Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0074a3c9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0074a3c9
编写于
12月 02, 2021
作者:
L
LiYuRio
提交者:
GitHub
12月 02, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Fleet Executor] Refine runtime graph (#37703)
上级
bfb85779
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
78 addition
and
80 deletion
+78
-80
paddle/fluid/distributed/fleet_executor/CMakeLists.txt
paddle/fluid/distributed/fleet_executor/CMakeLists.txt
+1
-1
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
+1
-5
paddle/fluid/distributed/fleet_executor/fleet_executor.h
paddle/fluid/distributed/fleet_executor/fleet_executor.h
+0
-1
paddle/fluid/distributed/fleet_executor/fleet_executor_desc.proto
...luid/distributed/fleet_executor/fleet_executor_desc.proto
+1
-1
paddle/fluid/distributed/fleet_executor/interceptor.cc
paddle/fluid/distributed/fleet_executor/interceptor.cc
+3
-28
paddle/fluid/distributed/fleet_executor/runtime_graph.cc
paddle/fluid/distributed/fleet_executor/runtime_graph.cc
+15
-1
paddle/fluid/distributed/fleet_executor/task_node.cc
paddle/fluid/distributed/fleet_executor/task_node.cc
+7
-0
paddle/fluid/distributed/fleet_executor/task_node.h
paddle/fluid/distributed/fleet_executor/task_node.h
+2
-0
paddle/fluid/pybind/bind_fleet_executor.cc
paddle/fluid/pybind/bind_fleet_executor.cc
+2
-2
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+46
-41
未找到文件。
paddle/fluid/distributed/fleet_executor/CMakeLists.txt
浏览文件 @
0074a3c9
...
...
@@ -12,7 +12,7 @@ endif()
cc_library
(
fleet_executor SRCS fleet_executor.cc carrier.cc task_node.cc runtime_graph.cc
interceptor.cc compute_interceptor.cc amplifier_interceptor.cc interceptor_message_service.cc message_bus.cc
DEPS proto_desc fleet_executor_desc_proto interceptor_message_proto collective_helper
DEPS proto_desc fleet_executor_desc_proto interceptor_message_proto collective_helper
op_registry
${
BRPC_DEPS
}
)
if
(
WITH_DISTRIBUTE
)
...
...
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
浏览文件 @
0074a3c9
...
...
@@ -31,9 +31,7 @@ FleetExecutor::FleetExecutor(const std::string& exe_desc_str) {
"Error occurs while parsing string to proto"
));
}
FleetExecutor
::~
FleetExecutor
()
{
// Destroy Executor
}
FleetExecutor
::~
FleetExecutor
()
{
root_scope_
->
DropKids
();
}
void
FleetExecutor
::
Init
(
const
framework
::
ProgramDesc
&
program_desc
,
framework
::
Scope
*
scope
,
...
...
@@ -113,8 +111,6 @@ void FleetExecutor::Run() {
carrier_instance
.
Start
();
}
void
FleetExecutor
::
Release
()
{
root_scope_
->
DropKids
();
}
void
FleetExecutor
::
CopyParameters
(
int
microbatch_id
,
const
framework
::
ProgramDesc
&
program
)
{
auto
&
global_block
=
program
.
Block
(
0
);
...
...
paddle/fluid/distributed/fleet_executor/fleet_executor.h
浏览文件 @
0074a3c9
...
...
@@ -39,7 +39,6 @@ class FleetExecutor final {
void
Init
(
const
framework
::
ProgramDesc
&
program_desc
,
framework
::
Scope
*
scope
,
const
platform
::
Place
&
place
);
void
Run
();
void
Release
();
private:
DISABLE_COPY_AND_ASSIGN
(
FleetExecutor
);
...
...
paddle/fluid/distributed/fleet_executor/fleet_executor_desc.proto
浏览文件 @
0074a3c9
...
...
@@ -21,7 +21,7 @@ message RankInfo {
}
message
FleetExecutorDesc
{
optional
string
grain
=
1
[
default
=
"coarse
"
];
optional
string
strategy
=
1
[
default
=
"Origin
"
];
optional
int64
cur_rank
=
2
[
default
=
0
];
// Rank id of current processor
repeated
RankInfo
cluster_info
=
3
;
optional
int32
dp_degree
=
4
[
default
=
1
];
...
...
paddle/fluid/distributed/fleet_executor/interceptor.cc
浏览文件 @
0074a3c9
...
...
@@ -40,34 +40,9 @@ void Interceptor::Join() {
void
Interceptor
::
RegisterMsgHandle
(
MsgHandle
handle
)
{
handle_
=
handle
;
}
void
Interceptor
::
Handle
(
const
InterceptorMessage
&
msg
)
{
if
(
handle_
)
{
handle_
(
msg
);
}
else
{
VLOG
(
3
)
<<
"Interceptor is using default message handler. This handler is "
"only used for test purpose. Check whether you init interceptor "
"in the proper way."
;
if
(
msg
.
message_type
()
==
DATA_IS_READY
)
{
if
(
node_
->
role
()
!=
2
)
{
VLOG
(
3
)
<<
"Fake handler is sending DATA_IS_READY message to: "
<<
interceptor_id_
+
1
<<
"."
;
InterceptorMessage
data_is_ready_msg
;
data_is_ready_msg
.
set_message_type
(
DATA_IS_READY
);
Send
(
interceptor_id_
+
1
,
data_is_ready_msg
);
}
else
{
// NOTE: max run time is reach for last interceptor
StopCarrier
();
}
}
else
if
(
msg
.
message_type
()
==
STOP
)
{
stop_
=
true
;
if
(
node_
->
role
()
!=
2
)
{
VLOG
(
3
)
<<
"Fake handler is sending STOP message to: "
<<
interceptor_id_
+
1
<<
"."
;
InterceptorMessage
stop_msg
;
stop_msg
.
set_message_type
(
STOP
);
Send
(
interceptor_id_
+
1
,
stop_msg
);
}
}
}
PADDLE_ENFORCE_NOT_NULL
(
handle_
,
platform
::
errors
::
PreconditionNotMet
(
"Message handle is not registered."
));
handle_
(
msg
);
}
void
Interceptor
::
StopCarrier
()
{
...
...
paddle/fluid/distributed/fleet_executor/runtime_graph.cc
浏览文件 @
0074a3c9
...
...
@@ -100,11 +100,25 @@ std::vector<OpRole> RuntimeGraph::functionality_order = {
RuntimeGraph
::
RuntimeGraph
(
const
ProgramDesc
&
program
,
const
FleetExecutorDesc
&
exe_desc
)
:
exe_desc_
(
exe_desc
)
{
if
(
exe_desc
.
grain
()
==
"coarse
"
)
{
if
(
exe_desc
.
strategy
()
==
"1F1B
"
)
{
SplitProgramBasedFunctionality
(
program
);
AssignTaskToIntercepter
();
FakeDependence
();
FakeRuntimeInfo
();
}
else
if
(
exe_desc
.
strategy
()
==
"Origin"
)
{
int64_t
cur_rank
=
exe_desc_
.
cur_rank
();
int64_t
max_run_times
=
exe_desc_
.
num_micro_batches
();
int64_t
max_slot_nums
=
exe_desc_
.
num_slots
();
auto
task_node
=
std
::
make_unique
<
TaskNode
>
(
program
,
cur_rank
,
max_run_times
,
max_slot_nums
);
task_node
->
SetType
(
"Compute"
);
task_nodes_
.
emplace_back
(
std
::
move
(
task_node
));
int64_t
task_id
=
task_nodes_
[
0
]
->
task_id
();
intercepter_id_to_rank_
.
insert
({
task_id
,
cur_rank
});
intercepter_id_to_node_
.
insert
({
task_id
,
task_nodes_
[
0
].
get
()});
}
else
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"Strategy %s is None of 1F1B or Origin."
,
exe_desc
.
strategy
()));
}
}
...
...
paddle/fluid/distributed/fleet_executor/task_node.cc
浏览文件 @
0074a3c9
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
...
...
@@ -30,6 +31,12 @@ TaskNode::TaskNode(const framework::ProgramDesc& program, int64_t rank,
// Should be serially invoked, not thread-safe
static
int64_t
task_node_cnt
=
0
;
task_id_
=
task_node_cnt
++
;
for
(
const
auto
&
op_desc
:
program
.
Block
(
0
).
AllOps
())
{
ops_vec_
.
emplace_back
(
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
));
}
for
(
const
auto
&
op
:
ops_vec_
)
{
ops_
.
emplace_back
(
op
.
get
());
}
}
TaskNode
::
TaskNode
(
int32_t
role
,
const
std
::
vector
<
OperatorBase
*>&
ops
,
...
...
paddle/fluid/distributed/fleet_executor/task_node.h
浏览文件 @
0074a3c9
...
...
@@ -76,10 +76,12 @@ class TaskNode final {
private:
DISABLE_COPY_AND_ASSIGN
(
TaskNode
);
TaskNode
()
=
default
;
// ops_ will be removed in the future
std
::
vector
<
OperatorBase
*>
ops_
;
std
::
unordered_set
<
int64_t
>
upstream_
;
std
::
unordered_set
<
int64_t
>
downstream_
;
framework
::
ProgramDesc
program_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_vec_
;
int32_t
role_
;
int64_t
rank_
;
int64_t
task_id_
;
...
...
paddle/fluid/pybind/bind_fleet_executor.cc
浏览文件 @
0074a3c9
...
...
@@ -16,6 +16,7 @@
#include <pybind11/stl.h>
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/place.h"
...
...
@@ -32,8 +33,7 @@ void BindFleetExecutor(py::module* m) {
py
::
class_
<
FleetExecutor
>
(
*
m
,
"FleetExecutor"
)
.
def
(
py
::
init
<
const
std
::
string
&>
())
.
def
(
"init"
,
&
FleetExecutor
::
Init
)
.
def
(
"run"
,
&
FleetExecutor
::
Run
)
.
def
(
"release"
,
&
FleetExecutor
::
Release
);
.
def
(
"run"
,
&
FleetExecutor
::
Run
);
py
::
class_
<
TaskNode
>
(
*
m
,
"TaskNode"
)
.
def
(
py
::
init
<
const
framework
::
ProgramDesc
&
,
int64_t
,
int64_t
,
int64_t
>
())
...
...
python/paddle/fluid/executor.py
浏览文件 @
0074a3c9
...
...
@@ -682,6 +682,8 @@ class Executor(object):
self
.
_enable_interpreter_core
=
_is_enable_standalone_executor
()
self
.
_executor_cache
=
_ExecutorCache
(
self
.
place
)
self
.
_fleet_executor_cache
=
None
def
_get_scope_cache
(
self
,
program_cache_key
):
return
self
.
scope_caches
.
get
(
program_cache_key
,
None
)
...
...
@@ -1960,49 +1962,52 @@ class Executor(object):
print_period
=
100
,
fetch_handler
=
None
,
use_program_cache
=
False
):
scope
,
real_fetch_list
,
trainer_instance
=
\
self
.
_prepare_pipeline_ctx
(
program
,
dataset
,
scope
,
thread
,
is_infer
,
debug
,
fetch_list
,
fetch_info
,
print_period
,
fetch_handler
,
use_program_cache
)
from
..distributed.fleet.proto
import
fleet_executor_desc_pb2
from
google.protobuf
import
text_format
cur_rank
=
os
.
getenv
(
"PADDLE_TRAINER_ID"
)
trainer_endpoints_str
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
fleet_exe_desc
=
fleet_executor_desc_pb2
.
FleetExecutorDesc
()
nrank
=
1
if
cur_rank
and
trainer_endpoints_str
:
fleet_exe_desc
.
cur_rank
=
int
(
cur_rank
)
trainer_endpoints
=
trainer_endpoints_str
.
split
(
','
)
for
rank
,
endpoint
in
enumerate
(
trainer_endpoints
):
if
self
.
_fleet_executor_cache
is
None
:
from
..distributed.fleet.proto
import
fleet_executor_desc_pb2
from
google.protobuf
import
text_format
cur_rank
=
os
.
getenv
(
"PADDLE_TRAINER_ID"
)
trainer_endpoints_str
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
fleet_exe_desc
=
fleet_executor_desc_pb2
.
FleetExecutorDesc
()
nrank
=
1
if
cur_rank
and
trainer_endpoints_str
:
fleet_exe_desc
.
cur_rank
=
int
(
cur_rank
)
trainer_endpoints
=
trainer_endpoints_str
.
split
(
','
)
for
rank
,
endpoint
in
enumerate
(
trainer_endpoints
):
rank_info
=
fleet_executor_desc_pb2
.
RankInfo
()
rank_info
.
rank
=
rank
rank_info
.
ip_port
=
endpoint
fleet_exe_desc
.
cluster_info
.
append
(
rank_info
)
nrank
=
len
(
trainer_endpoints
)
else
:
fleet_exe_desc
.
cur_rank
=
0
rank_info
=
fleet_executor_desc_pb2
.
RankInfo
()
rank_info
.
rank
=
rank
rank_info
.
ip_port
=
endpoint
rank_info
.
rank
=
0
rank_info
.
ip_port
=
''
fleet_exe_desc
.
cluster_info
.
append
(
rank_info
)
nrank
=
len
(
trainer_endpoints
)
else
:
fleet_
exe_desc
.
cur_rank
=
0
rank_info
=
fleet_executor_desc_pb2
.
RankInfo
()
rank_info
.
rank
=
0
rank_info
.
ip_port
=
''
fleet_exe_desc
.
cluster_info
.
append
(
rank_info
)
logging
.
warning
(
"Fleet Executor will run on single device only."
)
fleet_opt
=
program
.
_pipeline_opt
[
"fleet_opt"
]
if
"dist_strategy"
in
fleet_opt
:
fleet_exe_desc
.
dp_degree
=
fleet_opt
[
"dist_strategy"
][
"dp_degree"
]
fleet_exe_desc
.
mp_degree
=
fleet_opt
[
"dist_strategy"
][
"mp_degree"
]
fleet_exe_desc
.
pp_degree
=
fleet_opt
[
"dist_strategy"
][
"pp_degree
"
]
if
"num_micro_batches"
in
fleet_opt
:
fleet_exe_desc
.
num_micro_batches
=
fleet_opt
[
"num_micro_batches"
]
num_of_gpu
=
fleet_exe_desc
.
dp_degree
*
fleet_exe_desc
.
mp_degree
*
fleet_exe_desc
.
pp_degree
assert
nrank
==
num_of_gpu
,
"The number of rank is not equal to the number of gpu."
fleet_exe
=
core
.
FleetExecutor
(
fleet_exe_desc
.
SerializeToString
()
)
place
=
core
.
Place
()
place
.
set_place
(
self
.
place
)
fleet_exe
.
init
(
program
.
_pipeline_opt
[
"section_program"
].
desc
,
scope
,
place
)
fleet_exe
.
run
()
fleet_exe
.
release
()
logging
.
warning
(
"Fleet Executor will run on single device only."
)
fleet_
opt
=
program
.
_pipeline_opt
[
"fleet_opt"
]
if
"dist_strategy"
in
fleet_opt
:
fleet_exe_desc
.
dp_degree
=
fleet_opt
[
"dist_strategy"
][
"dp_degree"
]
fleet_exe_desc
.
mp_degree
=
fleet_opt
[
"dist_strategy"
][
"mp_degree"
]
fleet_exe_desc
.
pp_degree
=
fleet_opt
[
"dist_strategy"
][
"pp_degree"
]
if
"num_micro_batches"
in
fleet_opt
:
fleet_exe_desc
.
num_micro_batches
=
fleet_opt
[
"num_micro_batches
"
]
num_of_gpu
=
fleet_exe_desc
.
dp_degree
*
fleet_exe_desc
.
mp_degree
*
fleet_exe_desc
.
pp_degree
assert
nrank
==
num_of_gpu
,
"The number of rank is not equal to the number of gpu."
fleet_exe
=
core
.
FleetExecutor
(
fleet_exe_desc
.
SerializeToString
())
place
=
core
.
Place
()
place
.
set_place
(
self
.
place
)
if
scope
is
None
:
scope
=
global_scope
(
)
fleet_exe
.
init
(
program
.
_pipeline_opt
[
"section_program"
].
desc
,
scope
,
place
)
self
.
_fleet_executor_cache
=
fleet_exe
self
.
_fleet_executor_cache
.
run
()
return
None
def
_run_pipeline
(
self
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录