executor.py 104.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeng Jinle 已提交
15
import logging
16 17
import os
import multiprocessing
C
chengduo 已提交
18
import sys
19
import warnings
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
from .data_feeder import convert_dtype
23
from .framework import Program, default_main_program, Variable, Operator
24
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
25

26
from . import core
27
from . import unique_name
28
from . import compiler
29
from . import set_flags
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33
from . import framework
34
from .incubate.checkpoint import auto_checkpoint as acp
35
from .compiler import _prune_feed_ops
36

R
Ruibiao Chen 已提交
37 38
from functools import lru_cache

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78

79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96

97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
147 148
        raise RuntimeError(
            "Some of your fetched tensors hold LoD information. \
149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
151 152
            return LoDTensor itself directly."
        )
Q
qingqing01 已提交
153
    if tensor._is_initialized():
154 155 156 157
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
158 159
    else:
        return None
D
dzhwinter 已提交
160 161


H
Huihuang Zheng 已提交
162 163 164 165
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
166

H
Huihuang Zheng 已提交
167 168
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
169

H
Huihuang Zheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
186 187
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


215
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
216 217
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
218
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
219 220 221

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
222 223
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
224
       is compatible with any number.
225

H
Huihuang Zheng 已提交
226 227
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
228
        feed (LoDTensor): the fed value, which must be a LoDTensor
229 230
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
231 232 233 234 235 236 237
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
238 239
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
240
            raise ValueError(
T
tianshuo78520a 已提交
241
                'The fed Variable %r should have dimensions = %d, shape = '
242 243 244
                '%r, but received fed shape %r on each device'
                % (var.name, len(var.shape), var.shape, diff_shape)
            )
H
Huihuang Zheng 已提交
245
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
246 247 248 249 250 251 252 253 254 255
            var_dtype_format = (
                convert_dtype(var.dtype)
                if isinstance(var.dtype, core.VarDesc.VarType)
                else var.dtype
            )
            feed_dtype_format = (
                convert_dtype(feed._dtype())
                if isinstance(feed._dtype(), core.VarDesc.VarType)
                else feed._dtype()
            )
256
            raise ValueError(
257 258 259
                'The data type of fed Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format)
            )
H
Huihuang Zheng 已提交
260 261 262
    return True


263
def has_feed_operators(block, feed_targets, feed_holder_name):
264
    """Check whether the block already has feed operators.
265 266 267 268 269 270 271 272 273 274

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
275 276
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
277 278 279
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
280
        A boolean value that indicates whether a block has feed operators
281 282 283 284 285 286 287 288 289 290
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
291 292
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
293 294 295
                        feed_target_name
                    )
                )
296 297 298 299
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
300 301
            "Feed operators in program desc do not match 'feed_targets'"
        )
302 303 304
    return feed_count > 0


305 306 307 308
def has_fetch_operators(
    block, fetch_targets, fetch_holder_name, fetch_op='fetch'
):
    """Check whether the block already has fetch operators.
X
xuwei06 已提交
309

310 311 312 313 314 315 316 317 318
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
319 320 321
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
322
        fetch_op: the operator name of fetch
323

X
xuwei06 已提交
324 325 326
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
327 328 329 330
    """

    fetch_count = 0
    for op in block.ops:
331
        if op.desc.type() == fetch_op:
332 333 334 335
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
336
                var.desc.name() for var in fetch_targets
337
            ]:
338 339
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
340 341 342
                        fetch_target_name
                    )
                )
343 344 345 346
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
347 348
            "Fetch operators in program desc do not match 'fetch_targets'"
        )
349 350 351
    return fetch_count > 0


352 353 354
def _add_feed_fetch_ops(
    program, feed, fetch_list, feed_var_name, fetch_var_name, use_fetch_v2=False
):
R
Ruibiao Chen 已提交
355 356 357 358 359 360 361 362 363 364
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
365 366
            persistable=True,
        )
R
Ruibiao Chen 已提交
367 368 369 370 371 372 373

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
374 375
            persistable=True,
        )
R
Ruibiao Chen 已提交
376 377 378 379 380 381

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
382 383 384 385 386 387
                global_block._prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i},
                )
R
Ruibiao Chen 已提交
388 389 390
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
391 392
                    % name
                )
R
Ruibiao Chen 已提交
393 394 395 396 397 398 399

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
400 401 402
    if not has_fetch_operators(
        global_block, fetch_list, fetch_var_name, fetch_op
    ):
R
Ruibiao Chen 已提交
403 404
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
405 406 407 408 409 410 411 412
                var, str
            ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
            global_block.append_op(
                type=fetch_op,
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i},
            )
R
Ruibiao Chen 已提交
413 414 415 416

    return tmp_program


417 418 419
def _apply_inplace_addto_pass(
    program, enable_inplace, enable_addto, skip_var_names
):
R
Ruibiao Chen 已提交
420 421 422 423 424 425 426 427
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
428 429 430
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
431 432
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
433 434 435
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
436 437


W
Wu Yi 已提交
438
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
439
    """
C
chengduoZH 已提交
440 441 442
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
443
    Args:
444 445 446 447
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
448 449 450 451
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
452 453 454
    Returns:
       LodTensor|numpy.ndarray
    """
455
    assert isinstance(name, str)
X
xuwei06 已提交
456 457
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
458
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
459

460
    var = scope.find_var(_to_name_str(name))
461 462 463
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
464 465
        " program."
    )
X
xuwei06 已提交
466 467
    tensor = var.get_tensor()
    if return_numpy:
468
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
469 470 471
    return tensor


X
polish  
Xin Pan 已提交
472
def _to_name_str(var):
473 474 475 476 477
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
478
        elif isinstance(var, str):
479 480
            return str(var)
        elif isinstance(var, Operator):
481
            return str(id(var))
482 483 484 485 486 487 488 489 490 491
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
492
    else:
493
        return _to_str(var)
Q
qiaolongfei 已提交
494 495


496 497
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
498

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


514 515 516 517 518
def _get_strong_program_cache_key_for_new_exe(program, scope, feed, fetch_list):
    return (
        program.desc.cached_hash_str()
        + str(scope.raw_address())
        + _get_program_cache_key(feed, fetch_list)
519
    )
L
Leo Chen 已提交
520 521


522
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
523
    # TODO(zhiqiu): use hash_str to generate cache key as above
524 525 526 527 528 529
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

530 531 532 533 534 535 536 537 538 539
    inner_program = (
        program._program
        if isinstance(program, compiler.CompiledProgram)
        else program
    )
    return (
        _get_varname_from_block(inner_program.blocks[0])
        + str(id(program))
        + _get_program_cache_key(feed, fetch_list)
    )
540 541


X
polish  
Xin Pan 已提交
542
def _get_program_cache_key(feed, fetch_list):
543 544 545 546 547 548
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
549
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
550 551 552
    return str(feed_var_names + fetch_var_names)


553
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
554
    """
555 556
    Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
W
Wu Yi 已提交
557

558 559 560 561 562 563 564
    Examples:
        >>> import paddle.fluid as fluid
        >>> place = fluid.CPUPlace()
        >>> exe = fluid.executor(place)
        >>> data = np.array(size=(100, 200, 300))
        >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
        >>>     ...
W
Wu Yi 已提交
565

566 567 568 569
    Args:
        data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
        data(core.Place): the place of created tensor
        dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
570

571 572 573 574
    Returns:
        LoDTensor
    """
    # NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
575
    if not isinstance(data, np.ndarray):
576 577 578 579 580 581 582 583
        assert (
            dtype is not None
        ), 'The dtype should be given when feed data is not np.ndarray'
        dtype = (
            convert_dtype(dtype)
            if isinstance(dtype, core.VarDesc.VarType)
            else dtype
        )
584
        if np.isscalar(data):
585
            data = np.array(data).astype(dtype)
586 587
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
588
            if data.dtype == np.object_:
589 590 591 592 593 594 595 596 597
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
598 599 600
                    type(data)
                )
            )
601

602
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
603 604 605 606 607
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


608
class FetchHandler:
D
Dong Daxiang 已提交
609
    def __init__(self, var_dict=None, period_secs=60):
610
        assert var_dict is not None
D
Dong Daxiang 已提交
611
        self.var_dict = var_dict
612 613
        self.period_secs = period_secs

D
Dong Daxiang 已提交
614 615 616 617 618
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
619 620 621

    @staticmethod
    def help():
622 623
        print(
            """
D
Dong Daxiang 已提交
624 625 626 627 628 629 630 631
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
632 633
"""
        )
634 635


636
class _StandaloneExecutor:
637
    def __init__(self, place, plan, scope):
638 639
        self._place = core.Place()
        self._place.set_place(place)
640
        self._plan = plan
641
        self._scope = scope
642 643
        self._new_exe = self._create_new_executor()

644
    def run(self, feed_names, return_numpy=True):
645 646
        """
        Args:
647
            feed_names(list): This parameter represents the input names of the model.
648
            fetch_list(list): This parameter represents the Tensors that need to be returned
649
                after the model runs. The default is None.
650 651 652 653
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
654
        tensors = self._new_exe.run(feed_names)._move_to_list()
655 656 657 658 659 660
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
661
        new_exe = core.StandaloneExecutor(self._place, self._plan, self._scope)
662 663 664 665

        return new_exe


666 667
class _ExecutorCache:
    class _CachedData:
668 669 670 671 672 673 674 675 676 677
        def __init__(
            self,
            program,
            feed,
            fetch_list,
            feed_var_name,
            fetch_var_name,
            place,
            scope,
        ):
R
Ruibiao Chen 已提交
678 679 680 681 682 683 684 685 686 687 688
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
689 690 691 692
                if not self.program._program:
                    # The program holds no _program, maybe it is constructed by graph.
                    # Convert graph to program in order to generate key.
                    self.program._program = framework.IrGraph(
693 694
                        self.program._graph
                    ).to_program()
R
Ruibiao Chen 已提交
695 696
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
697 698 699 700
                        self.program._program,
                        self.scope,
                        self.feed,
                        self.fetch_list,
701 702
                    )
                )
R
Ruibiao Chen 已提交
703 704 705
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
706
                        self.program, self.scope, self.feed, self.fetch_list
707 708
                    )
                )
R
Ruibiao Chen 已提交
709 710

        def __eq__(self, other):
711 712 713 714
            return (
                isinstance(other, _ExecutorCache._CachedData)
                and self.key == other.key
            )
R
Ruibiao Chen 已提交
715 716 717 718 719 720 721 722 723

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
724 725
            self._get_program_and_executor
        )
R
Ruibiao Chen 已提交
726 727 728 729

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

730 731 732 733 734 735 736 737 738 739
    def get_program_and_executor(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        place,
        scope,
    ):
R
Ruibiao Chen 已提交
740
        return self._get_cached_program_and_executor(
741 742 743 744 745 746 747 748 749 750
            self._CachedData(
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                place,
                scope,
            )
        )
R
Ruibiao Chen 已提交
751 752 753

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
754 755 756 757 758
        inner_program = (
            program._program
            if isinstance(program, compiler.CompiledProgram)
            else program
        )
R
Ruibiao Chen 已提交
759 760 761 762 763 764 765 766 767
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
768 769 770 771 772 773 774
            program._graph, compiler.CompiledProgram
        ):
            compiled_program = (
                program
                if isinstance(program, compiler.CompiledProgram)
                else program._graph
            )
R
Ruibiao Chen 已提交
775 776
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
777 778 779 780 781 782 783 784 785 786
            use_cuda_graph = False
            # When using cuda graph, the cuda graph preparation logic in PE is not
            # executed, but it is processed in the constructor of new executor.
            if (
                build_strategy is not None
                and build_strategy.allow_cuda_graph_capture
            ):
                use_cuda_graph = True
                build_strategy.allow_cuda_graph_capture = False
                set_flags({"FLAGS_new_executor_use_cuda_graph": True})
R
Ruibiao Chen 已提交
787
            compiled_program._compile(scope, place)
788 789
            if use_cuda_graph:
                build_strategy.allow_cuda_graph_capture = True
R
Ruibiao Chen 已提交
790 791 792
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

793 794
            if hasattr(inner_program, 'lr_scheduler'):
                converted_program.lr_scheduler = inner_program.lr_scheduler
R
Ruibiao Chen 已提交
795 796 797 798 799 800

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
801

R
Ruibiao Chen 已提交
802 803 804 805 806
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

807 808 809 810 811 812 813 814
        program = _add_feed_fetch_ops(
            program=inner_program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            use_fetch_v2=True,
        )
R
Ruibiao Chen 已提交
815 816 817

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
818 819 820 821 822 823 824 825 826 827
        enable_inplace = (
            True
            if build_strategy is None or build_strategy.enable_inplace
            else False
        )
        enable_addto = (
            True
            if build_strategy is not None and build_strategy.enable_addto
            else False
        )
R
Ruibiao Chen 已提交
828 829 830
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
831 832 833
            _apply_inplace_addto_pass(
                program, enable_inplace, enable_addto, skip_var_names
            )
R
Ruibiao Chen 已提交
834
        new_program = program.clone()
835 836 837 838 839
        new_exe = _StandaloneExecutor(
            place,
            core.Plan([core.Job("default")], {"default": new_program.desc}),
            scope,
        )
R
Ruibiao Chen 已提交
840
        return new_program, new_exe
841 842


843
class Executor:
844
    """
845 846
    :api_attr: Static Graph

847
    An Executor in Python, supports single/multiple-GPU running,
848
    and single/multiple-CPU running.
C
chengduo 已提交
849 850

    Args:
851
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
852 853 854 855
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
856
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x``
857 858
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
859
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_
C
chengduo 已提交
860 861 862

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
863

864
    Examples:
S
Fix doc  
sneaxiy 已提交
865 866
        .. code-block:: python

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            compiled_prog = paddle.static.CompiledProgram(
901
                train_program)
902 903
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

904 905
    """

906 907
    def __init__(self, place=None):
        if place is None:
908 909
            expected_place = framework._current_expected_place()
            self.place = expected_place
910
        else:
911
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
912
        self.program_caches = dict()
913
        self.ctx_caches = dict()
914
        self.trainer_caches = dict()
915
        self.scope_caches = dict()
916
        self.micro_scope_cache = dict()
917
        self.var_caches = dict()
918
        self.pruned_program_caches = dict()
919 920 921
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
922
        self._closed = False
923
        self.pruned_program_scope_caches = dict()
924
        self._prepare_to_run_called = False
D
dzhwinter 已提交
925

926
        self._auto_checkpoint_name = unique_name.generate(
927 928
            "__auto_checkpoint_executor__"
        )
929

R
Ruibiao Chen 已提交
930
        self._executor_cache = _ExecutorCache()
931

932
        self._fleet_executor = None
933 934 935
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
936

meteor135's avatar
meteor135 已提交
937 938 939 940 941 942 943
        self.op_role_key = core.op_proto_and_checker_maker.kOpRoleAttrName()

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and int(
            op.all_attrs()[self.op_role_key]
        ) & int(core.op_proto_and_checker_maker.OpRole.Optimize)

R
Ruibiao Chen 已提交
944 945 946 947 948 949
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

950 951 952
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

953 954 955
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

956 957 958
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
959 960 961 962 963 964
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

965 966 967 968 969 970 971 972 973 974 975 976
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

977 978 979
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

980 981 982
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

983 984 985
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

986 987 988 989 990 991
    def _add_micro_scopes_cache(self, program_cache_key, micro_scopes: list):
        self.micro_scope_cache[program_cache_key] = micro_scopes

    def _get_micro_scopes_cache(self, program_cache_key):
        return self.micro_scope_cache.get(program_cache_key, None)

992 993 994 995 996 997 998
    # just for testing, will be removed later
    @lru_cache()
    def _log_force_set_program_cache(self, use_program_cache):
        logging.warning(
            f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE"
        )

Q
Qiao Longfei 已提交
999 1000
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
1001 1002
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
1003 1004 1005
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
1006
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
1007 1008
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
1009 1010 1011
                        cur_feed = _as_lodtensor(
                            cur_feed, self.place, var.dtype
                        )
S
Steffy-zxf 已提交
1012
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
1013 1014 1015 1016 1017 1018 1019 1020
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
1021
            for i in range(len(fetch_list))
Q
Qiao Longfei 已提交
1022 1023 1024
        ]
        return outs

1025 1026
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
1038
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
1049 1050 1051 1052 1053 1054 1055
                        "The operator in fetch_list is not an optimize_op"
                    )
            elif (
                isinstance(item, Variable)
                or isinstance(item, str)
                or isinstance(item, str)
            ):
1056 1057 1058
                _fetch_list.append(item)
            else:
                raise TypeError(
1059
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1060 1061
                    type(item),
                )
1062

1063
        for index, item in enumerate(fetch_list):
1064 1065 1066 1067 1068 1069 1070
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1071 1072
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1073 1074 1075 1076
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".format(
                            index, index, index, type(item[0]).__name__
                        )
                    )
1077 1078 1079 1080 1081 1082 1083
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1084
    @classmethod
1085 1086 1087
    def _prune_program(
        cls, program, feed=None, fetch_list=None, optimize_ops=None
    ):
1088 1089
        """
        Prune operators and variables which are not needed to generate
1090 1091 1092
        :code:`fetch_list` and optimize operators.
        Prune operators and variables which are needed
        to generate variables to be feeded.
1093 1094

        Notes: This is a very low level API. Users should not use this API
1095
        directly.
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1146 1147
    @classmethod
    def _update_feed(cls, program, feed):
1148
        """
1149
        Update the feed dict, remove the feed item which is pruned in program.
1150 1151

        Notes: This is a very low level API. Users should not use this API
1152
        directly.
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
1169
                return feed
1170 1171 1172 1173 1174 1175 1176 1177 1178
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
1179 1180
                        % feed_name
                    )
1181 1182 1183 1184 1185 1186 1187 1188

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
1189 1190
                            % feed_name
                        )
1191 1192
        return feed

S
Fix doc  
sneaxiy 已提交
1193 1194 1195 1196 1197 1198
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1199 1200
    def close(self):
        """
C
chengduo 已提交
1201 1202 1203
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1204

C
chengduo 已提交
1205 1206
        Returns:
            None
1207 1208 1209 1210

        Examples:
            .. code-block:: python

1211
              import paddle
1212

1213 1214
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1215 1216
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1217
        """
1218
        if not self._closed:
Y
Yancey1989 已提交
1219
            self._closed = True
1220 1221 1222 1223
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
    def run(
        self,
        program=None,
        feed=None,
        fetch_list=None,
        feed_var_name='feed',
        fetch_var_name='fetch',
        scope=None,
        return_numpy=True,
        use_program_cache=False,
        use_prune=False,
    ):
1237
        """
C
chengduo 已提交
1238 1239 1240
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1241 1242
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1243

C
chengduo 已提交
1244 1245 1246
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1247
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1248
                The default is None.
1249
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1250
                If it is single card training, the feed is dict type, and if it is multi-card
1251
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1252 1253 1254 1255 1256 1257 1258
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1259
            fetch_list(list): This parameter represents the Tensors that need to be returned
1260
                after the model runs. The default is None.
1261
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1262
                the feed operator. The default is "feed".
1263
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1264
                the fetch operator. The default is "fetch".
1265
            scope(Scope): the scope used to run this program, you can switch
1266 1267 1268
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1269 1270 1271
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1272 1273
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1274
                The default is False.
1275
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
1276
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
1277 1278
                which means the operators and variables in program that generate :code:`feed` and are not
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
1279
                program will not pruned and all the operators and variables will be executed during running.
1280
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
1281
                :code:`use_prune` will be overrided to True, and the program will be pruned.
1282

C
chengduo 已提交
1283 1284 1285 1286
        Returns:

            List: The fetched result list.

1287
        Examples:
1288
            .. code-block:: python
1289
                :name: code-example-1
1290

1291 1292
                import paddle
                import numpy
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
1305
                array = paddle.tensor.array_write(x=loss, i=i)
1306

1307 1308
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1309

1310 1311 1312 1313 1314
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1315 1316

            .. code-block:: python
1317
                :name: code-example-2
Z
Zhen Wang 已提交
1318

1319
                # required: gpu
1320
                import paddle
Z
Zhen Wang 已提交
1321 1322 1323
                import numpy as np

                # First create the Executor.
1324 1325 1326
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1327

1328
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1329
                class_dim = 2
1330 1331 1332
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1333 1334 1335
                adam.minimize(loss)

                # Run the startup program once and only once.
1336 1337 1338
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
1339
                    paddle.static.default_main_program(), build_strategy=build_strategy)
Z
Zhen Wang 已提交
1340 1341 1342
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

1343 1344 1345
                prediction, = exe.run(binary,
                                      feed={'X': x},
                                    fetch_list=[prediction.name])
Z
Zhen Wang 已提交
1346 1347
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1348 1349 1350
                print("The prediction shape: {}".format(
                    np.array(prediction).shape))
                print(prediction)
1351

Z
Zhen Wang 已提交
1352
                # Out:
1353
                # The prediction shape: (6, 2)
Z
Zhen Wang 已提交
1354 1355 1356 1357 1358 1359
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1360

1361
        """
1362 1363
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
1364 1365
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None
        )
1366 1367
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
1368 1369 1370 1371 1372
                1,
                '1',
                True,
                'True',
                'true',
1373
            ]
1374
            self._log_force_set_program_cache(use_program_cache)
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        res = self._run_impl(
            program=program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            scope=scope,
            return_numpy=return_numpy,
            use_program_cache=use_program_cache,
            use_prune=use_prune,
        )
        core.update_autotune_status()
        return res
C
chengduo 已提交
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
    def _run_impl(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
        use_prune,
    ):
Y
Yancey1989 已提交
1402 1403 1404
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1405
        use_default_main_program = program is None
1406 1407
        if program is None:
            program = default_main_program()
1408

1409
        fetch_list = self._check_fetch_list(fetch_list)
1410 1411

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1412
            if "fleet_opt" in program._pipeline_opt:
1413 1414 1415
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1416 1417 1418 1419
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
1420
                    with_standalone_executor=self._fleet_executor_with_standalone,
1421
                    return_numpy=return_numpy,
1422
                )
1423 1424 1425
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1426 1427 1428 1429 1430
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache,
                )
1431 1432

        if isinstance(program, Program) and program._heter_pipeline_opt:
1433
            # print("program._heter_pipeline_opt: {}".format(
1434
            #    program._heter_pipeline_opt))
1435
            ## change default executor
1436 1437 1438 1439 1440 1441
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1442
            if "startup_program" in program._heter_pipeline_opt:
1443
                # print("get startup_program from _pipeline_opt")
1444 1445
                program = program._heter_pipeline_opt["startup_program"]

1446 1447 1448 1449
        if (
            isinstance(program, Program)
            and len(program.global_block().ops) == 0
        ):
C
chengduo 已提交
1450
            if use_default_main_program:
1451 1452 1453 1454
                error_info = (
                    "Now you are using default_main_program, "
                    "but there are no operators in the program to be executed. "
                    "Please ensure you create model correctly or you can pass "
1455
                    "the Program or the CompiledProgram manually."
1456
                )
1457
            else:
1458 1459 1460
                error_info = (
                    "There are no operators in the program to be executed. "
                    "If you pass Program manually, please use fluid.program_guard "
1461
                    "to ensure the current Program is being used."
1462
                )
C
chengduo 已提交
1463
            warnings.warn(error_info)
1464

1465 1466
        if scope is None:
            scope = global_scope()
1467

1468 1469 1470 1471
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
1472 1473
            fetch_list
        )
1474 1475 1476
        if optimize_ops:
            use_prune = True
        if use_prune:
1477 1478 1479
            cache_key = _get_strong_program_cache_key(
                program, feed, _origin_fetch_list
            )
1480 1481 1482 1483
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
1484 1485
                        str(id(_origin_program))
                    )
1486 1487 1488 1489
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
1490 1491 1492 1493 1494 1495
                    if (
                        self._get_pruned_program_scope_cache(
                            str(id(_origin_program))
                        )
                        is None
                    ):
1496
                        self._add_pruned_program_scope_cache(
1497 1498 1499 1500 1501
                            str(id(_origin_program)), program
                        )
                pruned_program = self._prune_program(
                    program, feed, fetch_list, optimize_ops
                )
1502 1503 1504 1505 1506 1507 1508
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1509
        def _can_use_interpreter_core(program, place):
1510 1511 1512
            compiled = isinstance(
                program, compiler.CompiledProgram
            ) or isinstance(program._graph, compiler.CompiledProgram)
1513
            if compiled:
1514 1515 1516 1517 1518
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
1519

1520
                # Unsupported case 1: inference
1521
                if compiled_program._is_inference:
1522 1523
                    warnings.warn(
                        "Standalone executor is not used for inference",
1524 1525
                        UserWarning,
                    )
1526
                    return False
1527

1528
            return True
1529

1530
        if _can_use_interpreter_core(program, self.place):
1531 1532 1533 1534 1535 1536 1537 1538
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
1539 1540
                    % (type(feed))
                )
1541 1542
            feed = self._update_feed(program, feed)

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
            stored_flag = {}
            if isinstance(program, compiler.CompiledProgram) or isinstance(
                program._graph, compiler.CompiledProgram
            ):
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
                build_strategy = compiled_program._build_strategy
1553
                if build_strategy is not None and build_strategy.sequential_run:
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
                    schedule_flag = [
                        'FLAGS_new_executor_serial_run',
                        'FLAGS_new_executor_sequential_run',
                    ]
                    for flag in schedule_flag:
                        value = os.getenv(flag, False)
                        if isinstance(value, str):
                            value = value.lower()
                            value = True if value == 'true' else False
                        stored_flag[flag] = bool(value)
                    set_flags({f: True for f in schedule_flag})

1566
            program, new_exe = self._executor_cache.get_program_and_executor(
1567 1568 1569 1570 1571 1572 1573 1574
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                self.place,
                scope,
            )
1575 1576

            self._feed_data(program, feed, feed_var_name, scope)
1577
            if hasattr(program, 'lr_scheduler'):
1578
                from paddle.optimizer.lr import LRScheduler
1579 1580

                assert isinstance(
1581
                    program.lr_scheduler, LRScheduler
1582
                ), "must be LRScheduler"
1583 1584 1585
                lr_scheduler = program.lr_scheduler
                lr_value = lr_scheduler()
                lr_var = program.global_block().vars[lr_scheduler._var_name]
1586
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
1587
                tensor = core.get_variable_tensor(scope, lr_scheduler._var_name)
1588 1589
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
1590 1591 1592 1593 1594 1595 1596
                if core.is_cuda_graph_capturing():
                    warnings.warn(
                        "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                        "take any effect! Please set the learning rate manually before each batch!"
                    )
                elif core.is_compiled_with_ipu():
                    # for ipu, tensor is allocated on cpu
1597 1598 1599 1600
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

1601
            ret = new_exe.run(list(feed.keys()), return_numpy)
1602 1603
            set_flags(stored_flag)
            return ret
1604

X
polish  
Xin Pan 已提交
1605
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1606

1607
        # Check if paddle.static.data() variable no feed data
1608 1609 1610 1611 1612 1613
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
1614
                vardesc = global_block.desc.find_var(varname.encode())
1615 1616
                varobj = global_block.vars[varname]

1617 1618 1619 1620 1621 1622 1623 1624 1625
                if (
                    vardesc.persistable() == False
                    and vardesc.type() == core.VarDesc.VarType.LOD_TENSOR
                    and vardesc.need_check_feed() == True
                    and varobj.stop_gradient == True
                    and varobj.is_data == True
                    and varobj.belong_to_optimizer == False
                    and varname not in feed
                ):
1626 1627
                    raise ValueError('Need feed data for variable %s' % varname)

1628 1629
        acp._auto_checkpoint(self, program)

1630
        program._compile(scope, self.place)
1631 1632 1633 1634
        assert (
            program._is_inference
        ), f"Program must have _is_inference = True, but get {program._is_inference}"
        return self._run_inference(program._executor, feed)
1635

X
Xin Pan 已提交
1636 1637
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1638

1639
    def _check_fetch_list(self, fetch_list):
1640
        is_fetch_var = lambda var: isinstance(var, (Variable, str))
1641 1642
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

1643 1644 1645 1646
        if fetch_list is None:
            return []
        if is_fetch_var(fetch_list):
            return [fetch_list]
1647

1648 1649 1650
        assert is_tuple_list(fetch_list), (
            "Currently , The fetch_list type only should be list or tuple, \n"
            "but the input type is {}. For more information please refer to \n"
1651
            "the executor.run(...).".format(type(fetch_list))
1652
        )
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1666 1667 1668 1669
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".format(
                        i, type(var).__name__
                    )
                )
1670 1671 1672

        return res

1673
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
1674 1675
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
1676
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1677 1678 1679
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1680 1681 1682 1683 1684 1685
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
1686 1687
                % (filelist_length, filelist_length)
            )
1688 1689 1690
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
1691 1692 1693 1694 1695
                % (filelist_length // pipeline_num, filelist_length)
            )
            pipeline_opt["concurrency_list"][0] = (
                filelist_length // pipeline_num
            )
1696 1697 1698
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

meteor135's avatar
meteor135 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
    def split_program_by_device(self, program):
        ops_list = []
        type_list = []
        pre = None
        type_cpu = "cpu"
        for op in program.global_block().ops:
            if self._is_optimizer_op(op):
                break
            if op.has_attr("op_device"):
                cur_attr = (
                    op.attr("op_device")
                    if op.attr("op_device") != ""
                    else type_cpu
                )
                if pre is None or pre != cur_attr:
                    ops_list.append([])
                    type_list.append(cur_attr)
                ops_list[-1].append(op)
                pre = cur_attr
        l = len(type_list)
        i = 0
        type_heter = None
        while i < l:
            while i < l and type_list[i] == type_cpu:
                i += 1
            if i == l:
                break

            type_heter = type_list[i]
            i += 1
            start = i
            valid = True
            while i < l and type_list[i] != type_heter:
                if type_list[i] != type_cpu:
                    valid = False
                    break
                i += 1

            if i == l:
                break
            elif not valid:
                continue

            for j in range(start, i):
                for op in ops_list[j]:
                    op._set_attr("op_device", type_heter)
                type_list[j] = type_heter
                j += 1

        pre = None
        merged_ops_list = []
        merged_type_list = []
        for i in range(l):
            if pre is None or pre != type_list[i]:
                merged_ops_list.append([])
                merged_type_list.append(type_list[i])
            merged_ops_list[-1].extend(ops_list[i])
            pre = type_list[i]

        data_vars = set()
        for k in program.global_block().vars:
            var = program.global_block().var(k)
            if not var.persistable:
                data_vars.add(var.name)

        l = len(merged_ops_list)
        inputs_pre = set()
        outputs_pre = set()
        in_from_pre = [[] for i in range(l)]
        for i in range(l):
            inputs = set()
            outputs = set()
            for op in merged_ops_list[i]:
                for input in op.input_names:
                    for tmp in op.input(input):
                        if tmp not in outputs:
                            inputs.add(tmp)
                for output in op.output_names:
                    for tmp in op.output(output):
                        outputs.add(tmp)
            if i == 0:
                in_from_pre[i] = []
            elif i == 1:
                in_from_pre[i] = (outputs_pre | data_vars) & inputs
            else:
                in_from_pre[i] = outputs_pre & inputs
            inputs_pre = copy.deepcopy(inputs)
            outputs_pre = copy.deepcopy(outputs)

        l = len(in_from_pre)
        start_list = []
        end_list = []
        send_list = [[] for i in range(l)]
        sum = 0
        program_list = []
        for i in range(l):
            start_list.append(sum)
            end_list.append(sum + len(merged_ops_list[i]) - 1)
            sum += len(merged_ops_list[i])
            if i < l - 1:
                send_list[i].extend(list(in_from_pre[i + 1]))
            prog = program.clone()
            if merged_type_list[i] != type_cpu:
                prog = prog._prune_with_input(
                    list(in_from_pre[i]), list(send_list[i])
                )
                program_list.append(prog)
            else:
                program_list.append(prog)
        recv_list = [list(i) for i in in_from_pre]
        found = False
        heter_index = None
        for i in range(len(merged_type_list)):
            t = merged_type_list[i]
            if t != type_cpu:
                if found:
                    print("only one region of program can be heter")
                found = True
                heter_index = i
        if heter_index is None:
            print("warning: non heter program")
            return None
        else:
            return [
                start_list[heter_index],
                end_list[heter_index],
                send_list[heter_index],
                recv_list[heter_index],
                program_list[heter_index],
            ]

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
    def _prepare_trainer(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
    ):
T
Thunderbrook 已提交
1841
        is_heter = 0
T
Thunderbrook 已提交
1842
        use_ps_gpu = 0
T
Thunderbrook 已提交
1843 1844 1845
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1846
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1847
                is_heter = 1
T
Thunderbrook 已提交
1848 1849
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1850 1851 1852 1853
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1854 1855 1856
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1857
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1858
        if is_heter:
meteor135's avatar
meteor135 已提交
1859
            ret = self.split_program_by_device(program)
D
dongdaxiang 已提交
1860
        if not compiled:
H
hutuxian 已提交
1861 1862 1863
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1864 1865
                    program._pipeline_opt
                )
1866 1867
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1868 1869
                    program._heter_pipeline_opt
                )
H
hutuxian 已提交
1870 1871
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1872
                trainer._set_thread_barrier(program._is_distributed)
1873
            trainer._set_program(program)
T
Thunderbrook 已提交
1874 1875
            if is_heter:
                trainer._set_heter_info(ret)
1876
        else:
H
hutuxian 已提交
1877 1878
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1879 1880
                    program.program._pipeline_opt
                )
1881 1882
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1883 1884
                    program.program._heter_pipeline_opt
                )
H
hutuxian 已提交
1885 1886
            else:
                trainer = TrainerFactory()._create_trainer(
1887 1888
                    program.program._fleet_opt
                )
1889
            trainer._set_program(program.program)
H
hutuxian 已提交
1890

1891
        if thread <= 0:
T
Thunderbrook 已提交
1892 1893 1894
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1895
                raise RuntimeError(
1896
                    "You should set thread num first, either in Dataset"
1897 1898
                    "or in Executor.train_from_dataset"
                )
D
dongdaxiang 已提交
1899
            else:
1900
                trainer._set_thread(dataset.thread_num)
1901
        else:
1902
            trainer._set_thread(thread)
H
hutuxian 已提交
1903

1904 1905
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1906
        return scope, trainer
1907

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
    def _run_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
1921 1922
        if program._pipeline_opt is not None:
            import paddle
1923

1924 1925
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
1926
            # The following fake dataset is created to call
1927 1928 1929 1930 1931
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1932 1933 1934
            dataset = paddle.fluid.DatasetFactory().create_dataset(
                'FileInstantDataset'
            )
1935 1936 1937 1938
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
1939 1940
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
1941
            # print("test_fl_stage_id: {}".format(stage_id))
1942
            heter_place = program._heter_pipeline_opt["heter_place"]
1943
            if stage_id != 0:
1944 1945
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
1946

1947 1948
                    if dataset is not None:
                        raise RuntimeError(
1949 1950
                            "dataset should be None for heter pipeline mode"
                        )
1951
                    # The following fake dataset is created to call
1952 1953 1954 1955 1956 1957
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
1958 1959
                        'InMemoryDataset'
                    )
1960 1961 1962 1963
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
1964 1965 1966
            else:
                if dataset is None:
                    raise RuntimeError(
1967 1968
                        "dataset is need and should be initialized"
                    )
1969 1970 1971 1972 1973
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
1974 1975 1976
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1977 1978

        dataset._prepare_to_run()
1979 1980
        real_fetch_list = []
        if program._pipeline_opt:
1981
            real_program = program._pipeline_opt["section_program"]
1982 1983 1984 1985 1986 1987 1988 1989
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
1990
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
1991 1992 1993 1994
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
1995 1996
                fetch_var_name='fetch',
            )
1997 1998 1999 2000 2001 2002 2003
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2004 2005
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2006
            fetch_list = None
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2017 2018 2019 2020

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2021
        if program._pipeline_opt is None:
2022 2023
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2024 2025 2026
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2027

T
tangwei12 已提交
2028
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2029

2030
        if program._heter_pipeline_opt is None:
2031 2032 2033 2034 2035
            trainer_instance = (
                self._default_executor.init_for_dataset(  # -->InitForDataset
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
            )
2036 2037
        else:
            # cache trainer instance for heterps pipeline training
2038
            if fetch_list is None:
2039 2040 2041 2042 2043
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
2044 2045 2046
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
                # print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2047 2048 2049
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2050

T
tangwei12 已提交
2051 2052 2053 2054 2055 2056
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2057 2058
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2059 2060
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2061 2062
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2063 2064

        dataset._dynamic_adjust_after_train()
2065
        dataset._finish_to_run()
2066 2067 2068 2069
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2070

2071 2072
        return None

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
    def _prepare_pipeline_ctx(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
2104 2105 2106
            dataset = paddle.fluid.DatasetFactory().create_dataset(
                'FileInstantDataset'
            )
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2127 2128 2129 2130 2131 2132 2133
            real_program = _add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch',
            )
2134 2135 2136 2137 2138 2139 2140
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2141 2142
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2143 2144 2145 2146 2147 2148 2149
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2160 2161 2162 2163 2164 2165 2166

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2167 2168 2169
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2170 2171 2172
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2173
        trainer_instance = self._default_executor.init_for_dataset(
2174 2175
            program.desc, trainer_desc, scope, dataset.dataset
        )
2176 2177

        ctx = [scope, real_fetch_list, trainer_instance]
2178 2179
        if use_program_cache:
            self._add_ctx_cache(cache_key, ctx)
2180

2181 2182
        return ctx

2183 2184 2185 2186 2187 2188
    def _prepare_fleet_executor_carrier(
        self,
        carrier_id="",
        program=None,
        scope=None,
        fleet_opt=None,
L
LiYuRio 已提交
2189
        micro_scope_list=[],
2190 2191 2192 2193 2194 2195 2196
        with_standalone_executor=False,
    ):
        num_micro_batches = (
            fleet_opt["num_micro_batches"]
            if "num_micro_batches" in fleet_opt
            else 1
        )
2197
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2198
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2199
        nrank = len(trainer_endpoints)
2200

2201 2202
        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, (
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. "
2203
            "Or you can provide a list of task nodes to init fleet executor directly."
2204
        )
2205
        if 'tasks' in fleet_opt:
2206 2207 2208 2209
            assert 'task_id_to_rank' in fleet_opt, (
                "If you provide tasks to init fleet executor,"
                " task_id_to_rank should also be provided."
            )
2210 2211 2212
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2213
        else:
2214 2215
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
2216 2217 2218 2219 2220 2221 2222 2223 2224
                from paddle.distributed.fleet.fleet_executor_utils import (
                    run1f1b,
                )

                if (
                    "dist_strategy" not in fleet_opt
                    or "pp_degree" not in fleet_opt["dist_strategy"]
                    or fleet_opt["dist_strategy"]["pp_degree"] == 1
                ):
2225 2226
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2227 2228 2229 2230 2231 2232 2233
                    program,
                    cur_rank,
                    fleet_opt.get('num_micro_batches', 1),
                    fleet_opt.get('dist_strategy', {}),
                    nrank,
                    with_standalone_executor,
                )
2234 2235
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
2236 2237 2238 2239 2240 2241 2242 2243

                if (
                    "dist_strategy" in fleet_opt
                    and "pp_degree" in fleet_opt["dist_strategy"]
                ):
                    assert (
                        fleet_opt["dist_strategy"]["pp_degree"] == 1
                    ), "For pipeline mode, the scheduler should be 1F1B instead of Origin."
2244
                if "num_micro_batches" in fleet_opt:
2245 2246 2247
                    assert (
                        fleet_opt["num_micro_batches"] == 1
                    ), "For origin scheduler mode, the num micro batches should be 1."
2248 2249
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
2250 2251 2252
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " "but received " + str(
                    scheduler
                ) + "."
2253 2254 2255
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2256 2257
        place = core.Place()
        place.set_place(self.place)
L
LiYuRio 已提交
2258

2259 2260 2261
        inference_root_scope_vars = (
            fleet_opt["fetch_var"] if "fetch_var" in fleet_opt else []
        )
2262 2263 2264 2265 2266 2267 2268 2269
        self._fleet_executor.init(
            carrier_id,
            program.desc,
            scope,
            place,
            num_micro_batches,
            tasks,
            task_id_to_rank,
2270
            inference_root_scope_vars,
L
LiYuRio 已提交
2271
            micro_scope_list,
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
        )

    def _run_using_fleet_executor(
        self,
        program=None,
        feed=None,
        feed_var_name="feed",
        fetch_var_name="fetch",
        fetch_list=None,
        with_standalone_executor=False,
2282
        return_numpy=True,
2283
    ):
2284 2285
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2286
        cached_scope = self._get_scope_cache(cache_key)
2287 2288
        micro_cached_scopes = self._get_micro_scopes_cache(cache_key)
        fleet_opt = program._pipeline_opt["fleet_opt"]
2289 2290 2291
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
2292 2293 2294 2295 2296 2297 2298 2299 2300
        if micro_cached_scopes is None:
            micro_cached_scopes = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for _ in range(int(fleet_opt["num_micro_batches"])):
                    micro_cached_scopes.append(cached_scope.new_scope())
                self._add_micro_scopes_cache(cache_key, micro_cached_scopes)
2301
        if cached_program is None:
2302 2303 2304
            assert (
                program._pipeline_opt
            ), "program should have _pipeline_opt to start carrier"
2305
            real_feed = [] if feed is None else feed
2306 2307 2308
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
2309 2310 2311 2312 2313 2314 2315
            cached_program = _add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
2316 2317 2318 2319 2320 2321 2322
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2323 2324
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2325
            self._add_program_cache(cache_key, cached_program)
2326
            fleet_opt = program._pipeline_opt["fleet_opt"]
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2338 2339 2340 2341 2342
                feed_program = self._add_feed_ops(
                    program=feed_program,
                    feed=real_feed,
                    feed_var_name=feed_var_name,
                )
2343 2344 2345 2346 2347 2348 2349 2350 2351
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
2352 2353
                    fetch_var_name=fetch_var_name,
                )
2354 2355 2356 2357 2358 2359 2360
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
2361 2362
                            core.op_proto_and_checker_maker.OpRole.Optimize,
                        )
2363 2364
                fetch_task.set_program(fetch_program)

L
LiYuRio 已提交
2365 2366 2367 2368 2369 2370 2371 2372
            micro_scope_list = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for i in range(int(fleet_opt["num_micro_batches"])):
                    micro_scope_list.append(cached_scope.new_scope())

2373 2374 2375 2376 2377
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
2378
                micro_scope_list=micro_cached_scopes,
2379 2380
                with_standalone_executor=with_standalone_executor,
            )
2381

2382
        if feed:
2383 2384 2385
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2386
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2387 2388

        from paddle.optimizer.lr import LRScheduler
2389

2390 2391 2392 2393 2394
        if hasattr(program, 'lr_scheduler'):
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_scheduler()
            lr_var = program.global_block().vars[lr_scheduler._var_name]
2395
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2396
            tensor = core.get_variable_tensor(
2397
                cached_scope, lr_scheduler._var_name
2398
            )
2399 2400
            tensor.set(data, self.place)

2401
        self._fleet_executor.run(cache_key)
L
LiYuRio 已提交
2402 2403 2404 2405 2406 2407
        if "fetch_var" in fleet_opt:
            # If we speed up the generation in evaluation, we need to generate
            # multiple queries at the same time. Each query will in separate scope in order
            # not mix up. It indicate that final result will in multiple scopes and need to
            # fetch each.
            result_list = []
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
            for scope in micro_cached_scopes:
                scope_result_list = []
                for varname in fleet_opt["fetch_var"]:
                    tensor = None
                    try:
                        tensor = core.get_variable_tensor(scope, varname)
                        if return_numpy:
                            tensor = as_numpy(tensor)
                    except:
                        var = scope.find_var(varname)
                        tensor = var.get_lod_tensor_array()
                        if return_numpy:
                            tensor = as_numpy(tensor)
                        else:
                            tensor = [t for t in tensor]

                    if tensor:
                        scope_result_list.append(tensor)

                if scope_result_list:
                    result_list.append(scope_result_list)
L
LiYuRio 已提交
2429 2430
            return result_list

2431 2432 2433 2434
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2435 2436
        return None

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
2448 2449
                persistable=True,
            )
2450 2451 2452 2453 2454 2455

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2456 2457 2458 2459 2460 2461
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i},
                    )
2462 2463 2464
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
2465 2466
                        % name
                    )
2467 2468 2469

        return tmp_program

2470
    @classmethod
2471 2472 2473
    def _add_fetch_ops(
        cls, program, fetch_list, fetch_var_name, use_fetch_v2=False
    ):
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
2484 2485
                persistable=True,
            )
2486 2487 2488 2489 2490 2491 2492

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
2493 2494 2495
        if not has_fetch_operators(
            global_block, fetch_list, fetch_var_name, fetch_op
        ):
2496 2497
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2498 2499 2500 2501 2502 2503 2504 2505
                    var, str
                ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
                global_block.append_op(
                    type=fetch_op,
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i},
                )
2506 2507 2508

        return tmp_program

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
    def _run_pipeline(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
        scope, real_fetch_list, trainer_instance = self._prepare_pipeline_ctx(
            program,
            dataset,
            scope,
            thread,
            is_infer,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
            use_program_cache,
        )
2547

2548
        from paddle.optimizer.lr import LRScheduler
2549

2550 2551 2552 2553 2554
        if hasattr(program, 'lr_scheduler'):
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_scheduler()
            lr_var = program.global_block().vars[lr_scheduler._var_name]
2555
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2556
            tensor = core.get_variable_tensor(scope, lr_scheduler._var_name)
2557 2558
            tensor.set(data, self.place)

2559 2560
        self._default_executor.run_from_dataset(trainer_instance)

2561 2562 2563
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2564 2565 2566 2567 2568 2569 2570
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
    def infer_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2583
        """
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2595

2596 2597
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2598
                if not provided, then default_main_program (not compiled) will be used.
2599
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2600 2601
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2602
            scope(Scope): the scope used to run this program, you can switch it to different scope
2603 2604 2605
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2606
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2607
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2608
                training, default is None
2609
            fetch_info(String List): print information for each Tensor, default is None
2610
            print_period(int): the number of mini-batches for each print, default is 100
2611
            fetch_handler(FetchHandler): a user define class for fetch output.
2612

2613 2614 2615 2616
        Returns:
            None

        Examples:
2617 2618

            .. code-block:: python
2619

2620
                import paddle
2621

2622 2623 2624 2625 2626 2627
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2628
                dataset.set_use_var([x, y])
2629
                dataset.set_thread(1)
2630 2631
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2632
                dataset.set_filelist(filelist)
2633 2634 2635
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2636

2637
        """
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            True,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )

    def start_heter_trainer(
        self,
        program=None,
        scope=None,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
T
Thunderbrook 已提交
2671

2672
        trainer._set_infer(False)
T
Thunderbrook 已提交
2673 2674 2675 2676 2677
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
2678 2679
            program.desc, trainer._desc(), scope, None
        )
T
Thunderbrook 已提交
2680

2681
        # if fetch_handler is not None:
T
Thunderbrook 已提交
2682 2683 2684 2685 2686 2687
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
2688
        # else:
T
Thunderbrook 已提交
2689 2690

        self._default_executor.run_from_dataset(trainer_instance)
2691
        # self._default_executor.release_trainer(trainer_instance)
T
Thunderbrook 已提交
2692 2693 2694

        return trainer_instance

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
    def train_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2707 2708 2709 2710 2711 2712 2713 2714
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2715

2716 2717 2718 2719
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2720
                if not provided, then default_main_program (not compiled) will be used.
2721
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2722 2723
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2724
            scope(Scope): the scope used to run this program, you can switch it to different scope
2725 2726 2727
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2728
            debug(bool): whether a user wants to run train_from_dataset
2729
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2730
                during training
2731
            fetch_info(String List): print information for each Tensor, its length should be equal
2732 2733
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2734
            fetch_handler(FetchHandler): a user define class for fetch output.
2735 2736 2737

        Returns:
            None
2738

2739
        Examples:
2740

2741 2742
            .. code-block:: python

2743
              import paddle
2744

2745 2746 2747 2748 2749 2750
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2751
              dataset.set_use_var([x, y])
2752
              dataset.set_thread(1)
2753 2754
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2755
              dataset.set_filelist(filelist)
2756 2757
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2758
                                     dataset=dataset)
2759 2760

        """
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            False,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )