Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c9ae1362
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c9ae1362
编写于
7月 06, 2021
作者:
W
WangXi
提交者:
GitHub
7月 06, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[hybrid performance] pipeline add program cache (#33954)
上级
6b95e674
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
139 addition
and
1 deletion
+139
-1
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+139
-1
未找到文件。
python/paddle/fluid/executor.py
浏览文件 @
c9ae1362
...
...
@@ -1135,7 +1135,10 @@ class Executor(object):
if
"startup_program"
in
program
.
_pipeline_opt
:
program
=
program
.
_pipeline_opt
[
"startup_program"
]
else
:
return
self
.
train_from_dataset
(
program
,
fetch_list
=
fetch_list
)
return
self
.
_run_pipeline
(
program
,
fetch_list
=
fetch_list
,
use_program_cache
=
use_program_cache
)
if
isinstance
(
program
,
Program
)
and
\
len
(
program
.
global_block
().
ops
)
==
0
:
if
use_default_main_program
:
...
...
@@ -1537,6 +1540,141 @@ class Executor(object):
return
None
def
_prepare_pipeline_ctx
(
self
,
program
=
None
,
dataset
=
None
,
scope
=
None
,
thread
=
0
,
is_infer
=
False
,
debug
=
False
,
fetch_list
=
None
,
fetch_info
=
None
,
print_period
=
100
,
fetch_handler
=
None
,
use_program_cache
=
False
):
assert
program
.
_pipeline_opt
is
not
None
assert
dataset
is
None
,
"dataset should be None for pipeline mode"
cache_key
=
_get_strong_program_cache_key
(
program
,
None
,
fetch_list
)
ctx
=
self
.
_get_ctx_cache
(
cache_key
)
if
use_program_cache
and
ctx
is
not
None
:
return
ctx
import
paddle
# The following fake dataset is created to call
# the _prepare_trainer api, and it is meaningless.
def
_get_dataset
():
data_vars
=
[]
for
var
in
program
.
global_block
().
vars
.
values
():
if
var
.
is_data
:
data_vars
.
append
(
var
)
if
core
.
is_compiled_with_npu
():
dataset
=
paddle
.
fluid
.
DatasetFactory
().
create_dataset
(
'InMemoryDataset'
)
else
:
dataset
=
paddle
.
fluid
.
DatasetFactory
().
create_dataset
(
'FileInstantDataset'
)
dataset
.
set_batch_size
(
1
)
dataset
.
set_thread
(
1
)
dataset
.
set_filelist
([
'None'
])
dataset
.
set_use_var
(
data_vars
)
dataset
.
_prepare_to_run
()
return
dataset
dataset
=
_get_dataset
()
def
_get_real_program_fetch_list
():
real_program
=
program
.
_pipeline_opt
[
"section_program"
]
real_fetch_list
=
[]
for
fetch_var
in
fetch_list
:
if
isinstance
(
fetch_var
,
Variable
):
fetch_var_name
=
fetch_var
.
name
else
:
fetch_var_name
=
fetch_var
if
fetch_var_name
in
real_program
.
global_block
().
vars
:
real_fetch_list
.
append
(
fetch_var
)
real_program
=
self
.
_add_feed_fetch_ops
(
program
=
real_program
,
feed
=
[],
fetch_list
=
real_fetch_list
,
feed_var_name
=
'feed'
,
fetch_var_name
=
'fetch'
)
main_block
=
real_program
.
block
(
0
)
for
op
in
main_block
.
ops
:
# set the op_role of fetch op to Optimize to avoid
# erase the fetched vars by gc for pipeline
if
op
.
type
==
'fetch'
:
op
.
_set_attr
(
'op_role'
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
)
return
real_program
,
real_fetch_list
real_program
,
real_fetch_list
=
_get_real_program_fetch_list
()
program
.
_pipeline_opt
[
"section_program"
]
=
real_program
fetch_list
=
None
scope
,
trainer
=
self
.
_prepare_trainer
(
program
=
program
,
dataset
=
dataset
,
scope
=
scope
,
thread
=
thread
,
debug
=
debug
,
fetch_list
=
fetch_list
,
fetch_info
=
fetch_info
,
print_period
=
print_period
)
trainer
.
_set_infer
(
is_infer
)
trainer
.
_gen_trainer_desc
()
# NOTE: only for debug, very slow
# self._dump_debug_info(program=program, trainer=trainer)
# in case of calling _set_use_ps_gpu explicitly
if
dataset
.
use_ps_gpu
is
False
:
dataset
.
_set_use_ps_gpu
(
trainer
.
proto_desc
.
use_ps_gpu
)
dataset
.
_dynamic_adjust_before_train
(
trainer
.
proto_desc
.
thread_num
)
trainer_desc
=
trainer
.
_desc
()
# slow, cache
ctx
=
[
trainer_desc
,
dataset
,
scope
,
real_fetch_list
]
if
use_program_cache
:
self
.
_add_ctx_cache
(
cache_key
,
ctx
)
return
ctx
def
_run_pipeline
(
self
,
program
=
None
,
dataset
=
None
,
scope
=
None
,
thread
=
0
,
is_infer
=
False
,
debug
=
False
,
fetch_list
=
None
,
fetch_info
=
None
,
print_period
=
100
,
fetch_handler
=
None
,
use_program_cache
=
False
):
trainer_desc
,
dataset
,
scope
,
real_fetch_list
=
\
self
.
_prepare_pipeline_ctx
(
program
,
dataset
,
scope
,
thread
,
is_infer
,
debug
,
fetch_list
,
fetch_info
,
print_period
,
fetch_handler
,
use_program_cache
)
trainer_instance
=
self
.
_default_executor
.
init_for_dataset
(
program
.
desc
,
trainer_desc
,
scope
,
dataset
.
dataset
)
self
.
_default_executor
.
run_from_dataset
(
trainer_instance
)
self
.
_default_executor
.
release_trainer
(
trainer_instance
)
dataset
.
_dynamic_adjust_after_train
()
dataset
.
_finish_to_run
()
if
real_fetch_list
:
arr
=
scope
.
find_var
(
'fetch'
).
get_fetch_list
()
tensors
=
arr
.
_move_to_list
()
return
as_numpy
(
tensors
)
return
None
def
infer_from_dataset
(
self
,
program
=
None
,
dataset
=
None
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录