao Chen 已提交
821
        return self._get_cached_program_and_executor(
822 823 824 825 826 827 828 829 830 831
            self._CachedData(
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                place,
                scope,
            )
        )
R
Ruibiao Chen 已提交
832 833 834

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
835 836 837 838 839
        inner_program = (
            program._program
            if isinstance(program, compiler.CompiledProgram)
            else program
        )
R
Ruibiao Chen 已提交
840 841 842 843 844 845 846 847 848
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
849 850 851 852 853 854 855
            program._graph, compiler.CompiledProgram
        ):
            compiled_program = (
                program
                if isinstance(program, compiler.CompiledProgram)
                else program._graph
            )
R
Ruibiao Chen 已提交
856 857
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
858 859 860 861 862 863 864 865 866 867
            use_cuda_graph = False
            # When using cuda graph, the cuda graph preparation logic in PE is not
            # executed, but it is processed in the constructor of new executor.
            if (
                build_strategy is not None
                and build_strategy.allow_cuda_graph_capture
            ):
                use_cuda_graph = True
                build_strategy.allow_cuda_graph_capture = False
                set_flags({"FLAGS_new_executor_use_cuda_graph": True})
R
Ruibiao Chen 已提交
868
            compiled_program._compile(scope, place)
869 870
            if use_cuda_graph:
                build_strategy.allow_cuda_graph_capture = True
R
Ruibiao Chen 已提交
871 872 873 874 875 876 877 878 879 880 881
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

            if hasattr(inner_program, 'lr_sheduler'):
                converted_program.lr_sheduler = inner_program.lr_sheduler

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
882

R
Ruibiao Chen 已提交
883 884 885 886 887
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

888 889 890 891 892 893 894 895
        program = _add_feed_fetch_ops(
            program=inner_program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            use_fetch_v2=True,
        )
R
Ruibiao Chen 已提交
896 897 898

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
899 900 901 902 903 904 905 906 907 908
        enable_inplace = (
            True
            if build_strategy is None or build_strategy.enable_inplace
            else False
        )
        enable_addto = (
            True
            if build_strategy is not None and build_strategy.enable_addto
            else False
        )
R
Ruibiao Chen 已提交
909 910 911
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
912 913 914
            _apply_inplace_addto_pass(
                program, enable_inplace, enable_addto, skip_var_names
            )
R
Ruibiao Chen 已提交
915 916 917 918

        new_program = program.clone()
        new_exe = _StandaloneExecutor(place, new_program, scope)
        return new_program, new_exe
919 920


921
class Executor:
922
    """
923 924
    :api_attr: Static Graph

925
    An Executor in Python, supports single/multiple-GPU running,
926
    and single/multiple-CPU running.
C
chengduo 已提交
927 928

    Args:
929
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
930 931 932 933
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
934
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x``
935 936
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
937
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_
C
chengduo 已提交
938 939 940

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
941

942
    Examples:
S
Fix doc  
sneaxiy 已提交
943 944
        .. code-block:: python

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            compiled_prog = paddle.static.CompiledProgram(
979
                train_program)
980 981
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

982 983
    """

984 985
    def __init__(self, place=None):
        if place is None:
986 987
            expected_place = framework._current_expected_place()
            self.place = expected_place
988
        else:
989
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
990
        self.program_caches = dict()
991
        self.ctx_caches = dict()
992
        self.trainer_caches = dict()
993 994
        self.scope_caches = dict()
        self.var_caches = dict()
995
        self.pruned_program_caches = dict()
996 997 998
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
999
        self._closed = False
1000
        self.pruned_program_scope_caches = dict()
1001
        self._prepare_to_run_called = False
D
dzhwinter 已提交
1002

1003
        self._auto_checkpoint_name = unique_name.generate(
1004 1005
            "__auto_checkpoint_executor__"
        )
1006

1007 1008
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
R
Ruibiao Chen 已提交
1009
        self._executor_cache = _ExecutorCache()
1010

1011
        self._fleet_executor = None
1012 1013 1014
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
1015

meteor135's avatar
meteor135 已提交
1016 1017 1018 1019 1020 1021 1022
        self.op_role_key = core.op_proto_and_checker_maker.kOpRoleAttrName()

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and int(
            op.all_attrs()[self.op_role_key]
        ) & int(core.op_proto_and_checker_maker.OpRole.Optimize)

R
Ruibiao Chen 已提交
1023 1024 1025 1026 1027 1028
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

1029 1030 1031
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

1032 1033 1034
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

1035 1036 1037
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
1038 1039 1040 1041 1042 1043
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

1056 1057 1058
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

1059 1060 1061
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

1062 1063 1064
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

1065 1066 1067 1068 1069 1070 1071
    # just for testing, will be removed later
    @lru_cache()
    def _log_force_set_program_cache(self, use_program_cache):
        logging.warning(
            f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE"
        )

Q
Qiao Longfei 已提交
1072 1073
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
1074 1075
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
1076 1077 1078
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
1079
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
1080 1081
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
1082 1083 1084
                        cur_feed = _as_lodtensor(
                            cur_feed, self.place, var.dtype
                        )
S
Steffy-zxf 已提交
1085
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
1086 1087 1088 1089 1090 1091 1092 1093
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
1094
            for i in range(len(fetch_list))
Q
Qiao Longfei 已提交
1095 1096 1097
        ]
        return outs

1098 1099
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
1111
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
1122 1123 1124 1125 1126 1127 1128
                        "The operator in fetch_list is not an optimize_op"
                    )
            elif (
                isinstance(item, Variable)
                or isinstance(item, str)
                or isinstance(item, str)
            ):
1129 1130 1131
                _fetch_list.append(item)
            else:
                raise TypeError(
1132
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1133 1134
                    type(item),
                )
1135

1136
        for index, item in enumerate(fetch_list):
1137 1138 1139 1140 1141 1142 1143
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1144 1145
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1146 1147 1148 1149
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".format(
                            index, index, index, type(item[0]).__name__
                        )
                    )
1150 1151 1152 1153 1154 1155 1156
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1157
    @classmethod
1158 1159 1160
    def _prune_program(
        cls, program, feed=None, fetch_list=None, optimize_ops=None
    ):
1161 1162
        """
        Prune operators and variables which are not needed to generate
1163 1164 1165
        :code:`fetch_list` and optimize operators.
        Prune operators and variables which are needed
        to generate variables to be feeded.
1166 1167

        Notes: This is a very low level API. Users should not use this API
1168
        directly.
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1219 1220
    @classmethod
    def _update_feed(cls, program, feed):
1221
        """
1222
        Update the feed dict, remove the feed item which is pruned in program.
1223 1224

        Notes: This is a very low level API. Users should not use this API
1225
        directly.
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
1242
                return feed
1243 1244 1245 1246 1247 1248 1249 1250 1251
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
1252 1253
                        % feed_name
                    )
1254 1255 1256 1257 1258 1259 1260 1261

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
1262 1263
                            % feed_name
                        )
1264 1265
        return feed

S
Fix doc  
sneaxiy 已提交
1266 1267 1268 1269 1270 1271
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1272 1273
    def close(self):
        """
C
chengduo 已提交
1274 1275 1276
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1277

C
chengduo 已提交
1278 1279
        Returns:
            None
1280 1281 1282 1283

        Examples:
            .. code-block:: python

1284
              import paddle
1285

1286 1287
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1288 1289
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1290
        """
1291
        if not self._closed:
Y
Yancey1989 已提交
1292
            self._closed = True
1293 1294 1295 1296
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1297

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
    def run(
        self,
        program=None,
        feed=None,
        fetch_list=None,
        feed_var_name='feed',
        fetch_var_name='fetch',
        scope=None,
        return_numpy=True,
        use_program_cache=False,
        use_prune=False,
    ):
1310
        """
C
chengduo 已提交
1311 1312 1313
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1314 1315
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1316

C
chengduo 已提交
1317 1318 1319
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1320
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1321
                The default is None.
1322
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1323
                If it is single card training, the feed is dict type, and if it is multi-card
1324
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1325 1326 1327 1328 1329 1330 1331
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1332
            fetch_list(list): This parameter represents the Tensors that need to be returned
1333
                after the model runs. The default is None.
1334
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1335
                the feed operator. The default is "feed".
1336
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1337
                the fetch operator. The default is "fetch".
1338
            scope(Scope): the scope used to run this program, you can switch
1339 1340 1341
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1342 1343 1344
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1345 1346
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1347
                The default is False.
1348
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
1349
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
1350 1351
                which means the operators and variables in program that generate :code:`feed` and are not
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
1352
                program will not pruned and all the operators and variables will be executed during running.
1353
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
1354
                :code:`use_prune` will be overrided to True, and the program will be pruned.
1355

C
chengduo 已提交
1356 1357 1358 1359
        Returns:

            List: The fetched result list.

1360
        Examples:
1361
            .. code-block:: python
1362
                :name: code-example-1
1363

1364 1365
                import paddle
                import numpy
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
1378
                array = paddle.tensor.array_write(x=loss, i=i)
1379

1380 1381
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1382

1383 1384 1385 1386 1387
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1388 1389

            .. code-block:: python
1390
                :name: code-example-2
Z
Zhen Wang 已提交
1391

1392
                # required: gpu
1393
                import paddle
Z
Zhen Wang 已提交
1394 1395 1396
                import numpy as np

                # First create the Executor.
1397 1398 1399
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1400

1401
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1402
                class_dim = 2
1403 1404 1405
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1406 1407 1408
                adam.minimize(loss)

                # Run the startup program once and only once.
1409 1410 1411
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
1412
                    paddle.static.default_main_program(), build_strategy=build_strategy)
Z
Zhen Wang 已提交
1413 1414 1415
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

1416 1417 1418
                prediction, = exe.run(binary,
                                      feed={'X': x},
                                    fetch_list=[prediction.name])
Z
Zhen Wang 已提交
1419 1420
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1421 1422 1423
                print("The prediction shape: {}".format(
                    np.array(prediction).shape))
                print(prediction)
1424

Z
Zhen Wang 已提交
1425
                # Out:
1426
                # The prediction shape: (6, 2)
Z
Zhen Wang 已提交
1427 1428 1429 1430 1431 1432
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1433

1434
        """
1435 1436
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
1437 1438
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None
        )
1439 1440
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
1441 1442 1443 1444 1445
                1,
                '1',
                True,
                'True',
                'true',
1446
            ]
1447
            self._log_force_set_program_cache(use_program_cache)
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
        res = self._run_impl(
            program=program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            scope=scope,
            return_numpy=return_numpy,
            use_program_cache=use_program_cache,
            use_prune=use_prune,
        )
        core.update_autotune_status()
        return res
C
chengduo 已提交
1462

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
    def _run_impl(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
        use_prune,
    ):
Y
Yancey1989 已提交
1475 1476 1477
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1478
        use_default_main_program = program is None
1479 1480
        if program is None:
            program = default_main_program()
1481

1482
        fetch_list = self._check_fetch_list(fetch_list)
1483 1484

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1485
            if "fleet_opt" in program._pipeline_opt:
1486 1487
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
1488 1489 1490 1491 1492 1493
                    # Temporary manual enable standalone executor for fleet executor,
                    # delete this code after the FLAGS is removed.
                    if 'tasks' in program._pipeline_opt["fleet_opt"]:
                        set_flags(
                            {"FLAGS_fleet_executor_with_standalone": True}
                        )
1494
                    self._fleet_executor = _prepare_fleet_executor()
1495 1496 1497 1498
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
1499 1500
                    with_standalone_executor=self._fleet_executor_with_standalone,
                )
1501 1502 1503
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1504 1505 1506 1507 1508
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache,
                )
1509 1510

        if isinstance(program, Program) and program._heter_pipeline_opt:
1511
            # print("program._heter_pipeline_opt: {}".format(
1512
            #    program._heter_pipeline_opt))
1513
            ## change default executor
1514 1515 1516 1517 1518 1519
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1520
            if "startup_program" in program._heter_pipeline_opt:
1521
                # print("get startup_program from _pipeline_opt")
1522 1523
                program = program._heter_pipeline_opt["startup_program"]

1524 1525 1526 1527
        if (
            isinstance(program, Program)
            and len(program.global_block().ops) == 0
        ):
C
chengduo 已提交
1528
            if use_default_main_program:
1529 1530 1531 1532
                error_info = (
                    "Now you are using default_main_program, "
                    "but there are no operators in the program to be executed. "
                    "Please ensure you create model correctly or you can pass "
1533
                    "the Program or the CompiledProgram manually."
1534
                )
1535
            else:
1536 1537 1538
                error_info = (
                    "There are no operators in the program to be executed. "
                    "If you pass Program manually, please use fluid.program_guard "
1539
                    "to ensure the current Program is being used."
1540
                )
C
chengduo 已提交
1541
            warnings.warn(error_info)
1542

1543 1544
        if scope is None:
            scope = global_scope()
1545

1546 1547 1548 1549
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
1550 1551
            fetch_list
        )
1552 1553 1554
        if optimize_ops:
            use_prune = True
        if use_prune:
1555 1556 1557
            cache_key = _get_strong_program_cache_key(
                program, feed, _origin_fetch_list
            )
1558 1559 1560 1561
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
1562 1563
                        str(id(_origin_program))
                    )
1564 1565 1566 1567
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
1568 1569 1570 1571 1572 1573
                    if (
                        self._get_pruned_program_scope_cache(
                            str(id(_origin_program))
                        )
                        is None
                    ):
1574
                        self._add_pruned_program_scope_cache(
1575 1576 1577 1578 1579
                            str(id(_origin_program)), program
                        )
                pruned_program = self._prune_program(
                    program, feed, fetch_list, optimize_ops
                )
1580 1581 1582 1583 1584 1585 1586
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1587
        def _can_use_interpreter_core(program, place):
1588
            if core.is_compiled_with_mlu():
1589 1590
                return False

1591 1592 1593
            compiled = isinstance(
                program, compiler.CompiledProgram
            ) or isinstance(program._graph, compiler.CompiledProgram)
1594
            if compiled:
1595 1596 1597 1598 1599
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
1600

1601
                # Unsupported case 1: inference
1602
                if compiled_program._is_inference:
1603 1604
                    warnings.warn(
                        "Standalone executor is not used for inference",
1605 1606
                        UserWarning,
                    )
1607
                    return False
1608

1609
                # Unsupported case 2: async mode
1610 1611
                if (
                    compiled_program._build_strategy is not None
1612
                    and compiled_program._build_strategy.async_mode
1613
                ):
1614
                    warnings.warn(
1615
                        "Standalone executor is not used for async mode",
1616 1617
                        UserWarning,
                    )
1618 1619
                    return False

1620
                # Unsupported case 3: CUDA Graph
1621 1622
                if (
                    compiled_program._build_strategy is not None
1623 1624
                    and compiled_program._build_strategy.allow_cuda_graph_capture
                    and not _is_cuda_graph_enable_standalone_executor()
1625
                ):
1626
                    warnings.warn(
1627
                        "Standalone executor is not used for CUDA Graph when FLAGS_CUDA_GRAPH_USE_STANDALONE_EXECUTOR=0",
1628 1629
                        UserWarning,
                    )
1630
                    return False
1631
            return True
1632

1633 1634
        if self._enable_interpreter_core and _can_use_interpreter_core(
            program, self.place
1635
        ):
1636

1637 1638 1639 1640 1641 1642 1643 1644
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
1645 1646
                    % (type(feed))
                )
1647 1648 1649
            feed = self._update_feed(program, feed)

            program, new_exe = self._executor_cache.get_program_and_executor(
1650 1651 1652 1653 1654 1655 1656 1657
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                self.place,
                scope,
            )
1658 1659 1660 1661

            self._feed_data(program, feed, feed_var_name, scope)
            if hasattr(program, 'lr_sheduler'):
                from paddle.optimizer.lr import LRScheduler
1662 1663 1664 1665

                assert isinstance(
                    program.lr_sheduler, LRScheduler
                ), "must be LRScheduler"
1666 1667 1668 1669 1670 1671 1672
                lr_sheduler = program.lr_sheduler
                lr_value = lr_sheduler()
                lr_var = program.global_block().vars[lr_sheduler._var_name]
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
                tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
1673 1674 1675 1676 1677 1678 1679
                if core.is_cuda_graph_capturing():
                    warnings.warn(
                        "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                        "take any effect! Please set the learning rate manually before each batch!"
                    )
                elif core.is_compiled_with_ipu():
                    # for ipu, tensor is allocated on cpu
1680 1681 1682 1683
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

1684 1685 1686
            return new_exe.run(
                scope, list(feed.keys()), fetch_list, return_numpy
            )
1687

X
polish  
Xin Pan 已提交
1688
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1689

1690 1691 1692 1693 1694 1695 1696
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
1697
                vardesc = global_block.desc.find_var(varname.encode())
1698 1699
                varobj = global_block.vars[varname]

1700 1701 1702 1703 1704 1705 1706 1707 1708
                if (
                    vardesc.persistable() == False
                    and vardesc.type() == core.VarDesc.VarType.LOD_TENSOR
                    and vardesc.need_check_feed() == True
                    and varobj.stop_gradient == True
                    and varobj.is_data == True
                    and varobj.belong_to_optimizer == False
                    and varname not in feed
                ):
1709 1710
                    raise ValueError('Need feed data for variable %s' % varname)

1711 1712
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1713
        # For backward compatibility, run directly.
1714
        if not compiled:
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

            return self._run_program(
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache,
            )
1726 1727

        program._compile(scope, self.place)
1728 1729 1730 1731
        assert (
            program._is_inference
        ), f"Program must have _is_inference = True, but get {program._is_inference}"
        return self._run_inference(program._executor, feed)
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

    def _run_program(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
    ):
1744
        from paddle.optimizer.lr import LRScheduler
1745

1746 1747
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1748 1749 1750 1751
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1752
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1753
            raise TypeError(
1754 1755 1756
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
Y
Yu Yang 已提交
1757

1758
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1759
        if not isinstance(program, Program):
D
dzhwinter 已提交
1760 1761
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
1762 1763
                % (type(program))
            )
Y
Yu Yang 已提交
1764

1765 1766 1767
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
1768 1769
                % (type(fetch_var_name))
            )
1770

1771
        if use_program_cache:
1772
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1773
            cached_program = self._get_program_cache(cache_key)
1774
            cached_ctx = self._get_ctx_cache(cache_key)
1775
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1776
            if cached_program is None:
R
Ruibiao Chen 已提交
1777
                cached_program = _add_feed_fetch_ops(
Q
Qiao Longfei 已提交
1778 1779 1780 1781
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
1782 1783
                    fetch_var_name=fetch_var_name,
                )
Q
Qiao Longfei 已提交
1784
                self._add_program_cache(cache_key, cached_program)
1785
                fetch_list_str = list(map(_to_name_str, fetch_list))
1786
                cached_ctx = self._default_executor.prepare(
1787 1788
                    cached_program.desc, 0, fetch_list_str, False
                )
1789 1790 1791 1792 1793 1794
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1795 1796 1797
                self._default_executor.create_variables(
                    cached_program.desc, cached_scope, 0
                )
1798
                self._add_ctx_cache(cache_key, cached_ctx)
1799
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1800
            program = cached_program
1801
            ctx = cached_ctx
1802
            scope = cached_scope
1803
        else:
1804 1805 1806 1807 1808 1809 1810
            program = _add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
Q
Qiao Longfei 已提交
1811 1812

        self._feed_data(program, feed, feed_var_name, scope)
1813
        if hasattr(program, 'lr_sheduler'):
1814 1815 1816
            assert isinstance(
                program.lr_sheduler, LRScheduler
            ), "must be LRScheduler"
1817 1818 1819 1820 1821 1822 1823
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1824
        if not use_program_cache:
1825 1826 1827
            self._default_executor.run(
                program.desc, scope, 0, True, True, [fetch_var_name]
            )
1828
        else:
1829 1830 1831
            self._default_executor.run_prepared_ctx(
                ctx, scope, False, False, False
            )
1832
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1833
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1834
        if return_numpy:
1835 1836 1837
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1838

X
Xin Pan 已提交
1839 1840
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1841

1842
    def _check_fetch_list(self, fetch_list):
1843
        is_fetch_var = lambda var: isinstance(var, (Variable, str))
1844 1845
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

1846 1847 1848 1849
        if fetch_list is None:
            return []
        if is_fetch_var(fetch_list):
            return [fetch_list]
1850

1851 1852 1853
        assert is_tuple_list(fetch_list), (
            "Currently , The fetch_list type only should be list or tuple, \n"
            "but the input type is {}. For more information please refer to \n"
1854
            "the executor.run(...).".format(type(fetch_list))
1855
        )
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1869 1870 1871 1872
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".format(
                        i, type(var).__name__
                    )
                )
1873 1874 1875

        return res

1876
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
1877 1878
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
1879
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1880 1881 1882
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1883 1884 1885 1886 1887 1888
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
1889 1890
                % (filelist_length, filelist_length)
            )
1891 1892 1893
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
1894 1895 1896 1897 1898
                % (filelist_length // pipeline_num, filelist_length)
            )
            pipeline_opt["concurrency_list"][0] = (
                filelist_length // pipeline_num
            )
1899 1900 1901
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

meteor135's avatar
meteor135 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
    def split_program_by_device(self, program):
        ops_list = []
        type_list = []
        pre = None
        type_cpu = "cpu"
        for op in program.global_block().ops:
            if self._is_optimizer_op(op):
                break
            if op.has_attr("op_device"):
                cur_attr = (
                    op.attr("op_device")
                    if op.attr("op_device") != ""
                    else type_cpu
                )
                if pre is None or pre != cur_attr:
                    ops_list.append([])
                    type_list.append(cur_attr)
                ops_list[-1].append(op)
                pre = cur_attr
        l = len(type_list)
        i = 0
        type_heter = None
        while i < l:
            while i < l and type_list[i] == type_cpu:
                i += 1
            if i == l:
                break

            type_heter = type_list[i]
            i += 1
            start = i
            valid = True
            while i < l and type_list[i] != type_heter:
                if type_list[i] != type_cpu:
                    valid = False
                    break
                i += 1

            if i == l:
                break
            elif not valid:
                continue

            for j in range(start, i):
                for op in ops_list[j]:
                    op._set_attr("op_device", type_heter)
                type_list[j] = type_heter
                j += 1

        pre = None
        merged_ops_list = []
        merged_type_list = []
        for i in range(l):
            if pre is None or pre != type_list[i]:
                merged_ops_list.append([])
                merged_type_list.append(type_list[i])
            merged_ops_list[-1].extend(ops_list[i])
            pre = type_list[i]

        data_vars = set()
        for k in program.global_block().vars:
            var = program.global_block().var(k)
            if not var.persistable:
                data_vars.add(var.name)

        l = len(merged_ops_list)
        inputs_pre = set()
        outputs_pre = set()
        in_from_pre = [[] for i in range(l)]
        for i in range(l):
            inputs = set()
            outputs = set()
            for op in merged_ops_list[i]:
                for input in op.input_names:
                    for tmp in op.input(input):
                        if tmp not in outputs:
                            inputs.add(tmp)
                for output in op.output_names:
                    for tmp in op.output(output):
                        outputs.add(tmp)
            if i == 0:
                in_from_pre[i] = []
            elif i == 1:
                in_from_pre[i] = (outputs_pre | data_vars) & inputs
            else:
                in_from_pre[i] = outputs_pre & inputs
            inputs_pre = copy.deepcopy(inputs)
            outputs_pre = copy.deepcopy(outputs)

        l = len(in_from_pre)
        start_list = []
        end_list = []
        send_list = [[] for i in range(l)]
        sum = 0
        program_list = []
        for i in range(l):
            start_list.append(sum)
            end_list.append(sum + len(merged_ops_list[i]) - 1)
            sum += len(merged_ops_list[i])
            if i < l - 1:
                send_list[i].extend(list(in_from_pre[i + 1]))
            prog = program.clone()
            if merged_type_list[i] != type_cpu:
                prog = prog._prune_with_input(
                    list(in_from_pre[i]), list(send_list[i])
                )
                program_list.append(prog)
            else:
                program_list.append(prog)
        recv_list = [list(i) for i in in_from_pre]
        found = False
        heter_index = None
        for i in range(len(merged_type_list)):
            t = merged_type_list[i]
            if t != type_cpu:
                if found:
                    print("only one region of program can be heter")
                found = True
                heter_index = i
        if heter_index is None:
            print("warning: non heter program")
            return None
        else:
            return [
                start_list[heter_index],
                end_list[heter_index],
                send_list[heter_index],
                recv_list[heter_index],
                program_list[heter_index],
            ]

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
    def _prepare_trainer(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
    ):
T
Thunderbrook 已提交
2044
        is_heter = 0
T
Thunderbrook 已提交
2045
        use_ps_gpu = 0
T
Thunderbrook 已提交
2046 2047 2048
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
2049
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
2050
                is_heter = 1
T
Thunderbrook 已提交
2051 2052
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
2053 2054 2055 2056
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
2057 2058 2059
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
2060
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
2061
        if is_heter:
meteor135's avatar
meteor135 已提交
2062
            ret = self.split_program_by_device(program)
D
dongdaxiang 已提交
2063
        if not compiled:
H
hutuxian 已提交
2064 2065 2066
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2067 2068
                    program._pipeline_opt
                )
2069 2070
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2071 2072
                    program._heter_pipeline_opt
                )
H
hutuxian 已提交
2073 2074
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
2075
                trainer._set_thread_barrier(program._is_distributed)
2076
            trainer._set_program(program)
T
Thunderbrook 已提交
2077 2078
            if is_heter:
                trainer._set_heter_info(ret)
2079
        else:
H
hutuxian 已提交
2080 2081
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2082 2083
                    program.program._pipeline_opt
                )
2084 2085
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2086 2087
                    program.program._heter_pipeline_opt
                )
H
hutuxian 已提交
2088 2089
            else:
                trainer = TrainerFactory()._create_trainer(
2090 2091
                    program.program._fleet_opt
                )
2092
            trainer._set_program(program.program)
H
hutuxian 已提交
2093

2094
        if thread <= 0:
T
Thunderbrook 已提交
2095 2096 2097
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
2098
                raise RuntimeError(
2099
                    "You should set thread num first, either in Dataset"
2100 2101
                    "or in Executor.train_from_dataset"
                )
D
dongdaxiang 已提交
2102
            else:
2103
                trainer._set_thread(dataset.thread_num)
2104
        else:
2105
            trainer._set_thread(thread)
H
hutuxian 已提交
2106

2107 2108
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
2109
        return scope, trainer
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
    def _run_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2124 2125
        if program._pipeline_opt is not None:
            import paddle
2126

2127 2128
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
2129
            # The following fake dataset is created to call
2130 2131 2132 2133 2134
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
2135 2136
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2137 2138
                    'InMemoryDataset'
                )
2139 2140
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2141 2142
                    'FileInstantDataset'
                )
2143 2144 2145 2146
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
2147 2148
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
2149
            # print("test_fl_stage_id: {}".format(stage_id))
2150
            heter_place = program._heter_pipeline_opt["heter_place"]
2151
            if stage_id != 0:
2152 2153
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
2154

2155 2156
                    if dataset is not None:
                        raise RuntimeError(
2157 2158
                            "dataset should be None for heter pipeline mode"
                        )
2159
                    # The following fake dataset is created to call
2160 2161 2162 2163 2164 2165
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
2166 2167
                        'InMemoryDataset'
                    )
2168 2169 2170 2171
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
2172 2173 2174
            else:
                if dataset is None:
                    raise RuntimeError(
2175 2176
                        "dataset is need and should be initialized"
                    )
2177 2178 2179 2180 2181
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
2182 2183 2184
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
2185 2186

        dataset._prepare_to_run()
2187 2188
        real_fetch_list = []
        if program._pipeline_opt:
2189
            real_program = program._pipeline_opt["section_program"]
2190 2191 2192 2193 2194 2195 2196 2197
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2198
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
2199 2200 2201 2202
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
2203 2204
                fetch_var_name='fetch',
            )
2205 2206 2207 2208 2209 2210 2211
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2212 2213
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2214
            fetch_list = None
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2225 2226 2227 2228

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2229
        if program._pipeline_opt is None:
2230 2231
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2232 2233 2234
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2235

T
tangwei12 已提交
2236
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2237

2238
        if program._heter_pipeline_opt is None:
2239 2240 2241 2242 2243
            trainer_instance = (
                self._default_executor.init_for_dataset(  # -->InitForDataset
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
            )
2244 2245
        else:
            # cache trainer instance for heterps pipeline training
2246
            if fetch_list is None:
2247 2248 2249 2250 2251
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
2252 2253 2254
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
                # print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2255 2256 2257
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2258

T
tangwei12 已提交
2259 2260 2261 2262 2263 2264
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2265 2266
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2267 2268
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2269 2270
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2271 2272

        dataset._dynamic_adjust_after_train()
2273
        dataset._finish_to_run()
2274 2275 2276 2277
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2278

2279 2280
        return None

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
    def _prepare_pipeline_ctx(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2314 2315
                    'InMemoryDataset'
                )
2316 2317
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2318 2319
                    'FileInstantDataset'
                )
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2340 2341 2342 2343 2344 2345 2346
            real_program = _add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch',
            )
2347 2348 2349 2350 2351 2352 2353
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2354 2355
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2356 2357 2358 2359 2360 2361 2362
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2373 2374 2375 2376 2377 2378 2379

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2380 2381 2382
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2383 2384 2385
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2386
        trainer_instance = self._default_executor.init_for_dataset(
2387 2388
            program.desc, trainer_desc, scope, dataset.dataset
        )
2389 2390

        ctx = [scope, real_fetch_list, trainer_instance]
2391 2392
        if use_program_cache:
            self._add_ctx_cache(cache_key, ctx)
2393

2394 2395
        return ctx

2396 2397 2398 2399 2400 2401
    def _prepare_fleet_executor_carrier(
        self,
        carrier_id="",
        program=None,
        scope=None,
        fleet_opt=None,
L
LiYuRio 已提交
2402
        micro_scope_list=[],
2403 2404 2405 2406 2407 2408 2409
        with_standalone_executor=False,
    ):
        num_micro_batches = (
            fleet_opt["num_micro_batches"]
            if "num_micro_batches" in fleet_opt
            else 1
        )
2410
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2411
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2412
        nrank = len(trainer_endpoints)
2413

2414 2415
        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, (
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. "
2416
            "Or you can provide a list of task nodes to init fleet executor directly."
2417
        )
2418
        if 'tasks' in fleet_opt:
2419 2420 2421 2422
            assert 'task_id_to_rank' in fleet_opt, (
                "If you provide tasks to init fleet executor,"
                " task_id_to_rank should also be provided."
            )
2423 2424 2425
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2426
        else:
2427 2428
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
2429 2430 2431 2432 2433 2434 2435 2436 2437
                from paddle.distributed.fleet.fleet_executor_utils import (
                    run1f1b,
                )

                if (
                    "dist_strategy" not in fleet_opt
                    or "pp_degree" not in fleet_opt["dist_strategy"]
                    or fleet_opt["dist_strategy"]["pp_degree"] == 1
                ):
2438 2439
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2440 2441 2442 2443 2444 2445 2446
                    program,
                    cur_rank,
                    fleet_opt.get('num_micro_batches', 1),
                    fleet_opt.get('dist_strategy', {}),
                    nrank,
                    with_standalone_executor,
                )
2447 2448
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
2449 2450 2451 2452 2453 2454 2455 2456

                if (
                    "dist_strategy" in fleet_opt
                    and "pp_degree" in fleet_opt["dist_strategy"]
                ):
                    assert (
                        fleet_opt["dist_strategy"]["pp_degree"] == 1
                    ), "For pipeline mode, the scheduler should be 1F1B instead of Origin."
2457
                if "num_micro_batches" in fleet_opt:
2458 2459 2460
                    assert (
                        fleet_opt["num_micro_batches"] == 1
                    ), "For origin scheduler mode, the num micro batches should be 1."
2461 2462
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
2463 2464 2465
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " "but received " + str(
                    scheduler
                ) + "."
2466 2467 2468
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2469 2470
        place = core.Place()
        place.set_place(self.place)
L
LiYuRio 已提交
2471

2472 2473 2474
        inference_root_scope_vars = (
            fleet_opt["fetch_var"] if "fetch_var" in fleet_opt else []
        )
2475 2476 2477 2478 2479 2480 2481 2482
        self._fleet_executor.init(
            carrier_id,
            program.desc,
            scope,
            place,
            num_micro_batches,
            tasks,
            task_id_to_rank,
2483
            inference_root_scope_vars,
L
LiYuRio 已提交
2484
            micro_scope_list,
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
        )

    def _run_using_fleet_executor(
        self,
        program=None,
        feed=None,
        feed_var_name="feed",
        fetch_var_name="fetch",
        fetch_list=None,
        with_standalone_executor=False,
    ):
2496 2497
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2498
        cached_scope = self._get_scope_cache(cache_key)
2499 2500 2501 2502
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2503 2504 2505
            assert (
                program._pipeline_opt
            ), "program should have _pipeline_opt to start carrier"
2506
            real_feed = [] if feed is None else feed
2507 2508 2509
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
2510 2511 2512 2513 2514 2515 2516
            cached_program = _add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
2517 2518 2519 2520 2521 2522 2523
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2524 2525
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2526
            self._add_program_cache(cache_key, cached_program)
2527
            fleet_opt = program._pipeline_opt["fleet_opt"]
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2539 2540 2541 2542 2543
                feed_program = self._add_feed_ops(
                    program=feed_program,
                    feed=real_feed,
                    feed_var_name=feed_var_name,
                )
2544 2545 2546 2547 2548 2549 2550 2551 2552
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
2553 2554
                    fetch_var_name=fetch_var_name,
                )
2555 2556 2557 2558 2559 2560 2561
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
2562 2563
                            core.op_proto_and_checker_maker.OpRole.Optimize,
                        )
2564 2565
                fetch_task.set_program(fetch_program)

L
LiYuRio 已提交
2566 2567 2568 2569 2570 2571 2572 2573
            micro_scope_list = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for i in range(int(fleet_opt["num_micro_batches"])):
                    micro_scope_list.append(cached_scope.new_scope())

2574 2575 2576 2577 2578
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
L
LiYuRio 已提交
2579
                micro_scope_list=micro_scope_list,
2580 2581
                with_standalone_executor=with_standalone_executor,
            )
2582

2583
        if feed:
2584 2585 2586
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2587
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2588 2589

        from paddle.optimizer.lr import LRScheduler
2590

2591 2592 2593 2594 2595 2596
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2597 2598 2599
            tensor = core.get_variable_tensor(
                cached_scope, lr_sheduler._var_name
            )
2600 2601
            tensor.set(data, self.place)

2602 2603
        self._fleet_executor.run(cache_key)

L
LiYuRio 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
        if "fetch_var" in fleet_opt:
            # If we speed up the generation in evaluation, we need to generate
            # multiple queries at the same time. Each query will in separate scope in order
            # not mix up. It indicate that final result will in multiple scopes and need to
            # fetch each.
            result_list = []
            for scope in micro_scope_list:
                for var in fleet_opt["fetch_var"]:
                    tensor = core.get_variable_tensor(scope, var)
                result_list.append(as_numpy(tensor))
            return result_list

2616 2617 2618 2619
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2620 2621
        return None

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
2633 2634
                persistable=True,
            )
2635 2636 2637 2638 2639 2640

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2641 2642 2643 2644 2645 2646
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i},
                    )
2647 2648 2649
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
2650 2651
                        % name
                    )
2652 2653 2654

        return tmp_program

2655
    @classmethod
2656 2657 2658
    def _add_fetch_ops(
        cls, program, fetch_list, fetch_var_name, use_fetch_v2=False
    ):
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
2669 2670
                persistable=True,
            )
2671 2672 2673 2674 2675 2676 2677

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
2678 2679 2680
        if not has_fetch_operators(
            global_block, fetch_list, fetch_var_name, fetch_op
        ):
2681 2682
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2683 2684 2685 2686 2687 2688 2689 2690
                    var, str
                ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
                global_block.append_op(
                    type=fetch_op,
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i},
                )
2691 2692 2693

        return tmp_program

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
    def _run_pipeline(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
        scope, real_fetch_list, trainer_instance = self._prepare_pipeline_ctx(
            program,
            dataset,
            scope,
            thread,
            is_infer,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
            use_program_cache,
        )
2732

2733
        from paddle.optimizer.lr import LRScheduler
2734

2735 2736 2737 2738 2739 2740 2741 2742 2743
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2744 2745
        self._default_executor.run_from_dataset(trainer_instance)

2746 2747 2748
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2749 2750 2751 2752 2753 2754 2755
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
    def infer_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2768
        """
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2780

2781 2782
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2783
                if not provided, then default_main_program (not compiled) will be used.
2784
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2785 2786
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2787
            scope(Scope): the scope used to run this program, you can switch it to different scope
2788 2789 2790
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2791
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2792
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2793
                training, default is None
2794
            fetch_info(String List): print information for each Tensor, default is None
2795
            print_period(int): the number of mini-batches for each print, default is 100
2796
            fetch_handler(FetchHandler): a user define class for fetch output.
2797

2798 2799 2800 2801
        Returns:
            None

        Examples:
2802 2803

            .. code-block:: python
2804

2805
                import paddle
2806

2807 2808 2809 2810 2811 2812
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2813
                dataset.set_use_var([x, y])
2814
                dataset.set_thread(1)
2815 2816
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2817
                dataset.set_filelist(filelist)
2818 2819 2820
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2821

2822
        """
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            True,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )

    def start_heter_trainer(
        self,
        program=None,
        scope=None,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
T
Thunderbrook 已提交
2856

2857
        trainer._set_infer(False)
T
Thunderbrook 已提交
2858 2859 2860 2861 2862
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
2863 2864
            program.desc, trainer._desc(), scope, None
        )
T
Thunderbrook 已提交
2865

2866
        # if fetch_handler is not None:
T
Thunderbrook 已提交
2867 2868 2869 2870 2871 2872
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
2873
        # else:
T
Thunderbrook 已提交
2874 2875

        self._default_executor.run_from_dataset(trainer_instance)
2876
        # self._default_executor.release_trainer(trainer_instance)
T
Thunderbrook 已提交
2877 2878 2879

        return trainer_instance

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
    def train_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2892 2893 2894 2895 2896 2897 2898 2899
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2900

2901 2902 2903 2904
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2905
                if not provided, then default_main_program (not compiled) will be used.
2906
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2907 2908
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2909
            scope(Scope): the scope used to run this program, you can switch it to different scope
2910 2911 2912
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2913
            debug(bool): whether a user wants to run train_from_dataset
2914
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2915
                during training
2916
            fetch_info(String List): print information for each Tensor, its length should be equal
2917 2918
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2919
            fetch_handler(FetchHandler): a user define class for fetch output.
2920 2921 2922

        Returns:
            None
2923

2924
        Examples:
2925

2926 2927
            .. code-block:: python

2928
              import paddle
2929

2930 2931 2932 2933 2934 2935
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2936
              dataset.set_use_var([x, y])
2937
              dataset.set_thread(1)
2938 2939
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2940
              dataset.set_filelist(filelist)
2941 2942
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2943
                                     dataset=dataset)
2944 2945

        """
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            False,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )