Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b8793f70
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b8793f70
编写于
12月 07, 2021
作者:
L
LiYuRio
提交者:
GitHub
12月 07, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Fleet Executor] Add feed, fetch and check correctness (#37824)
上级
70dea138
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
117 addition
and
82 deletion
+117
-82
paddle/fluid/distributed/fleet_executor/fleet_executor_desc.proto
...luid/distributed/fleet_executor/fleet_executor_desc.proto
+7
-8
paddle/fluid/distributed/fleet_executor/runtime_graph.cc
paddle/fluid/distributed/fleet_executor/runtime_graph.cc
+5
-8
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+64
-60
python/paddle/fluid/tests/unittests/test_fleet_executor.py
python/paddle/fluid/tests/unittests/test_fleet_executor.py
+39
-5
python/paddle/fluid/tests/unittests/test_fleet_executor_multi_devices.py
...luid/tests/unittests/test_fleet_executor_multi_devices.py
+2
-1
未找到文件。
paddle/fluid/distributed/fleet_executor/fleet_executor_desc.proto
浏览文件 @
b8793f70
...
...
@@ -21,12 +21,11 @@ message RankInfo {
}
message
FleetExecutorDesc
{
optional
string
strategy
=
1
[
default
=
"Origin"
];
optional
int64
cur_rank
=
2
[
default
=
0
];
// Rank id of current processor
repeated
RankInfo
cluster_info
=
3
;
optional
int32
dp_degree
=
4
[
default
=
1
];
optional
int32
mp_degree
=
5
[
default
=
1
];
optional
int32
pp_degree
=
6
[
default
=
1
];
optional
int64
num_micro_batches
=
7
[
default
=
1
];
optional
int64
num_slots
=
8
[
default
=
1
];
optional
int64
cur_rank
=
1
[
default
=
0
];
// Rank id of current processor
repeated
RankInfo
cluster_info
=
2
;
optional
int32
dp_degree
=
3
[
default
=
1
];
optional
int32
mp_degree
=
4
[
default
=
1
];
optional
int32
pp_degree
=
5
[
default
=
1
];
optional
int64
num_micro_batches
=
6
[
default
=
1
];
optional
int64
num_slots
=
7
[
default
=
1
];
}
paddle/fluid/distributed/fleet_executor/runtime_graph.cc
浏览文件 @
b8793f70
...
...
@@ -100,12 +100,7 @@ std::vector<OpRole> RuntimeGraph::functionality_order = {
RuntimeGraph
::
RuntimeGraph
(
const
ProgramDesc
&
program
,
const
FleetExecutorDesc
&
exe_desc
)
:
exe_desc_
(
exe_desc
)
{
if
(
exe_desc
.
strategy
()
==
"1F1B"
)
{
SplitProgramBasedFunctionality
(
program
);
AssignTaskToIntercepter
();
FakeDependence
();
FakeRuntimeInfo
();
}
else
if
(
exe_desc
.
strategy
()
==
"Origin"
)
{
if
(
exe_desc
.
pp_degree
()
==
1
)
{
int64_t
cur_rank
=
exe_desc_
.
cur_rank
();
int64_t
max_run_times
=
exe_desc_
.
num_micro_batches
();
int64_t
max_slot_nums
=
exe_desc_
.
num_slots
();
...
...
@@ -117,8 +112,10 @@ RuntimeGraph::RuntimeGraph(const ProgramDesc& program,
intercepter_id_to_rank_
.
insert
({
task_id
,
cur_rank
});
intercepter_id_to_node_
.
insert
({
task_id
,
task_nodes_
[
0
].
get
()});
}
else
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"Strategy %s is None of 1F1B or Origin."
,
exe_desc
.
strategy
()));
SplitProgramBasedFunctionality
(
program
);
AssignTaskToIntercepter
();
FakeDependence
();
FakeRuntimeInfo
();
}
}
...
...
python/paddle/fluid/executor.py
浏览文件 @
b8793f70
...
...
@@ -682,8 +682,6 @@ class Executor(object):
self
.
_enable_interpreter_core
=
_is_enable_standalone_executor
()
self
.
_executor_cache
=
_ExecutorCache
(
self
.
place
)
self
.
_fleet_executor_cache
=
None
def
_get_scope_cache
(
self
,
program_cache_key
):
return
self
.
scope_caches
.
get
(
program_cache_key
,
None
)
...
...
@@ -1274,9 +1272,7 @@ class Executor(object):
if
isinstance
(
program
,
Program
)
and
program
.
_pipeline_opt
:
if
"fleet_opt"
in
program
.
_pipeline_opt
:
return
self
.
_run_using_fleet_executor
(
program
,
fetch_list
=
fetch_list
,
use_program_cache
=
use_program_cache
)
program
=
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
if
"startup_program"
in
program
.
_pipeline_opt
:
program
=
program
.
_pipeline_opt
[
"startup_program"
]
else
:
...
...
@@ -1950,64 +1946,72 @@ class Executor(object):
return
ctx
def
_prepare_fleet_executor
(
self
,
program
=
None
,
scope
=
None
,
fleet_opt
=
None
):
from
..distributed.fleet.proto
import
fleet_executor_desc_pb2
from
google.protobuf
import
text_format
assert
program
,
"Program for fleet executor should not be None"
assert
fleet_opt
,
"Configurations for fleet executor should not be None"
trainer_endpoints_str
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
,
""
)
trainer_endpoints
=
trainer_endpoints_str
.
split
(
','
)
fleet_exe_desc
=
fleet_executor_desc_pb2
.
FleetExecutorDesc
()
fleet_exe_desc
.
cur_rank
=
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
0
)
nrank
=
len
(
trainer_endpoints
)
for
rank
,
endpoint
in
enumerate
(
trainer_endpoints
):
rank_info
=
fleet_executor_desc_pb2
.
RankInfo
()
rank_info
.
rank
=
rank
rank_info
.
ip_port
=
endpoint
fleet_exe_desc
.
cluster_info
.
append
(
rank_info
)
if
"dist_strategy"
in
fleet_opt
:
fleet_exe_desc
.
dp_degree
=
fleet_opt
[
"dist_strategy"
][
"dp_degree"
]
fleet_exe_desc
.
mp_degree
=
fleet_opt
[
"dist_strategy"
][
"mp_degree"
]
fleet_exe_desc
.
pp_degree
=
fleet_opt
[
"dist_strategy"
][
"pp_degree"
]
if
"num_micro_batches"
in
fleet_opt
:
fleet_exe_desc
.
num_micro_batches
=
fleet_opt
[
"num_micro_batches"
]
num_of_gpu
=
fleet_exe_desc
.
dp_degree
*
fleet_exe_desc
.
mp_degree
*
fleet_exe_desc
.
pp_degree
assert
nrank
==
num_of_gpu
,
"The number of rank is not equal to the number of gpu."
fleet_exe
=
core
.
FleetExecutor
(
fleet_exe_desc
.
SerializeToString
())
place
=
core
.
Place
()
place
.
set_place
(
self
.
place
)
fleet_exe
.
init
(
program
.
desc
,
scope
,
place
)
return
fleet_exe
def
_run_using_fleet_executor
(
self
,
program
=
None
,
dataset
=
None
,
scope
=
None
,
thread
=
0
,
is_infer
=
False
,
debug
=
False
,
fetch_list
=
None
,
fetch_info
=
None
,
print_period
=
100
,
fetch_handler
=
None
,
use_program_cache
=
False
):
if
self
.
_fleet_executor_cache
is
None
:
from
..distributed.fleet.proto
import
fleet_executor_desc_pb2
from
google.protobuf
import
text_format
cur_rank
=
os
.
getenv
(
"PADDLE_TRAINER_ID"
)
trainer_endpoints_str
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
fleet_exe_desc
=
fleet_executor_desc_pb2
.
FleetExecutorDesc
()
nrank
=
1
if
cur_rank
and
trainer_endpoints_str
:
fleet_exe_desc
.
cur_rank
=
int
(
cur_rank
)
trainer_endpoints
=
trainer_endpoints_str
.
split
(
','
)
for
rank
,
endpoint
in
enumerate
(
trainer_endpoints
):
rank_info
=
fleet_executor_desc_pb2
.
RankInfo
()
rank_info
.
rank
=
rank
rank_info
.
ip_port
=
endpoint
fleet_exe_desc
.
cluster_info
.
append
(
rank_info
)
nrank
=
len
(
trainer_endpoints
)
else
:
fleet_exe_desc
.
cur_rank
=
0
rank_info
=
fleet_executor_desc_pb2
.
RankInfo
()
rank_info
.
rank
=
0
rank_info
.
ip_port
=
''
fleet_exe_desc
.
cluster_info
.
append
(
rank_info
)
logging
.
warning
(
"Fleet Executor will run on single device only."
)
feed
=
None
,
feed_var_name
=
"feed"
,
fetch_var_name
=
"fetch"
,
fetch_list
=
None
):
cache_key
=
_get_strong_program_cache_key
(
program
,
feed
,
fetch_list
)
cached_ctx
=
self
.
_get_ctx_cache
(
cache_key
)
cached_scope
=
self
.
_get_scope_cache
(
cache_key
)
cached_program
=
self
.
_get_program_cache
(
cache_key
)
if
cached_scope
is
None
:
cached_scope
=
global_scope
()
self
.
_add_scope_cache
(
cache_key
,
cached_scope
)
if
cached_program
is
None
:
real_feed
=
[]
if
feed
is
None
else
feed
real_program
=
program
if
"section_program"
in
program
.
_pipeline_opt
:
real_program
=
program
.
_pipeline_opt
[
"section_program"
]
cached_program
=
self
.
_add_feed_fetch_ops
(
program
=
real_program
,
feed
=
real_feed
,
fetch_list
=
fetch_list
,
feed_var_name
=
feed_var_name
,
fetch_var_name
=
fetch_var_name
)
self
.
_add_program_cache
(
cache_key
,
cached_program
)
if
cached_ctx
is
None
:
fleet_opt
=
program
.
_pipeline_opt
[
"fleet_opt"
]
if
"dist_strategy"
in
fleet_opt
:
fleet_exe_desc
.
dp_degree
=
fleet_opt
[
"dist_strategy"
][
"dp_degree"
]
fleet_exe_desc
.
mp_degree
=
fleet_opt
[
"dist_strategy"
][
"mp_degree"
]
fleet_exe_desc
.
pp_degree
=
fleet_opt
[
"dist_strategy"
][
"pp_degree"
]
if
"num_micro_batches"
in
fleet_opt
:
fleet_exe_desc
.
num_micro_batches
=
fleet_opt
[
"num_micro_batches"
]
num_of_gpu
=
fleet_exe_desc
.
dp_degree
*
fleet_exe_desc
.
mp_degree
*
fleet_exe_desc
.
pp_degree
assert
nrank
==
num_of_gpu
,
"The number of rank is not equal to the number of gpu."
fleet_exe
=
core
.
FleetExecutor
(
fleet_exe_desc
.
SerializeToString
())
place
=
core
.
Place
()
place
.
set_place
(
self
.
place
)
if
scope
is
None
:
scope
=
global_scope
()
fleet_exe
.
init
(
program
.
_pipeline_opt
[
"section_program"
].
desc
,
scope
,
place
)
self
.
_fleet_executor_cache
=
fleet_exe
self
.
_fleet_executor_cache
.
run
()
cached_ctx
=
self
.
_prepare_fleet_executor
(
program
=
cached_program
,
scope
=
cached_scope
,
fleet_opt
=
fleet_opt
)
self
.
_add_ctx_cache
(
cache_key
,
cached_ctx
)
if
feed
:
self
.
_feed_data
(
cached_program
,
feed
,
feed_var_name
,
cached_scope
)
cached_ctx
.
run
()
if
fetch_list
:
arr
=
cached_scope
.
find_var
(
fetch_var_name
).
get_fetch_list
()
tensors
=
arr
.
_move_to_list
()
return
as_numpy
(
tensors
)
return
None
def
_run_pipeline
(
self
,
...
...
python/paddle/fluid/tests/unittests/test_fleet_executor.py
浏览文件 @
b8793f70
...
...
@@ -13,6 +13,7 @@
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -20,20 +21,53 @@ paddle.enable_static()
class
TestFleetExecutor
(
unittest
.
TestCase
):
def
run_fleet_executor
(
self
,
place
):
def
fake_fleet_opt
(
self
):
# TODO: Fake for coverage will be removed in the future
import
paddle.distributed.fleet
as
fleet
strategy
=
fleet
.
DistributedStrategy
()
strategy
.
sharding_configs
=
{
"dp_degree"
:
1
,
"mp_degree"
:
1
,
"pp_degree"
:
1
}
strategy
.
pipeline_configs
=
{
"accumulate_steps"
:
1
}
fleet_opt
=
{
"dist_strategy"
:
strategy
.
sharding_configs
,
"num_micro_batches"
:
strategy
.
pipeline_configs
[
"accumulate_steps"
]
}
return
fleet_opt
def
run_fleet_executor
(
self
,
place
,
x_data
,
y_data
):
exe
=
paddle
.
static
.
Executor
(
place
)
empty_program
=
paddle
.
static
.
Program
()
with
fluid
.
program_guard
(
empty_program
,
empty_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1
],
dtype
=
paddle
.
float32
)
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
x_data
.
shape
,
dtype
=
x_data
.
dtype
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
y_data
.
shape
,
dtype
=
y_data
.
dtype
)
z
=
x
+
y
a
=
2
*
x
+
3
*
y
# TODO: section_program will be removed in the future
empty_program
.
_pipeline_opt
=
{
"fleet_opt"
:
{}
,
"fleet_opt"
:
self
.
fake_fleet_opt
()
,
"section_program"
:
empty_program
}
exe
.
run
(
empty_program
,
feed
=
{
'x'
:
[
1
]})
res
=
exe
.
run
(
empty_program
,
feed
=
{
'x'
:
x_data
,
'y'
:
y_data
},
fetch_list
=
[
z
.
name
,
a
.
name
])
return
res
def
test_executor_on_single_device
(
self
):
if
fluid
.
is_compiled_with_cuda
():
self
.
run_fleet_executor
(
fluid
.
CUDAPlace
(
0
))
shape
=
(
10000
,
3462
)
x_data
=
np
.
random
.
rand
(
*
shape
)
y_data
=
np
.
random
.
rand
(
*
shape
)
z_data
=
x_data
+
y_data
a_data
=
2
*
x_data
+
3
*
y_data
res
=
self
.
run_fleet_executor
(
fluid
.
CUDAPlace
(
0
),
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
[
0
],
z_data
))
self
.
assertTrue
(
np
.
allclose
(
res
[
1
],
a_data
))
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_fleet_executor_multi_devices.py
浏览文件 @
b8793f70
...
...
@@ -49,7 +49,8 @@ class TestFleetExecutor(unittest.TestCase):
"num_micro_batches"
:
strategy
.
pipeline_configs
[
"accumulate_steps"
]
}
if
fluid
.
is_compiled_with_cuda
():
self
.
run_fleet_executor
(
fluid
.
CUDAPlace
(
0
),
fleet_opt
)
# TODO: Distribute test case is not supported for executor can not stop
pass
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录