executor.py 115.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeng Jinle 已提交
15
import logging
16 17
import os
import multiprocessing
C
chengduo 已提交
18
import sys
19
import warnings
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
from .data_feeder import convert_dtype
23
from .framework import Program, default_main_program, Variable, Operator
24
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
25

26
from . import core
27
from . import unique_name
28
from . import compiler
29
from . import set_flags
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33
from . import framework
34
from .incubate.checkpoint import auto_checkpoint as acp
35
from .compiler import _prune_feed_ops
36

R
Ruibiao Chen 已提交
37 38
from functools import lru_cache

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78

79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96

97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
147 148
        raise RuntimeError(
            "Some of your fetched tensors hold LoD information. \
149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
151 152
            return LoDTensor itself directly."
        )
Q
qingqing01 已提交
153
    if tensor._is_initialized():
154 155 156 157
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
158 159
    else:
        return None
D
dzhwinter 已提交
160 161


H
Huihuang Zheng 已提交
162 163 164 165
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
166

H
Huihuang Zheng 已提交
167 168
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
169

H
Huihuang Zheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
186 187
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


215
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
216 217
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
218
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
219 220 221

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
222 223
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
224
       is compatible with any number.
225

H
Huihuang Zheng 已提交
226 227
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
228
        feed (LoDTensor): the fed value, which must be a LoDTensor
229 230
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
231 232 233 234 235 236 237
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
238 239
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
240
            raise ValueError(
T
tianshuo78520a 已提交
241
                'The fed Variable %r should have dimensions = %d, shape = '
242 243 244
                '%r, but received fed shape %r on each device'
                % (var.name, len(var.shape), var.shape, diff_shape)
            )
H
Huihuang Zheng 已提交
245
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
246 247 248 249 250 251 252 253 254 255
            var_dtype_format = (
                convert_dtype(var.dtype)
                if isinstance(var.dtype, core.VarDesc.VarType)
                else var.dtype
            )
            feed_dtype_format = (
                convert_dtype(feed._dtype())
                if isinstance(feed._dtype(), core.VarDesc.VarType)
                else feed._dtype()
            )
256
            raise ValueError(
257 258 259
                'The data type of fed Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format)
            )
H
Huihuang Zheng 已提交
260 261 262
    return True


263
def has_feed_operators(block, feed_targets, feed_holder_name):
264
    """Check whether the block already has feed operators.
265 266 267 268 269 270 271 272 273 274

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
275 276
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
277 278 279
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
280
        A boolean value that indicates whether a block has feed operators
281 282 283 284 285 286 287 288 289 290
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
291 292
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
293 294 295
                        feed_target_name
                    )
                )
296 297 298 299
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
300 301
            "Feed operators in program desc do not match 'feed_targets'"
        )
302 303 304
    return feed_count > 0


305 306 307 308
def has_fetch_operators(
    block, fetch_targets, fetch_holder_name, fetch_op='fetch'
):
    """Check whether the block already has fetch operators.
X
xuwei06 已提交
309

310 311 312 313 314 315 316 317 318
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
319 320 321
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
322
        fetch_op: the operator name of fetch
323

X
xuwei06 已提交
324 325 326
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
327 328 329 330
    """

    fetch_count = 0
    for op in block.ops:
331
        if op.desc.type() == fetch_op:
332 333 334 335
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
336
                var.desc.name() for var in fetch_targets
337
            ]:
338 339
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
340 341 342
                        fetch_target_name
                    )
                )
343 344 345 346
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
347 348
            "Fetch operators in program desc do not match 'fetch_targets'"
        )
349 350 351
    return fetch_count > 0


352 353 354
def _add_feed_fetch_ops(
    program, feed, fetch_list, feed_var_name, fetch_var_name, use_fetch_v2=False
):
R
Ruibiao Chen 已提交
355 356 357 358 359 360 361 362 363 364
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
365 366
            persistable=True,
        )
R
Ruibiao Chen 已提交
367 368 369 370 371 372 373

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
374 375
            persistable=True,
        )
R
Ruibiao Chen 已提交
376 377 378 379 380 381

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
382 383 384 385 386 387
                global_block._prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i},
                )
R
Ruibiao Chen 已提交
388 389 390
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
391 392
                    % name
                )
R
Ruibiao Chen 已提交
393 394 395 396 397 398 399

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
400 401 402
    if not has_fetch_operators(
        global_block, fetch_list, fetch_var_name, fetch_op
    ):
R
Ruibiao Chen 已提交
403 404
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
405 406 407 408 409 410 411 412
                var, str
            ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
            global_block.append_op(
                type=fetch_op,
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i},
            )
R
Ruibiao Chen 已提交
413 414 415 416

    return tmp_program


417 418 419
def _apply_inplace_addto_pass(
    program, enable_inplace, enable_addto, skip_var_names
):
R
Ruibiao Chen 已提交
420 421 422 423 424 425 426 427
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
428 429 430
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
431 432
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
433 434 435
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
436 437


W
Wu Yi 已提交
438
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
439
    """
C
chengduoZH 已提交
440 441 442
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
443
    Args:
444 445 446 447
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
448 449 450 451
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
452 453 454
    Returns:
       LodTensor|numpy.ndarray
    """
455
    assert isinstance(name, str)
X
xuwei06 已提交
456 457
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
458
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
459

460
    var = scope.find_var(_to_name_str(name))
461 462 463
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
464 465
        " program."
    )
X
xuwei06 已提交
466 467
    tensor = var.get_tensor()
    if return_numpy:
468
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
469 470 471
    return tensor


X
polish  
Xin Pan 已提交
472
def _to_name_str(var):
473 474 475 476 477
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
478
        elif isinstance(var, str):
479 480
            return str(var)
        elif isinstance(var, Operator):
481
            return str(id(var))
482 483 484 485 486 487 488 489 490 491
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
492
    else:
493
        return _to_str(var)
Q
qiaolongfei 已提交
494 495


496
def _is_enable_standalone_executor():
497 498 499 500 501
    return (
        framework._enable_standalone_executor_ is None
        or framework._enable_standalone_executor_
        in [1, '1', True, 'True', 'true']
    )
502 503


504 505
def _is_dy2st_enable_standalone_executor():
    return framework._dy2st_enable_standalone_executor_ in [
506 507 508 509 510
        1,
        '1',
        True,
        'True',
        'true',
511 512 513
    ]


514 515 516 517 518 519 520 521 522 523
def _is_cuda_graph_enable_standalone_executor():
    return framework._cuda_graph_enable_standalone_executor_ in [
        1,
        '1',
        True,
        'True',
        'true',
    ]


524 525
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


L
Leo Chen 已提交
542 543
def _get_strong_program_cache_key_for_new_exe(program, feed, fetch_list):
    return program.desc.cached_hash_str() + _get_program_cache_key(
544 545
        feed, fetch_list
    )
L
Leo Chen 已提交
546 547


548
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
549
    # TODO(zhiqiu): use hash_str to generate cache key as above
550 551 552 553 554 555
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

556 557 558 559 560 561 562 563 564 565
    inner_program = (
        program._program
        if isinstance(program, compiler.CompiledProgram)
        else program
    )
    return (
        _get_varname_from_block(inner_program.blocks[0])
        + str(id(program))
        + _get_program_cache_key(feed, fetch_list)
    )
566 567


X
polish  
Xin Pan 已提交
568
def _get_program_cache_key(feed, fetch_list):
569 570 571 572 573 574
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
575
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
576 577 578
    return str(feed_var_names + fetch_var_names)


579
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
580
    """
581 582
    Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
W
Wu Yi 已提交
583

584 585 586 587 588 589 590
    Examples:
        >>> import paddle.fluid as fluid
        >>> place = fluid.CPUPlace()
        >>> exe = fluid.executor(place)
        >>> data = np.array(size=(100, 200, 300))
        >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
        >>>     ...
W
Wu Yi 已提交
591

592 593 594 595
    Args:
        data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
        data(core.Place): the place of created tensor
        dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
596

597 598 599 600
    Returns:
        LoDTensor
    """
    # NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
601
    if not isinstance(data, np.ndarray):
602 603 604 605 606 607 608 609
        assert (
            dtype is not None
        ), 'The dtype should be given when feed data is not np.ndarray'
        dtype = (
            convert_dtype(dtype)
            if isinstance(dtype, core.VarDesc.VarType)
            else dtype
        )
610 611
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
612 613
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
614
            if data.dtype == np.object_:
615 616 617 618 619 620 621 622 623
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
624 625 626
                    type(data)
                )
            )
627

628
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
629 630 631 632 633
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


634
class FetchHandler:
D
Dong Daxiang 已提交
635
    def __init__(self, var_dict=None, period_secs=60):
636
        assert var_dict is not None
D
Dong Daxiang 已提交
637
        self.var_dict = var_dict
638 639
        self.period_secs = period_secs

D
Dong Daxiang 已提交
640 641 642 643 644
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
645 646 647

    @staticmethod
    def help():
648 649
        print(
            """
D
Dong Daxiang 已提交
650 651 652 653 654 655 656 657
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
658 659
"""
        )
660 661


662
class _StandaloneExecutor:
663
    def __init__(self, place, main_program, scope):
664 665 666
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
667
        self._scope = scope
668 669
        self._new_exe = self._create_new_executor()

670
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
671 672
        """
        Args:
673
            feed_names(list): This parameter represents the input names of the model.
674
            fetch_list(list): This parameter represents the Tensors that need to be returned
675
                after the model runs. The default is None.
676 677 678 679 680 681
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

682 683 684
        tensors = self._new_exe.run(
            scope, feed_names, fetch_list
        )._move_to_list()
685 686 687 688 689 690
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
L
Leo Chen 已提交
691
        new_exe = core.StandaloneExecutor(self._place, self._main_program.desc)
692 693 694 695 696

        return new_exe

    def _update_feed(self, feed):
        """
697
        Update the feed dict, remove the feed item which is pruned in program.
698 699

        Notes: This is a very low level API. Users should not use this API
700
        directly.
701 702 703 704 705 706 707 708 709

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
710 711 712 713 714 715
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
716 717 718
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
719 720 721 722 723 724 725

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
726 727
                    % feed_name
                )
728 729 730 731 732 733 734 735 736 737 738 739 740

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
741 742 743 744
                    "Required fetch_var shall be str|Variable, but received {}".format(
                        type(fetch_var).__name__
                    )
                )
745 746 747 748 749

            res.append(fetch_var)
        return res


750 751
class _ExecutorCache:
    class _CachedData:
752 753 754 755 756 757 758 759 760 761
        def __init__(
            self,
            program,
            feed,
            fetch_list,
            feed_var_name,
            fetch_var_name,
            place,
            scope,
        ):
R
Ruibiao Chen 已提交
762 763 764 765 766 767 768 769 770 771 772
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
773 774 775 776
                if not self.program._program:
                    # The program holds no _program, maybe it is constructed by graph.
                    # Convert graph to program in order to generate key.
                    self.program._program = framework.IrGraph(
777 778
                        self.program._graph
                    ).to_program()
R
Ruibiao Chen 已提交
779 780
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
781 782 783
                        self.program._program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
784 785 786
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
787 788 789
                        self.program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
790 791

        def __eq__(self, other):
792 793 794 795
            return (
                isinstance(other, _ExecutorCache._CachedData)
                and self.key == other.key
            )
R
Ruibiao Chen 已提交
796 797 798 799 800 801 802 803 804

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
805 806
            self._get_program_and_executor
        )
R
Ruibiao Chen 已提交
807 808 809 810

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

811 812 813 814 815 816 817 818 819 820
    def get_program_and_executor(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        place,
        scope,
    ):
R
Ruibiao Chen 已提交
821
        return self._get_cached_program_and_executor(
822 823 824 825 826 827 828 829 830 831
            self._CachedData(
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                place,
                scope,
            )
        )
R
Ruibiao Chen 已提交
832 833 834

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
835 836 837 838 839
        inner_program = (
            program._program
            if isinstance(program, compiler.CompiledProgram)
            else program
        )
R
Ruibiao Chen 已提交
840 841 842 843 844 845 846 847 848
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
849 850 851 852 853 854 855
            program._graph, compiler.CompiledProgram
        ):
            compiled_program = (
                program
                if isinstance(program, compiler.CompiledProgram)
                else program._graph
            )
R
Ruibiao Chen 已提交
856 857
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
858 859 860 861 862 863 864 865 866 867
            use_cuda_graph = False
            # When using cuda graph, the cuda graph preparation logic in PE is not
            # executed, but it is processed in the constructor of new executor.
            if (
                build_strategy is not None
                and build_strategy.allow_cuda_graph_capture
            ):
                use_cuda_graph = True
                build_strategy.allow_cuda_graph_capture = False
                set_flags({"FLAGS_new_executor_use_cuda_graph": True})
R
Ruibiao Chen 已提交
868
            compiled_program._compile(scope, place)
869 870
            if use_cuda_graph:
                build_strategy.allow_cuda_graph_capture = True
R
Ruibiao Chen 已提交
871 872 873 874 875 876 877 878 879 880 881
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

            if hasattr(inner_program, 'lr_sheduler'):
                converted_program.lr_sheduler = inner_program.lr_sheduler

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
882

R
Ruibiao Chen 已提交
883 884 885 886 887
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

888 889 890 891 892 893 894 895
        program = _add_feed_fetch_ops(
            program=inner_program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            use_fetch_v2=True,
        )
R
Ruibiao Chen 已提交
896 897 898

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
899 900 901 902 903 904 905 906 907 908
        enable_inplace = (
            True
            if build_strategy is None or build_strategy.enable_inplace
            else False
        )
        enable_addto = (
            True
            if build_strategy is not None and build_strategy.enable_addto
            else False
        )
R
Ruibiao Chen 已提交
909 910 911
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
912 913 914
            _apply_inplace_addto_pass(
                program, enable_inplace, enable_addto, skip_var_names
            )
R
Ruibiao Chen 已提交
915 916 917 918

        new_program = program.clone()
        new_exe = _StandaloneExecutor(place, new_program, scope)
        return new_program, new_exe
919 920


921
class Executor:
922
    """
923 924
    :api_attr: Static Graph

925
    An Executor in Python, supports single/multiple-GPU running,
926
    and single/multiple-CPU running.
C
chengduo 已提交
927 928

    Args:
929
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
930 931 932 933
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
934
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x``
935 936
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
937
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_
C
chengduo 已提交
938 939 940

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
941

942
    Examples:
S
Fix doc  
sneaxiy 已提交
943 944
        .. code-block:: python

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            compiled_prog = paddle.static.CompiledProgram(
979
                train_program)
980 981
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

982 983
    """

984 985
    def __init__(self, place=None):
        if place is None:
986 987
            expected_place = framework._current_expected_place()
            self.place = expected_place
988
        else:
989
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
990
        self.program_caches = dict()
991
        self.ctx_caches = dict()
992
        self.trainer_caches = dict()
993 994
        self.scope_caches = dict()
        self.var_caches = dict()
995
        self.pruned_program_caches = dict()
996 997 998
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
999
        self._closed = False
1000
        self.pruned_program_scope_caches = dict()
1001
        self._prepare_to_run_called = False
D
dzhwinter 已提交
1002

1003
        self._auto_checkpoint_name = unique_name.generate(
1004 1005
            "__auto_checkpoint_executor__"
        )
1006

1007 1008
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
R
Ruibiao Chen 已提交
1009
        self._executor_cache = _ExecutorCache()
1010

1011
        self._fleet_executor = None
1012 1013 1014
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
1015

meteor135's avatar
meteor135 已提交
1016 1017 1018 1019 1020 1021 1022
        self.op_role_key = core.op_proto_and_checker_maker.kOpRoleAttrName()

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and int(
            op.all_attrs()[self.op_role_key]
        ) & int(core.op_proto_and_checker_maker.OpRole.Optimize)

R
Ruibiao Chen 已提交
1023 1024 1025 1026 1027 1028
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

1029 1030 1031
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

1032 1033 1034
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

1035 1036 1037
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
1038 1039 1040 1041 1042 1043
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

1056 1057 1058
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

1059 1060 1061
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

1062 1063 1064
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

1065 1066 1067 1068 1069 1070 1071
    # just for testing, will be removed later
    @lru_cache()
    def _log_force_set_program_cache(self, use_program_cache):
        logging.warning(
            f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE"
        )

Q
Qiao Longfei 已提交
1072 1073
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
1074 1075
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
1076 1077 1078
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
1079
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
1080 1081
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
1082 1083 1084
                        cur_feed = _as_lodtensor(
                            cur_feed, self.place, var.dtype
                        )
S
Steffy-zxf 已提交
1085
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
1086 1087 1088 1089 1090 1091 1092 1093
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
1094
            for i in range(len(fetch_list))
Q
Qiao Longfei 已提交
1095 1096 1097
        ]
        return outs

1098 1099
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
1111
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
1122 1123 1124 1125 1126 1127 1128
                        "The operator in fetch_list is not an optimize_op"
                    )
            elif (
                isinstance(item, Variable)
                or isinstance(item, str)
                or isinstance(item, str)
            ):
1129 1130 1131
                _fetch_list.append(item)
            else:
                raise TypeError(
1132
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1133 1134
                    type(item),
                )
1135

1136
        for index, item in enumerate(fetch_list):
1137 1138 1139 1140 1141 1142 1143
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1144 1145
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1146 1147 1148 1149
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".format(
                            index, index, index, type(item[0]).__name__
                        )
                    )
1150 1151 1152 1153 1154 1155 1156
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1157
    @classmethod
1158 1159 1160
    def _prune_program(
        cls, program, feed=None, fetch_list=None, optimize_ops=None
    ):
1161 1162
        """
        Prune operators and variables which are not needed to generate
1163 1164 1165
        :code:`fetch_list` and optimize operators.
        Prune operators and variables which are needed
        to generate variables to be feeded.
1166 1167

        Notes: This is a very low level API. Users should not use this API
1168
        directly.
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1219 1220
    @classmethod
    def _update_feed(cls, program, feed):
1221
        """
1222
        Update the feed dict, remove the feed item which is pruned in program.
1223 1224

        Notes: This is a very low level API. Users should not use this API
1225
        directly.
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
1242
                return feed
1243 1244 1245 1246 1247 1248 1249 1250 1251
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
1252 1253
                        % feed_name
                    )
1254 1255 1256 1257 1258 1259 1260 1261

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
1262 1263
                            % feed_name
                        )
1264 1265
        return feed

S
Fix doc  
sneaxiy 已提交
1266 1267 1268 1269 1270 1271
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1272 1273
    def close(self):
        """
C
chengduo 已提交
1274 1275 1276
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1277

C
chengduo 已提交
1278 1279
        Returns:
            None
1280 1281 1282 1283

        Examples:
            .. code-block:: python

1284
              import paddle
1285

1286 1287
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1288 1289
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1290
        """
1291
        if not self._closed:
Y
Yancey1989 已提交
1292
            self._closed = True
1293 1294 1295 1296
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1297

1298
    def _run_parallel(
1299
        self, program, scope, feed, fetch_list, fetch_var_name, return_numpy
1300
    ):
1301
        from paddle.optimizer.lr import LRScheduler
1302

1303
        exe = program._executor
H
Huihuang Zheng 已提交
1304 1305 1306 1307 1308
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1309 1310 1311 1312
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1313
                var = global_block.var(feed_name) if need_check_feed else None
1314
                if not isinstance(feed_tensor, core.LoDTensor):
1315
                    # always set to CPU place, since the tensor need to be split
1316
                    # it is fast in CPU
1317 1318 1319 1320 1321
                    feed_tensor = _as_lodtensor(
                        feed[feed_name],
                        core.CPUPlace(),
                        var.dtype if var else None,
                    )
H
Huihuang Zheng 已提交
1322
                if need_check_feed:
1323
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1324
                feed_tensor_dict[feed_name] = feed_tensor
1325
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1326 1327 1328 1329 1330 1331

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
1332 1333
                        "Each element of feed list should be a dict"
                    )
1334 1335 1336
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1337 1338 1339
                    var = (
                        global_block.var(feed_name) if need_check_feed else None
                    )
1340
                    if not isinstance(tensor, core.LoDTensor):
1341 1342 1343 1344 1345
                        tensor = _as_lodtensor(
                            each[feed_name],
                            program._places[i],
                            var.dtype if var else None,
                        )
H
Huihuang Zheng 已提交
1346 1347
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1348 1349
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1350

1351
            exe.feed_tensors_into_local_scopes(res)
1352

1353 1354
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1355
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1356 1357 1358
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1359 1360 1361 1362 1363 1364
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
1365
                exe.feed_and_split_tensor_into_local_scopes(
1366 1367
                    {lr_sheduler._var_name: lr_tensor}
                )
1368

X
polish  
Xin Pan 已提交
1369
        fetch_var_names = list(map(_to_name_str, fetch_list))
1370
        tensors = exe.run(fetch_var_names, True)._move_to_list()
1371
        return as_numpy(tensors) if return_numpy else tensors
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
    def run(
        self,
        program=None,
        feed=None,
        fetch_list=None,
        feed_var_name='feed',
        fetch_var_name='fetch',
        scope=None,
        return_numpy=True,
        use_program_cache=False,
        use_prune=False,
    ):
1385
        """
C
chengduo 已提交
1386 1387 1388
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1389 1390
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1391

C
chengduo 已提交
1392 1393 1394
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1395
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1396
                The default is None.
1397
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1398
                If it is single card training, the feed is dict type, and if it is multi-card
1399
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1400 1401 1402 1403 1404 1405 1406
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1407
            fetch_list(list): This parameter represents the Tensors that need to be returned
1408
                after the model runs. The default is None.
1409
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1410
                the feed operator. The default is "feed".
1411
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1412
                the fetch operator. The default is "fetch".
1413
            scope(Scope): the scope used to run this program, you can switch
1414 1415 1416
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1417 1418 1419
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1420 1421
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1422
                The default is False.
1423
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
1424
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
1425 1426
                which means the operators and variables in program that generate :code:`feed` and are not
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
1427
                program will not pruned and all the operators and variables will be executed during running.
1428
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
1429
                :code:`use_prune` will be overrided to True, and the program will be pruned.
1430

C
chengduo 已提交
1431 1432 1433 1434
        Returns:

            List: The fetched result list.

1435
        Examples:
1436
            .. code-block:: python
1437
                :name: code-example-1
1438

1439 1440
                import paddle
                import numpy
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
1453
                array = paddle.tensor.array_write(x=loss, i=i)
1454

1455 1456
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1457

1458 1459 1460 1461 1462
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1463 1464

            .. code-block:: python
1465
                :name: code-example-2
Z
Zhen Wang 已提交
1466

1467
                # required: gpu
1468
                import paddle
Z
Zhen Wang 已提交
1469 1470 1471
                import numpy as np

                # First create the Executor.
1472 1473 1474
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1475

1476
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1477
                class_dim = 2
1478 1479 1480
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1481 1482 1483
                adam.minimize(loss)

                # Run the startup program once and only once.
1484 1485 1486
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
1487
                    paddle.static.default_main_program(), build_strategy=build_strategy)
Z
Zhen Wang 已提交
1488 1489 1490
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

1491 1492 1493
                prediction, = exe.run(binary,
                                      feed={'X': x},
                                    fetch_list=[prediction.name])
Z
Zhen Wang 已提交
1494 1495
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1496 1497 1498
                print("The prediction shape: {}".format(
                    np.array(prediction).shape))
                print(prediction)
1499

Z
Zhen Wang 已提交
1500
                # Out:
1501
                # The prediction shape: (6, 2)
Z
Zhen Wang 已提交
1502 1503 1504 1505 1506 1507
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1508

1509
        """
1510 1511
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
1512 1513
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None
        )
1514 1515
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
1516 1517 1518 1519 1520
                1,
                '1',
                True,
                'True',
                'true',
1521
            ]
1522
            self._log_force_set_program_cache(use_program_cache)
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
        res = self._run_impl(
            program=program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            scope=scope,
            return_numpy=return_numpy,
            use_program_cache=use_program_cache,
            use_prune=use_prune,
        )
        core.update_autotune_status()
        return res
C
chengduo 已提交
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
    def _run_impl(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
        use_prune,
    ):
Y
Yancey1989 已提交
1550 1551 1552
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1553
        use_default_main_program = program is None
1554 1555
        if program is None:
            program = default_main_program()
1556

1557
        fetch_list = self._check_fetch_list(fetch_list)
1558 1559

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1560
            if "fleet_opt" in program._pipeline_opt:
1561 1562
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
1563 1564 1565 1566 1567 1568
                    # Temporary manual enable standalone executor for fleet executor,
                    # delete this code after the FLAGS is removed.
                    if 'tasks' in program._pipeline_opt["fleet_opt"]:
                        set_flags(
                            {"FLAGS_fleet_executor_with_standalone": True}
                        )
1569
                    self._fleet_executor = _prepare_fleet_executor()
1570 1571 1572 1573
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
1574 1575
                    with_standalone_executor=self._fleet_executor_with_standalone,
                )
1576 1577 1578
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1579 1580 1581 1582 1583
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache,
                )
1584 1585

        if isinstance(program, Program) and program._heter_pipeline_opt:
1586
            # print("program._heter_pipeline_opt: {}".format(
1587
            #    program._heter_pipeline_opt))
1588
            ## change default executor
1589 1590 1591 1592 1593 1594
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1595
            if "startup_program" in program._heter_pipeline_opt:
1596
                # print("get startup_program from _pipeline_opt")
1597 1598
                program = program._heter_pipeline_opt["startup_program"]

1599 1600 1601 1602
        if (
            isinstance(program, Program)
            and len(program.global_block().ops) == 0
        ):
C
chengduo 已提交
1603
            if use_default_main_program:
1604 1605 1606 1607
                error_info = (
                    "Now you are using default_main_program, "
                    "but there are no operators in the program to be executed. "
                    "Please ensure you create model correctly or you can pass "
1608
                    "the Program or the CompiledProgram manually."
1609
                )
1610
            else:
1611 1612 1613
                error_info = (
                    "There are no operators in the program to be executed. "
                    "If you pass Program manually, please use fluid.program_guard "
1614
                    "to ensure the current Program is being used."
1615
                )
C
chengduo 已提交
1616
            warnings.warn(error_info)
1617

1618 1619
        if scope is None:
            scope = global_scope()
1620

1621 1622 1623 1624
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
1625 1626
            fetch_list
        )
1627 1628 1629
        if optimize_ops:
            use_prune = True
        if use_prune:
1630 1631 1632
            cache_key = _get_strong_program_cache_key(
                program, feed, _origin_fetch_list
            )
1633 1634 1635 1636
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
1637 1638
                        str(id(_origin_program))
                    )
1639 1640 1641 1642
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
1643 1644 1645 1646 1647 1648
                    if (
                        self._get_pruned_program_scope_cache(
                            str(id(_origin_program))
                        )
                        is None
                    ):
1649
                        self._add_pruned_program_scope_cache(
1650 1651 1652 1653 1654
                            str(id(_origin_program)), program
                        )
                pruned_program = self._prune_program(
                    program, feed, fetch_list, optimize_ops
                )
1655 1656 1657 1658 1659 1660 1661
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1662
        def _can_use_interpreter_core(program, place):
1663
            if core.is_compiled_with_mlu():
1664 1665
                return False

1666 1667 1668
            compiled = isinstance(
                program, compiler.CompiledProgram
            ) or isinstance(program._graph, compiler.CompiledProgram)
1669
            if compiled:
1670 1671 1672 1673 1674
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
1675

1676
                # Unsupported case 1: data parallel
1677 1678 1679
                if (
                    compiled_program._is_data_parallel
                    and len(
1680
                        compiled_program._get_places(
1681 1682 1683 1684 1685
                            place, compiled_program._places
                        )
                    )
                    != 1
                ):
1686 1687
                    warnings.warn(
                        "Standalone executor is not used for data parallel",
1688 1689
                        UserWarning,
                    )
1690
                    return False
1691

1692
                # Unsupported case 2: inference
1693
                if compiled_program._is_inference:
1694 1695
                    warnings.warn(
                        "Standalone executor is not used for inference",
1696 1697
                        UserWarning,
                    )
1698
                    return False
1699

1700
                # Unsupported case 3: async mode
1701 1702
                if (
                    compiled_program._build_strategy is not None
1703
                    and compiled_program._build_strategy.async_mode
1704
                ):
1705
                    warnings.warn(
1706
                        "Standalone executor is not used for async mode",
1707 1708
                        UserWarning,
                    )
1709 1710
                    return False

1711
                # Unsupported case 4: CUDA Graph
1712 1713
                if (
                    compiled_program._build_strategy is not None
1714 1715
                    and compiled_program._build_strategy.allow_cuda_graph_capture
                    and not _is_cuda_graph_enable_standalone_executor()
1716
                ):
1717
                    warnings.warn(
1718
                        "Standalone executor is not used for CUDA Graph when FLAGS_CUDA_GRAPH_USE_STANDALONE_EXECUTOR=0",
1719 1720
                        UserWarning,
                    )
1721
                    return False
1722
            return True
1723

1724 1725
        if self._enable_interpreter_core and _can_use_interpreter_core(
            program, self.place
1726
        ):
1727

1728 1729 1730 1731 1732 1733 1734 1735
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
1736 1737
                    % (type(feed))
                )
1738 1739 1740
            feed = self._update_feed(program, feed)

            program, new_exe = self._executor_cache.get_program_and_executor(
1741 1742 1743 1744 1745 1746 1747 1748
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                self.place,
                scope,
            )
1749 1750 1751 1752

            self._feed_data(program, feed, feed_var_name, scope)
            if hasattr(program, 'lr_sheduler'):
                from paddle.optimizer.lr import LRScheduler
1753 1754 1755 1756

                assert isinstance(
                    program.lr_sheduler, LRScheduler
                ), "must be LRScheduler"
1757 1758 1759 1760 1761 1762 1763
                lr_sheduler = program.lr_sheduler
                lr_value = lr_sheduler()
                lr_var = program.global_block().vars[lr_sheduler._var_name]
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
                tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
1764 1765 1766 1767 1768 1769 1770
                if core.is_cuda_graph_capturing():
                    warnings.warn(
                        "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                        "take any effect! Please set the learning rate manually before each batch!"
                    )
                elif core.is_compiled_with_ipu():
                    # for ipu, tensor is allocated on cpu
1771 1772 1773 1774
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

1775 1776 1777
            return new_exe.run(
                scope, list(feed.keys()), fetch_list, return_numpy
            )
1778

X
polish  
Xin Pan 已提交
1779
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1780

1781 1782 1783 1784 1785 1786 1787
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
1788
                vardesc = global_block.desc.find_var(varname.encode())
1789 1790
                varobj = global_block.vars[varname]

1791 1792 1793 1794 1795 1796 1797 1798 1799
                if (
                    vardesc.persistable() == False
                    and vardesc.type() == core.VarDesc.VarType.LOD_TENSOR
                    and vardesc.need_check_feed() == True
                    and varobj.stop_gradient == True
                    and varobj.is_data == True
                    and varobj.belong_to_optimizer == False
                    and varname not in feed
                ):
1800 1801
                    raise ValueError('Need feed data for variable %s' % varname)

1802 1803
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1804
        # For backward compatibility, run directly.
1805
        if not compiled:
1806
            # In distributed training, the compiled program is saved in Program._graph
1807 1808 1809
            has_compiled_graph = isinstance(
                program._graph, compiler.CompiledProgram
            )
1810

1811 1812 1813 1814 1815
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
                return self._run_parallel(
                    program._graph,
                    scope=scope,
                    feed=feed,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name,
                    return_numpy=return_numpy,
                )

            return self._run_program(
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache,
            )
1835 1836

        program._compile(scope, self.place)
C
chengduo 已提交
1837 1838 1839
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
            return self._run_parallel(
                program,
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
                fetch_var_name=fetch_var_name,
                return_numpy=return_numpy,
            )

    def _run_program(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
    ):
1860
        from paddle.optimizer.lr import LRScheduler
1861

1862 1863
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1864 1865 1866 1867
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1868
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1869
            raise TypeError(
1870 1871 1872
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
Y
Yu Yang 已提交
1873

1874
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1875
        if not isinstance(program, Program):
D
dzhwinter 已提交
1876 1877
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
1878 1879
                % (type(program))
            )
Y
Yu Yang 已提交
1880

1881 1882 1883
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
1884 1885
                % (type(fetch_var_name))
            )
1886

1887
        if use_program_cache:
1888
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1889
            cached_program = self._get_program_cache(cache_key)
1890
            cached_ctx = self._get_ctx_cache(cache_key)
1891
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1892
            if cached_program is None:
R
Ruibiao Chen 已提交
1893
                cached_program = _add_feed_fetch_ops(
Q
Qiao Longfei 已提交
1894 1895 1896 1897
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
1898 1899
                    fetch_var_name=fetch_var_name,
                )
Q
Qiao Longfei 已提交
1900
                self._add_program_cache(cache_key, cached_program)
1901
                fetch_list_str = list(map(_to_name_str, fetch_list))
1902
                cached_ctx = self._default_executor.prepare(
1903 1904
                    cached_program.desc, 0, fetch_list_str, False
                )
1905 1906 1907 1908 1909 1910
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1911 1912 1913
                self._default_executor.create_variables(
                    cached_program.desc, cached_scope, 0
                )
1914
                self._add_ctx_cache(cache_key, cached_ctx)
1915
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1916
            program = cached_program
1917
            ctx = cached_ctx
1918
            scope = cached_scope
1919
        else:
1920 1921 1922 1923 1924 1925 1926
            program = _add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
Q
Qiao Longfei 已提交
1927 1928

        self._feed_data(program, feed, feed_var_name, scope)
1929
        if hasattr(program, 'lr_sheduler'):
1930 1931 1932
            assert isinstance(
                program.lr_sheduler, LRScheduler
            ), "must be LRScheduler"
1933 1934 1935 1936 1937 1938 1939
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1940
        if not use_program_cache:
1941 1942 1943
            self._default_executor.run(
                program.desc, scope, 0, True, True, [fetch_var_name]
            )
1944
        else:
1945 1946 1947
            self._default_executor.run_prepared_ctx(
                ctx, scope, False, False, False
            )
1948
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1949
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1950
        if return_numpy:
1951 1952 1953
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1954

X
Xin Pan 已提交
1955 1956
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1957

1958
    def _check_fetch_list(self, fetch_list):
1959
        is_fetch_var = lambda var: isinstance(var, (Variable, str))
1960 1961
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

1962 1963 1964 1965
        if fetch_list is None:
            return []
        if is_fetch_var(fetch_list):
            return [fetch_list]
1966

1967 1968 1969
        assert is_tuple_list(fetch_list), (
            "Currently , The fetch_list type only should be list or tuple, \n"
            "but the input type is {}. For more information please refer to \n"
1970
            "the executor.run(...).".format(type(fetch_list))
1971
        )
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1985 1986 1987 1988
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".format(
                        i, type(var).__name__
                    )
                )
1989 1990 1991

        return res

1992
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
1993 1994
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
1995
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1996 1997 1998
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1999 2000 2001 2002 2003 2004
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
2005 2006
                % (filelist_length, filelist_length)
            )
2007 2008 2009
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
2010 2011 2012 2013 2014
                % (filelist_length // pipeline_num, filelist_length)
            )
            pipeline_opt["concurrency_list"][0] = (
                filelist_length // pipeline_num
            )
2015 2016 2017
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

meteor135's avatar
meteor135 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
    def split_program_by_device(self, program):
        ops_list = []
        type_list = []
        pre = None
        type_cpu = "cpu"
        for op in program.global_block().ops:
            if self._is_optimizer_op(op):
                break
            if op.has_attr("op_device"):
                cur_attr = (
                    op.attr("op_device")
                    if op.attr("op_device") != ""
                    else type_cpu
                )
                if pre is None or pre != cur_attr:
                    ops_list.append([])
                    type_list.append(cur_attr)
                ops_list[-1].append(op)
                pre = cur_attr
        l = len(type_list)
        i = 0
        type_heter = None
        while i < l:
            while i < l and type_list[i] == type_cpu:
                i += 1
            if i == l:
                break

            type_heter = type_list[i]
            i += 1
            start = i
            valid = True
            while i < l and type_list[i] != type_heter:
                if type_list[i] != type_cpu:
                    valid = False
                    break
                i += 1

            if i == l:
                break
            elif not valid:
                continue

            for j in range(start, i):
                for op in ops_list[j]:
                    op._set_attr("op_device", type_heter)
                type_list[j] = type_heter
                j += 1

        pre = None
        merged_ops_list = []
        merged_type_list = []
        for i in range(l):
            if pre is None or pre != type_list[i]:
                merged_ops_list.append([])
                merged_type_list.append(type_list[i])
            merged_ops_list[-1].extend(ops_list[i])
            pre = type_list[i]

        data_vars = set()
        for k in program.global_block().vars:
            var = program.global_block().var(k)
            if not var.persistable:
                data_vars.add(var.name)

        l = len(merged_ops_list)
        inputs_pre = set()
        outputs_pre = set()
        in_from_pre = [[] for i in range(l)]
        for i in range(l):
            inputs = set()
            outputs = set()
            for op in merged_ops_list[i]:
                for input in op.input_names:
                    for tmp in op.input(input):
                        if tmp not in outputs:
                            inputs.add(tmp)
                for output in op.output_names:
                    for tmp in op.output(output):
                        outputs.add(tmp)
            if i == 0:
                in_from_pre[i] = []
            elif i == 1:
                in_from_pre[i] = (outputs_pre | data_vars) & inputs
            else:
                in_from_pre[i] = outputs_pre & inputs
            inputs_pre = copy.deepcopy(inputs)
            outputs_pre = copy.deepcopy(outputs)

        l = len(in_from_pre)
        start_list = []
        end_list = []
        send_list = [[] for i in range(l)]
        sum = 0
        program_list = []
        for i in range(l):
            start_list.append(sum)
            end_list.append(sum + len(merged_ops_list[i]) - 1)
            sum += len(merged_ops_list[i])
            if i < l - 1:
                send_list[i].extend(list(in_from_pre[i + 1]))
            prog = program.clone()
            if merged_type_list[i] != type_cpu:
                prog = prog._prune_with_input(
                    list(in_from_pre[i]), list(send_list[i])
                )
                program_list.append(prog)
            else:
                program_list.append(prog)
        recv_list = [list(i) for i in in_from_pre]
        found = False
        heter_index = None
        for i in range(len(merged_type_list)):
            t = merged_type_list[i]
            if t != type_cpu:
                if found:
                    print("only one region of program can be heter")
                found = True
                heter_index = i
        if heter_index is None:
            print("warning: non heter program")
            return None
        else:
            return [
                start_list[heter_index],
                end_list[heter_index],
                send_list[heter_index],
                recv_list[heter_index],
                program_list[heter_index],
            ]

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
    def _prepare_trainer(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
    ):
T
Thunderbrook 已提交
2160
        is_heter = 0
T
Thunderbrook 已提交
2161
        use_ps_gpu = 0
T
Thunderbrook 已提交
2162 2163 2164
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
2165
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
2166
                is_heter = 1
T
Thunderbrook 已提交
2167 2168
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
2169 2170 2171 2172
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
2173 2174 2175
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
2176
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
2177
        if is_heter:
meteor135's avatar
meteor135 已提交
2178
            ret = self.split_program_by_device(program)
D
dongdaxiang 已提交
2179
        if not compiled:
H
hutuxian 已提交
2180 2181 2182
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2183 2184
                    program._pipeline_opt
                )
2185 2186
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2187 2188
                    program._heter_pipeline_opt
                )
H
hutuxian 已提交
2189 2190
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
2191
                trainer._set_thread_barrier(program._is_distributed)
2192
            trainer._set_program(program)
T
Thunderbrook 已提交
2193 2194
            if is_heter:
                trainer._set_heter_info(ret)
2195
        else:
H
hutuxian 已提交
2196 2197
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2198 2199
                    program.program._pipeline_opt
                )
2200 2201
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2202 2203
                    program.program._heter_pipeline_opt
                )
H
hutuxian 已提交
2204 2205
            else:
                trainer = TrainerFactory()._create_trainer(
2206 2207
                    program.program._fleet_opt
                )
2208
            trainer._set_program(program.program)
H
hutuxian 已提交
2209

2210
        if thread <= 0:
T
Thunderbrook 已提交
2211 2212 2213
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
2214
                raise RuntimeError(
2215
                    "You should set thread num first, either in Dataset"
2216 2217
                    "or in Executor.train_from_dataset"
                )
D
dongdaxiang 已提交
2218
            else:
2219
                trainer._set_thread(dataset.thread_num)
2220
        else:
2221
            trainer._set_thread(thread)
H
hutuxian 已提交
2222

2223 2224
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
2225
        return scope, trainer
2226

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
    def _run_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2240 2241
        if program._pipeline_opt is not None:
            import paddle
2242

2243 2244
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
2245
            # The following fake dataset is created to call
2246 2247 2248 2249 2250
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
2251 2252
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2253 2254
                    'InMemoryDataset'
                )
2255 2256
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2257 2258
                    'FileInstantDataset'
                )
2259 2260 2261 2262
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
2263 2264
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
2265
            # print("test_fl_stage_id: {}".format(stage_id))
2266
            heter_place = program._heter_pipeline_opt["heter_place"]
2267
            if stage_id != 0:
2268 2269
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
2270

2271 2272
                    if dataset is not None:
                        raise RuntimeError(
2273 2274
                            "dataset should be None for heter pipeline mode"
                        )
2275
                    # The following fake dataset is created to call
2276 2277 2278 2279 2280 2281
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
2282 2283
                        'InMemoryDataset'
                    )
2284 2285 2286 2287
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
2288 2289 2290
            else:
                if dataset is None:
                    raise RuntimeError(
2291 2292
                        "dataset is need and should be initialized"
                    )
2293 2294 2295 2296 2297
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
2298 2299 2300
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
2301 2302

        dataset._prepare_to_run()
2303 2304
        real_fetch_list = []
        if program._pipeline_opt:
2305
            real_program = program._pipeline_opt["section_program"]
2306 2307 2308 2309 2310 2311 2312 2313
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2314
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
2315 2316 2317 2318
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
2319 2320
                fetch_var_name='fetch',
            )
2321 2322 2323 2324 2325 2326 2327
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2328 2329
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2330
            fetch_list = None
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2341 2342 2343 2344

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2345
        if program._pipeline_opt is None:
2346 2347
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2348 2349 2350
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2351

T
tangwei12 已提交
2352
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2353

2354
        if program._heter_pipeline_opt is None:
2355 2356 2357 2358 2359
            trainer_instance = (
                self._default_executor.init_for_dataset(  # -->InitForDataset
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
            )
2360 2361
        else:
            # cache trainer instance for heterps pipeline training
2362
            if fetch_list is None:
2363 2364 2365 2366 2367
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
2368 2369 2370
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
                # print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2371 2372 2373
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2374

T
tangwei12 已提交
2375 2376 2377 2378 2379 2380
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2381 2382
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2383 2384
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2385 2386
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2387 2388

        dataset._dynamic_adjust_after_train()
2389
        dataset._finish_to_run()
2390 2391 2392 2393
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2394

2395 2396
        return None

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
    def _prepare_pipeline_ctx(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2430 2431
                    'InMemoryDataset'
                )
2432 2433
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2434 2435
                    'FileInstantDataset'
                )
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2456 2457 2458 2459 2460 2461 2462
            real_program = _add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch',
            )
2463 2464 2465 2466 2467 2468 2469
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2470 2471
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2472 2473 2474 2475 2476 2477 2478
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2489 2490 2491 2492 2493 2494 2495

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2496 2497 2498
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2499 2500 2501
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2502
        trainer_instance = self._default_executor.init_for_dataset(
2503 2504
            program.desc, trainer_desc, scope, dataset.dataset
        )
2505 2506

        ctx = [scope, real_fetch_list, trainer_instance]
2507 2508
        if use_program_cache:
            self._add_ctx_cache(cache_key, ctx)
2509

2510 2511
        return ctx

2512 2513 2514 2515 2516 2517
    def _prepare_fleet_executor_carrier(
        self,
        carrier_id="",
        program=None,
        scope=None,
        fleet_opt=None,
L
LiYuRio 已提交
2518
        micro_scope_list=[],
2519 2520 2521 2522 2523 2524 2525
        with_standalone_executor=False,
    ):
        num_micro_batches = (
            fleet_opt["num_micro_batches"]
            if "num_micro_batches" in fleet_opt
            else 1
        )
2526
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2527
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2528
        nrank = len(trainer_endpoints)
2529

2530 2531
        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, (
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. "
2532
            "Or you can provide a list of task nodes to init fleet executor directly."
2533
        )
2534
        if 'tasks' in fleet_opt:
2535 2536 2537 2538
            assert 'task_id_to_rank' in fleet_opt, (
                "If you provide tasks to init fleet executor,"
                " task_id_to_rank should also be provided."
            )
2539 2540 2541
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2542
        else:
2543 2544
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
2545 2546 2547 2548 2549 2550 2551 2552 2553
                from paddle.distributed.fleet.fleet_executor_utils import (
                    run1f1b,
                )

                if (
                    "dist_strategy" not in fleet_opt
                    or "pp_degree" not in fleet_opt["dist_strategy"]
                    or fleet_opt["dist_strategy"]["pp_degree"] == 1
                ):
2554 2555
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2556 2557 2558 2559 2560 2561 2562
                    program,
                    cur_rank,
                    fleet_opt.get('num_micro_batches', 1),
                    fleet_opt.get('dist_strategy', {}),
                    nrank,
                    with_standalone_executor,
                )
2563 2564
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
2565 2566 2567 2568 2569 2570 2571 2572

                if (
                    "dist_strategy" in fleet_opt
                    and "pp_degree" in fleet_opt["dist_strategy"]
                ):
                    assert (
                        fleet_opt["dist_strategy"]["pp_degree"] == 1
                    ), "For pipeline mode, the scheduler should be 1F1B instead of Origin."
2573
                if "num_micro_batches" in fleet_opt:
2574 2575 2576
                    assert (
                        fleet_opt["num_micro_batches"] == 1
                    ), "For origin scheduler mode, the num micro batches should be 1."
2577 2578
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
2579 2580 2581
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " "but received " + str(
                    scheduler
                ) + "."
2582 2583 2584
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2585 2586
        place = core.Place()
        place.set_place(self.place)
L
LiYuRio 已提交
2587

2588 2589 2590
        inference_root_scope_vars = (
            fleet_opt["fetch_var"] if "fetch_var" in fleet_opt else []
        )
2591 2592 2593 2594 2595 2596 2597 2598
        self._fleet_executor.init(
            carrier_id,
            program.desc,
            scope,
            place,
            num_micro_batches,
            tasks,
            task_id_to_rank,
2599
            inference_root_scope_vars,
L
LiYuRio 已提交
2600
            micro_scope_list,
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
        )

    def _run_using_fleet_executor(
        self,
        program=None,
        feed=None,
        feed_var_name="feed",
        fetch_var_name="fetch",
        fetch_list=None,
        with_standalone_executor=False,
    ):
2612 2613
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2614
        cached_scope = self._get_scope_cache(cache_key)
2615 2616 2617 2618
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2619 2620 2621
            assert (
                program._pipeline_opt
            ), "program should have _pipeline_opt to start carrier"
2622
            real_feed = [] if feed is None else feed
2623 2624 2625
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
2626 2627 2628 2629 2630 2631 2632
            cached_program = _add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
2633 2634 2635 2636 2637 2638 2639
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2640 2641
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2642
            self._add_program_cache(cache_key, cached_program)
2643
            fleet_opt = program._pipeline_opt["fleet_opt"]
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2655 2656 2657 2658 2659
                feed_program = self._add_feed_ops(
                    program=feed_program,
                    feed=real_feed,
                    feed_var_name=feed_var_name,
                )
2660 2661 2662 2663 2664 2665 2666 2667 2668
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
2669 2670
                    fetch_var_name=fetch_var_name,
                )
2671 2672 2673 2674 2675 2676 2677
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
2678 2679
                            core.op_proto_and_checker_maker.OpRole.Optimize,
                        )
2680 2681
                fetch_task.set_program(fetch_program)

L
LiYuRio 已提交
2682 2683 2684 2685 2686 2687 2688 2689
            micro_scope_list = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for i in range(int(fleet_opt["num_micro_batches"])):
                    micro_scope_list.append(cached_scope.new_scope())

2690 2691 2692 2693 2694
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
L
LiYuRio 已提交
2695
                micro_scope_list=micro_scope_list,
2696 2697
                with_standalone_executor=with_standalone_executor,
            )
2698

2699
        if feed:
2700 2701 2702
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2703
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2704 2705

        from paddle.optimizer.lr import LRScheduler
2706

2707 2708 2709 2710 2711 2712
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2713 2714 2715
            tensor = core.get_variable_tensor(
                cached_scope, lr_sheduler._var_name
            )
2716 2717
            tensor.set(data, self.place)

2718 2719
        self._fleet_executor.run(cache_key)

L
LiYuRio 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
        if "fetch_var" in fleet_opt:
            # If we speed up the generation in evaluation, we need to generate
            # multiple queries at the same time. Each query will in separate scope in order
            # not mix up. It indicate that final result will in multiple scopes and need to
            # fetch each.
            result_list = []
            for scope in micro_scope_list:
                for var in fleet_opt["fetch_var"]:
                    tensor = core.get_variable_tensor(scope, var)
                result_list.append(as_numpy(tensor))
            return result_list

2732 2733 2734 2735
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2736 2737
        return None

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
2749 2750
                persistable=True,
            )
2751 2752 2753 2754 2755 2756

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2757 2758 2759 2760 2761 2762
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i},
                    )
2763 2764 2765
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
2766 2767
                        % name
                    )
2768 2769 2770

        return tmp_program

2771
    @classmethod
2772 2773 2774
    def _add_fetch_ops(
        cls, program, fetch_list, fetch_var_name, use_fetch_v2=False
    ):
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
2785 2786
                persistable=True,
            )
2787 2788 2789 2790 2791 2792 2793

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
2794 2795 2796
        if not has_fetch_operators(
            global_block, fetch_list, fetch_var_name, fetch_op
        ):
2797 2798
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2799 2800 2801 2802 2803 2804 2805 2806
                    var, str
                ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
                global_block.append_op(
                    type=fetch_op,
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i},
                )
2807 2808 2809

        return tmp_program

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
    def _run_pipeline(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
        scope, real_fetch_list, trainer_instance = self._prepare_pipeline_ctx(
            program,
            dataset,
            scope,
            thread,
            is_infer,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
            use_program_cache,
        )
2848

2849
        from paddle.optimizer.lr import LRScheduler
2850

2851 2852 2853 2854 2855 2856 2857 2858 2859
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2860 2861
        self._default_executor.run_from_dataset(trainer_instance)

2862 2863 2864
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2865 2866 2867 2868 2869 2870 2871
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
    def infer_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2884
        """
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2896

2897 2898
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2899
                if not provided, then default_main_program (not compiled) will be used.
2900
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2901 2902
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2903
            scope(Scope): the scope used to run this program, you can switch it to different scope
2904 2905 2906
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2907
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2908
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2909
                training, default is None
2910
            fetch_info(String List): print information for each Tensor, default is None
2911
            print_period(int): the number of mini-batches for each print, default is 100
2912
            fetch_handler(FetchHandler): a user define class for fetch output.
2913

2914 2915 2916 2917
        Returns:
            None

        Examples:
2918 2919

            .. code-block:: python
2920

2921
                import paddle
2922

2923 2924 2925 2926 2927 2928
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2929
                dataset.set_use_var([x, y])
2930
                dataset.set_thread(1)
2931 2932
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2933
                dataset.set_filelist(filelist)
2934 2935 2936
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2937

2938
        """
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            True,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )

    def start_heter_trainer(
        self,
        program=None,
        scope=None,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
T
Thunderbrook 已提交
2972

2973
        trainer._set_infer(False)
T
Thunderbrook 已提交
2974 2975 2976 2977 2978
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
2979 2980
            program.desc, trainer._desc(), scope, None
        )
T
Thunderbrook 已提交
2981

2982
        # if fetch_handler is not None:
T
Thunderbrook 已提交
2983 2984 2985 2986 2987 2988
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
2989
        # else:
T
Thunderbrook 已提交
2990 2991

        self._default_executor.run_from_dataset(trainer_instance)
2992
        # self._default_executor.release_trainer(trainer_instance)
T
Thunderbrook 已提交
2993 2994 2995

        return trainer_instance

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
    def train_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
3008 3009 3010 3011 3012 3013 3014 3015
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
3016

3017 3018 3019 3020
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
3021
                if not provided, then default_main_program (not compiled) will be used.
3022
            dataset(paddle.fluid.Dataset): dataset created outside this function,
3023 3024
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
3025
            scope(Scope): the scope used to run this program, you can switch it to different scope
3026 3027 3028
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
3029
            debug(bool): whether a user wants to run train_from_dataset
3030
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
3031
                during training
3032
            fetch_info(String List): print information for each Tensor, its length should be equal
3033 3034
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
3035
            fetch_handler(FetchHandler): a user define class for fetch output.
3036 3037 3038

        Returns:
            None
3039

3040
        Examples:
3041

3042 3043
            .. code-block:: python

3044
              import paddle
3045

3046 3047 3048 3049 3050 3051
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
3052
              dataset.set_use_var([x, y])
3053
              dataset.set_thread(1)
3054 3055
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
3056
              dataset.set_filelist(filelist)
3057 3058
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
3059
                                     dataset=dataset)
3060 3061

        """
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            False,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )