executor.py 107.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator
27
from .framework import convert_np_dtype_to_dtype_
28
from . import core
29
from . import unique_name
30 31
from . import compiler
from .. import compat as cpt
32
from .trainer_factory import TrainerFactory
33
from .trainer_factory import FetchHandlerMonitor
34
import copy
35
from . import framework
36
from .incubate.checkpoint import auto_checkpoint as acp
37
from .compiler import _prune_feed_ops
38

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78
    
79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96
    
97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
D
dzhwinter 已提交
147
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
148 149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
151
    if tensor._is_initialized():
152 153 154 155
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
156 157
    else:
        return None
D
dzhwinter 已提交
158 159


H
Huihuang Zheng 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
184 185
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


213
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
214 215
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
216
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
217 218 219

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
220 221
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
222 223 224 225
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
226
        feed (LoDTensor): the fed value, which must be a LoDTensor
227 228
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
229 230 231 232 233 234 235
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
236 237
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
238
            raise ValueError(
T
tianshuo78520a 已提交
239 240
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
241
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
242
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
243 244 245 246 247
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
248 249
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
250 251 252
    return True


253 254 255 256 257 258 259 260 261 262 263 264
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
265 266
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
267 268 269
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
270
        A boolean value that indicates whether a block has feed operators
271 272 273 274 275 276 277 278 279 280
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
281 282 283
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
                        feed_target_name))
284 285 286 287 288 289 290 291
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


292 293 294 295
def has_fetch_operators(block,
                        fetch_targets,
                        fetch_holder_name,
                        fetch_op='fetch'):
296
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
297

298 299 300 301 302 303 304 305 306
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
307 308 309
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
310
        fetch_op: the operator name of fetch
311

X
xuwei06 已提交
312 313 314
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
315 316 317 318
    """

    fetch_count = 0
    for op in block.ops:
319
        if op.desc.type() == fetch_op:
320 321 322 323 324 325
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
326 327 328
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
                        fetch_target_name))
329 330 331 332 333 334 335 336
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
337
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
338
    """
C
chengduoZH 已提交
339 340 341
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
342
    Args:
343 344 345 346
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
347 348 349 350
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
351 352 353
    Returns:
       LodTensor|numpy.ndarray
    """
354
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
355 356
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
357
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
358

359
    var = scope.find_var(_to_name_str(name))
360 361 362 363
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
364 365
    tensor = var.get_tensor()
    if return_numpy:
366
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
367 368 369
    return tensor


X
polish  
Xin Pan 已提交
370
def _to_name_str(var):
371

372 373 374 375 376 377 378 379
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
380
            return str(id(var))
381 382 383 384 385 386 387 388 389 390
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
391
    else:
392
        return _to_str(var)
Q
qiaolongfei 已提交
393 394


395 396 397 398 399
def _is_enable_standalone_executor():
    """
    Whether to use experimental executor `StandaloneExecutor`.
    """
    flag = False
400

401 402 403 404 405 406 407
    from ..distributed.fleet import fleet
    if fleet._role_maker is not None:
        warnings.warn("do not use standalone executor in fleet by default")
        env_val = os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR', None)
    else:
        env_val = os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR', '1')

408 409
    if env_val in [1, '1', True, 'True', 'true']:
        flag = True
410

411 412 413
    return flag


414 415 416 417 418 419 420 421 422 423 424 425
def _is_standalone_executor_enable_compiled_program():
    """
    Whether to use experimental executor `StandaloneExecutor` in CompiledProgram.
    Convert Graph to Program.
    """
    flag = False
    env_val = os.environ.get('FLAGS_CONVERT_GRAPH_TO_PROGRAM', None)
    if env_val in [1, '1', True, 'True', 'true']:
        flag = True
    return flag


426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


443
def _get_strong_program_cache_key(program, feed, fetch_list):
444
    # NOTE(xiongkun) id(proram) may be duplicate. So add addition var_name as cache key.
445 446 447 448 449 450 451 452
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

    inner_program = program._program if isinstance(
        program, compiler.CompiledProgram) else program
453 454
    return _get_varname_from_block(inner_program.blocks[0]) + str(
        id(program)) + _get_program_cache_key(feed, fetch_list)
455 456


X
polish  
Xin Pan 已提交
457
def _get_program_cache_key(feed, fetch_list):
458 459 460 461 462 463
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
464
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
465 466 467
    return str(feed_var_names + fetch_var_names)


468
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
482
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
483
            data(core.Place): the place of created tensor
484
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
485 486 487 488

        Returns:
            LoDTensor
        """
489
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
490
    if not isinstance(data, np.ndarray):
491 492 493
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
494 495
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
496 497
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
498
            if data.dtype == np.object_:
499 500 501 502 503 504 505 506 507 508
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
509

510
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
511 512 513 514 515
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


516
class FetchHandler(object):
517

D
Dong Daxiang 已提交
518 519 520
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
521 522
        self.period_secs = period_secs

D
Dong Daxiang 已提交
523 524 525 526 527
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
528 529 530 531

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
532 533 534 535 536 537 538 539
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
540 541 542
""")


543
class _StandaloneExecutor(object):
544

545
    def __init__(self, place, main_program, scope):
546 547 548
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
549
        self._scope = scope
550 551
        self._new_exe = self._create_new_executor()

552
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
553 554
        """
        Args:
555
            feed_names(list): This parameter represents the input names of the model.
556 557 558 559 560 561 562 563
            fetch_list(list): This parameter represents the Tensors that need to be returned
                after the model runs. The default is None. 
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

564 565
        tensors = self._new_exe.run(scope, feed_names,
                                    fetch_list)._move_to_list()
566 567 568 569 570 571 572 573 574
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
        # NOTE: It's a trick to set empty start_up program.
        startup_program = Program()
        new_exe = core.StandaloneExecutor(self._place, startup_program.desc,
575
                                          self._main_program.desc, self._scope)
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

        return new_exe

    def _update_feed(self, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % feed_name)
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
                    "Required fetch_var shall be str|Variable, but received {}".
                    format(type(fetch_var).__name__))

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
631

632 633 634 635 636 637
    def __init__(self, place):
        # {Program : _StandaloneExecutor}
        self._place = place
        self._cached_executors = {}


Y
Yu Yang 已提交
638
class Executor(object):
639
    """
640 641
    :api_attr: Static Graph

642
    An Executor in Python, supports single/multiple-GPU running,
643
    and single/multiple-CPU running.
C
chengduo 已提交
644 645

    Args:
646
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
647 648 649 650
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
651
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x`` 
652 653 654
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_ 
C
chengduo 已提交
655 656 657

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
658

659
    Examples:
S
Fix doc  
sneaxiy 已提交
660 661
        .. code-block:: python

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

713 714
    """

715 716
    def __init__(self, place=None):
        if place is None:
717 718
            expected_place = framework._current_expected_place()
            self.place = expected_place
719
        else:
720
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
721
        self.program_caches = dict()
722
        self.ctx_caches = dict()
723
        self.trainer_caches = dict()
724 725
        self.scope_caches = dict()
        self.var_caches = dict()
726
        self.pruned_program_caches = dict()
727 728 729
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
730
        self._closed = False
731
        self.pruned_program_scope_caches = dict()
732
        self._prepare_to_run_called = False
D
dzhwinter 已提交
733

734 735 736
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_executor__")

737 738 739 740
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
        self._executor_cache = _ExecutorCache(self.place)

741 742
        self._fleet_executor = None

743 744 745
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

746 747 748
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

749 750 751
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
752 753 754 755 756 757
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

758 759 760 761 762 763 764 765 766 767 768 769
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

770 771 772
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

773 774 775
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

776 777 778
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

779 780 781 782 783 784
    def _add_feed_fetch_ops(self,
                            program,
                            feed,
                            fetch_list,
                            feed_var_name,
                            fetch_var_name,
785
                            use_fetch_v2=False):
Q
Qiao Longfei 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
809 810
                if global_block.has_var(name):
                    out = global_block.var(name)
811 812 813 814
                    global_block._prepend_op(type='feed',
                                             inputs={'X': [feed_var]},
                                             outputs={'Out': [out]},
                                             attrs={'col': i})
815 816 817 818
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
819 820 821 822 823

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'
824

Q
Qiao Longfei 已提交
825
        # append fetch_operators
826 827
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
Q
Qiao Longfei 已提交
828
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
829
                assert isinstance(var, Variable) or isinstance(
830 831 832 833 834 835 836
                    var,
                    six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                        (i, type(var)))
                global_block.append_op(type=fetch_op,
                                       inputs={'X': [var]},
                                       outputs={'Out': [fetch_var]},
                                       attrs={'col': i})
Q
Qiao Longfei 已提交
837 838 839 840 841

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
842 843
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
844 845 846
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
847
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
848 849 850 851 852
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
                        cur_feed = _as_lodtensor(cur_feed, self.place,
                                                 var.dtype)
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
853 854 855 856 857 858 859 860
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
861
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
862 863 864
        ]
        return outs

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
894
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
895 896
                    type(item))

897
        for index, item in enumerate(fetch_list):
898 899 900 901 902 903 904
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
905 906
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
907 908 909
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`."
                        .format(index, index, index,
                                type(item[0]).__name__))
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
1023 1024 1025 1026 1027 1028
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1029 1030
    def close(self):
        """
C
chengduo 已提交
1031 1032 1033
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1034

C
chengduo 已提交
1035 1036
        Returns:
            None
1037 1038 1039 1040

        Examples:
            .. code-block:: python

1041
              import paddle
1042

1043 1044
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1045 1046
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1047
        """
1048
        if not self._closed:
Y
Yancey1989 已提交
1049
            self._closed = True
1050 1051 1052 1053
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1054

X
fix  
Xin Pan 已提交
1055
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
1056
                      return_numpy, return_merged):
1057
        from paddle.optimizer.lr import LRScheduler
1058
        exe = program._executor
H
Huihuang Zheng 已提交
1059 1060 1061 1062 1063
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1064 1065 1066 1067
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1068
                var = global_block.var(feed_name) if need_check_feed else None
1069
                if not isinstance(feed_tensor, core.LoDTensor):
1070
                    # always set to CPU place, since the tensor need to be split
1071
                    # it is fast in CPU
1072
                    feed_tensor = _as_lodtensor(feed[feed_name],
1073 1074
                                                core.CPUPlace(),
                                                var.dtype if var else None)
H
Huihuang Zheng 已提交
1075
                if need_check_feed:
1076
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1077
                feed_tensor_dict[feed_name] = feed_tensor
1078
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1089 1090
                    var = global_block.var(
                        feed_name) if need_check_feed else None
1091
                    if not isinstance(tensor, core.LoDTensor):
1092
                        tensor = _as_lodtensor(each[feed_name],
1093 1094
                                               program._places[i],
                                               var.dtype if var else None)
H
Huihuang Zheng 已提交
1095 1096
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1097 1098
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1099

1100
            exe.feed_tensors_into_local_scopes(res)
1101

1102 1103
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1104
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1105 1106 1107
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1108 1109 1110 1111 1112 1113
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
1114 1115
                exe.feed_and_split_tensor_into_local_scopes(
                    {lr_sheduler._var_name: lr_tensor})
1116

X
polish  
Xin Pan 已提交
1117
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1118
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1119
        return as_numpy(tensors) if return_numpy else tensors
1120

Y
Yu Yang 已提交
1121
    def run(self,
Y
Yu Yang 已提交
1122
            program=None,
1123 1124
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
1125
            feed_var_name='feed',
Y
Yu Yang 已提交
1126
            fetch_var_name='fetch',
D
dzhwinter 已提交
1127
            scope=None,
1128
            return_numpy=True,
Z
Zhen Wang 已提交
1129
            use_program_cache=False,
1130 1131
            return_merged=True,
            use_prune=False):
1132
        """
C
chengduo 已提交
1133 1134 1135
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1136 1137
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1138

C
chengduo 已提交
1139 1140 1141
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1142
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1143
                The default is None.
1144
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1145
                If it is single card training, the feed is dict type, and if it is multi-card
1146
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1147 1148 1149 1150 1151 1152 1153
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1154
            fetch_list(list): This parameter represents the Tensors that need to be returned
1155
                after the model runs. The default is None. 
1156
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1157
                the feed operator. The default is "feed".
1158
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1159 1160
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
1161 1162 1163
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1164 1165 1166
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1167 1168
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1169
                The default is False.
1170
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1171 1172
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1173 1174 1175 1176 1177 1178 1179 1180
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1181 1182 1183 1184 1185 1186 1187
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1204 1205
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1206

Z
Zhen Wang 已提交
1207
        Examples 1:
1208 1209
            .. code-block:: python

1210 1211
                import paddle
                import numpy
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1225

1226 1227
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1228

1229 1230 1231 1232 1233
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1234 1235 1236 1237

        Examples 2:
            .. code-block:: python

1238
                import paddle
Z
Zhen Wang 已提交
1239 1240 1241
                import numpy as np

                # First create the Executor.
1242 1243 1244
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1245

1246
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1247
                class_dim = 2
1248 1249 1250
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1251 1252 1253
                adam.minimize(loss)

                # Run the startup program once and only once.
1254 1255 1256 1257 1258
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1259 1260 1261 1262
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1263 1264 1265 1266
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1267 1268 1269 1270
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1271 1272
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1273 1274 1275
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1276 1277 1278 1279
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1280 1281
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1282 1283
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1284
                print(merged_prediction)
1285
 
Z
Zhen Wang 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1300

1301
        """
C
chengduo 已提交
1302
        try:
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
            res = self._run_impl(program=program,
                                 feed=feed,
                                 fetch_list=fetch_list,
                                 feed_var_name=feed_var_name,
                                 fetch_var_name=fetch_var_name,
                                 scope=scope,
                                 return_numpy=return_numpy,
                                 use_program_cache=use_program_cache,
                                 use_prune=use_prune,
                                 return_merged=return_merged)
1313 1314
            core.update_autotune_status()
            return res
C
chengduo 已提交
1315
        except Exception as e:
1316
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1317 1318

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1319
                  fetch_var_name, scope, return_numpy, use_program_cache,
1320
                  return_merged, use_prune):
Y
Yancey1989 已提交
1321 1322 1323
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1324
        use_default_main_program = program is None
1325 1326
        if program is None:
            program = default_main_program()
1327

1328
        fetch_list = self._check_fetch_list(fetch_list)
1329 1330

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1331
            if "fleet_opt" in program._pipeline_opt:
1332 1333 1334
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1335 1336 1337
                return self._run_using_fleet_executor(program=program,
                                                      feed=feed,
                                                      fetch_list=fetch_list)
1338 1339 1340
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1341 1342 1343
                return self._run_pipeline(program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache)
1344 1345

        if isinstance(program, Program) and program._heter_pipeline_opt:
1346 1347
            #print("program._heter_pipeline_opt: {}".format(
            #    program._heter_pipeline_opt))
1348
            ## change default executor
1349 1350 1351 1352 1353 1354
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1355
            if "startup_program" in program._heter_pipeline_opt:
1356
                #print("get startup_program from _pipeline_opt")
1357 1358
                program = program._heter_pipeline_opt["startup_program"]

C
chengduo 已提交
1359
        if isinstance(program, Program) and \
1360
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1361
            if use_default_main_program:
1362 1363 1364 1365 1366 1367 1368 1369
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1370
            warnings.warn(error_info)
1371

1372 1373
        if scope is None:
            scope = global_scope()
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1407
        def _can_use_interpreter_core(program, place):
1408 1409 1410
            if core.is_compiled_with_npu() or core.is_compiled_with_mlu(
            ) or core.is_compiled_with_ipu() or isinstance(
                    place, core.CustomPlace):
1411 1412
                return False

1413
            compiled = isinstance(program, compiler.CompiledProgram)
1414
            # print("compiled is : {}".format(compiled))
1415
            # NOTE(zhiqiu): do not support compiled program now
1416
            if compiled:
1417 1418 1419
                if program._program is not None and _is_standalone_executor_enable_compiled_program(
                ):
                    return True
1420 1421 1422 1423 1424 1425
                return False
                # if program._is_data_parallel and len(
                #         program._get_places(place, program._places)) == 1:
                #     return True
                # else:
                #     return False
1426
            else:
1427 1428
                if isinstance(program._graph, compiler.CompiledProgram):
                    return False
1429 1430 1431
                assert isinstance(program, Program)
                return True

1432 1433
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
1434 1435 1436
        if self._enable_interpreter_core and _can_use_interpreter_core(
                program, self.place):
            inner_program = program._program if isinstance(
1437
                program, compiler.CompiledProgram) else program
1438
            if not inner_program._is_start_up_program_:
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
                if feed is None:
                    feed = {}
                elif isinstance(feed, (list, tuple)):
                    assert len(feed) == 1, "Not compiled with data parallel"
                    feed = feed[0]
                if not isinstance(feed, dict):
                    raise TypeError(
                        "feed requires dict as its Parameter. But you passed in %s"
                        % (type(feed)))
                feed = self._update_feed(program, feed)
1449 1450 1451 1452 1453 1454 1455

                key = _get_strong_program_cache_key(inner_program, feed,
                                                    fetch_list)

                # a little bit tricy here, use inner_program before _add_feed_fetch_ops to get key
                # while use program to geet _StandaloneExecutor
                if key not in self._executor_cache._cached_executors:
1456 1457 1458 1459 1460 1461
                    if isinstance(program, compiler.CompiledProgram):
                        program._compile(scope, self.place)
                        compiled_graph = program._graph
                        ir_graph = framework.IrGraph(compiled_graph,
                                                     for_test=True)
                        inner_program = ir_graph.to_program()
1462 1463 1464 1465 1466 1467 1468 1469
                    program = self._add_feed_fetch_ops(
                        program=inner_program,
                        feed=feed,
                        fetch_list=fetch_list,
                        feed_var_name=feed_var_name,
                        fetch_var_name=fetch_var_name,
                        use_fetch_v2=True)

1470 1471 1472
                    new_program = program.clone()
                    new_exe = _StandaloneExecutor(self.place, new_program,
                                                  scope)
1473 1474
                    self._executor_cache._cached_executors[key] = (new_program,
                                                                   new_exe)
1475

1476
                program, new_exe = self._executor_cache._cached_executors[key]
1477

1478 1479 1480 1481 1482 1483 1484 1485
                self._feed_data(program, feed, feed_var_name, scope)
                if hasattr(program, 'lr_sheduler'):
                    from paddle.optimizer.lr import LRScheduler
                    assert isinstance(program.lr_sheduler,
                                      LRScheduler), "must be LRScheduler"
                    lr_sheduler = program.lr_sheduler
                    lr_value = lr_sheduler()
                    lr_var = program.global_block().vars[lr_sheduler._var_name]
1486 1487
                    data = np.array([lr_value
                                     ]).astype(convert_dtype(lr_var.dtype))
1488 1489
                    tensor = core.get_variable_tensor(scope,
                                                      lr_sheduler._var_name)
1490
                    # NOTE(dev): `set` always call TensorCopySync that is a
1491 1492 1493
                    # blocking behavior. So we use `_copy_from` to replace it.
                    cpu_tensor = _as_lodtensor(data, core.CPUPlace())
                    tensor._copy_from(cpu_tensor, self.place)
1494

1495 1496
                return new_exe.run(scope, list(feed.keys()), fetch_list,
                                   return_numpy)
1497

X
polish  
Xin Pan 已提交
1498
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
                vardesc = global_block.desc.find_var(cpt.to_bytes(varname))
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
                if vardesc.persistable() == False and \
                    vardesc.type() == core.VarDesc.VarType.LOD_TENSOR and \
                    vardesc.need_check_feed() == True and \
1514
                    varobj.stop_gradient == True and \
1515 1516 1517 1518 1519
                    varobj.is_data == True and \
                    varobj.belong_to_optimizer == False and \
                    varname not in feed:
                    raise ValueError('Need feed data for variable %s' % varname)

1520 1521
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1522
        # For backward compatibility, run directly.
1523
        if not compiled:
1524 1525 1526
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
1527

1528 1529 1530 1531 1532
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
                return self._run_parallel(program._graph,
                                          scope=scope,
                                          feed=feed,
                                          fetch_list=fetch_list,
                                          fetch_var_name=fetch_var_name,
                                          return_numpy=return_numpy,
                                          return_merged=return_merged)

            return self._run_program(program,
                                     feed=feed,
                                     fetch_list=fetch_list,
                                     feed_var_name=feed_var_name,
                                     fetch_var_name=fetch_var_name,
                                     scope=scope,
                                     return_numpy=return_numpy,
                                     use_program_cache=use_program_cache)
1549 1550

        program._compile(scope, self.place)
C
chengduo 已提交
1551 1552 1553
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1554 1555 1556 1557 1558 1559 1560
            return self._run_parallel(program,
                                      scope=scope,
                                      feed=feed,
                                      fetch_list=fetch_list,
                                      fetch_var_name=fetch_var_name,
                                      return_numpy=return_numpy,
                                      return_merged=return_merged)
1561

C
chengduo 已提交
1562
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1563
                     fetch_var_name, scope, return_numpy, use_program_cache):
1564
        from paddle.optimizer.lr import LRScheduler
1565 1566
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1567 1568 1569 1570
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1571
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1572 1573 1574
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1575

1576
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1577
        if not isinstance(program, Program):
D
dzhwinter 已提交
1578 1579 1580
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1581

1582 1583 1584 1585 1586
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
                % (type(fetch_var_name)))

1587
        if use_program_cache:
1588
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1589
            cached_program = self._get_program_cache(cache_key)
1590
            cached_ctx = self._get_ctx_cache(cache_key)
1591
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1592 1593 1594 1595 1596 1597 1598 1599
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1600
                fetch_list_str = list(map(_to_name_str, fetch_list))
1601
                cached_ctx = self._default_executor.prepare(
1602 1603 1604 1605 1606 1607 1608
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1609 1610
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1611
                self._add_ctx_cache(cache_key, cached_ctx)
1612
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1613
            program = cached_program
1614
            ctx = cached_ctx
1615
            scope = cached_scope
1616
        else:
1617 1618 1619 1620 1621
            program = self._add_feed_fetch_ops(program=program,
                                               feed=feed,
                                               fetch_list=fetch_list,
                                               feed_var_name=feed_var_name,
                                               fetch_var_name=fetch_var_name)
Q
Qiao Longfei 已提交
1622 1623

        self._feed_data(program, feed, feed_var_name, scope)
1624 1625
        if hasattr(program, 'lr_sheduler'):
            assert isinstance(program.lr_sheduler,
1626
                              LRScheduler), "must be LRScheduler"
1627 1628 1629 1630 1631 1632 1633
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1634
        if not use_program_cache:
C
chengduo 已提交
1635
            self._default_executor.run(program.desc, scope, 0, True, True,
1636
                                       [fetch_var_name])
1637
        else:
1638 1639
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1640
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1641
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1642
        if return_numpy:
1643 1644 1645
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1646

X
Xin Pan 已提交
1647 1648
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1649

1650
    def _check_fetch_list(self, fetch_list):
1651 1652
        is_fetch_var = lambda var: isinstance(var,
                                              (Variable, str, six.string_types))
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

        if fetch_list is None: return []
        if is_fetch_var(fetch_list): return [fetch_list]

        assert is_tuple_list(fetch_list), \
            "Currently , The fetch_list type only should be list or tuple, \n"\
            "but the input type is {}. For more information please refer to \n"\
            "the executor.run(...).".format(type(fetch_list))

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1675 1676 1677
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}."
                    .format(i,
                            type(var).__name__))
1678 1679 1680

        return res

1681 1682
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
1683
            fout.write(str(trainer))
1684
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1685 1686 1687
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1704 1705 1706 1707 1708 1709 1710 1711 1712
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1713
        is_heter = 0
T
Thunderbrook 已提交
1714
        use_ps_gpu = 0
T
Thunderbrook 已提交
1715 1716 1717
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1718
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1719
                is_heter = 1
T
Thunderbrook 已提交
1720 1721
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1722 1723 1724 1725
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1726 1727 1728
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1729
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1730 1731 1732 1733 1734
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1735
        if not compiled:
H
hutuxian 已提交
1736 1737 1738 1739
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
1740 1741 1742
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._heter_pipeline_opt)
H
hutuxian 已提交
1743 1744
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1745
                trainer._set_thread_barrier(program._is_distributed)
1746
            trainer._set_program(program)
T
Thunderbrook 已提交
1747 1748
            if is_heter:
                trainer._set_heter_info(ret)
1749
        else:
H
hutuxian 已提交
1750 1751 1752
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
1753 1754 1755
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._heter_pipeline_opt)
H
hutuxian 已提交
1756 1757 1758
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1759
            trainer._set_program(program.program)
H
hutuxian 已提交
1760

1761
        if thread <= 0:
T
Thunderbrook 已提交
1762 1763 1764
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1765
                raise RuntimeError(
1766 1767
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1768
            else:
1769
                trainer._set_thread(dataset.thread_num)
1770
        else:
1771
            trainer._set_thread(thread)
H
hutuxian 已提交
1772

1773 1774
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1775
        return scope, trainer
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1788 1789 1790 1791
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
1792
            # The following fake dataset is created to call
1793 1794 1795 1796 1797
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1798 1799 1800 1801 1802 1803
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
1804 1805 1806 1807
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
1808 1809
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
1810
            #print("test_fl_stage_id: {}".format(stage_id))
1811
            heter_place = program._heter_pipeline_opt["heter_place"]
1812
            if stage_id != 0:
1813 1814 1815 1816 1817
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
                    if dataset is not None:
                        raise RuntimeError(
                            "dataset should be None for heter pipeline mode")
1818
                    # The following fake dataset is created to call
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
                        'InMemoryDataset')
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
1830 1831 1832 1833
            else:
                if dataset is None:
                    raise RuntimeError(
                        "dataset is need and should be initialized")
1834 1835 1836 1837 1838
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
1839 1840 1841
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1842 1843

        dataset._prepare_to_run()
1844 1845
        real_fetch_list = []
        if program._pipeline_opt:
1846
            real_program = program._pipeline_opt["section_program"]
1847 1848 1849 1850 1851 1852 1853 1854
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
            program._pipeline_opt["section_program"] = self._add_feed_fetch_ops(
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
1869
            fetch_list = None
1870 1871 1872 1873 1874 1875 1876 1877
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
1878 1879 1880 1881

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

1882
        if program._pipeline_opt is None:
1883 1884
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
1885 1886 1887
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
1888

T
tangwei12 已提交
1889
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1890

1891
        if program._heter_pipeline_opt is None:
1892
            trainer_instance = self._default_executor.init_for_dataset(  # -->InitForDataset
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
                program.desc, trainer._desc(), scope, dataset.dataset)
        else:
            # cache trainer instance for heterps pipeline training
            if fetch_list == None:
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
                    program.desc, trainer._desc(), scope, dataset.dataset)
1903
                #print("test_fl_ps - trainer_desc: {}\n".format(trainer))
1904 1905 1906
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
1907

T
tangwei12 已提交
1908 1909 1910 1911 1912 1913
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
1914 1915
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1916 1917
        else:
            self._default_executor.run_from_dataset(trainer_instance)
1918 1919
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1920 1921

        dataset._dynamic_adjust_after_train()
1922
        dataset._finish_to_run()
1923 1924 1925 1926
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
1927

1928 1929
        return None

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
    def _prepare_pipeline_ctx(self,
                              program=None,
                              dataset=None,
                              scope=None,
                              thread=0,
                              is_infer=False,
                              debug=False,
                              fetch_list=None,
                              fetch_info=None,
                              print_period=100,
                              fetch_handler=None,
                              use_program_cache=False):
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

1985 1986 1987 1988 1989
            real_program = self._add_feed_fetch_ops(program=real_program,
                                                    feed=[],
                                                    fetch_list=real_fetch_list,
                                                    feed_var_name='feed',
                                                    fetch_var_name='fetch')
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2005 2006 2007 2008 2009 2010 2011 2012
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
2013 2014 2015 2016 2017 2018 2019

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2020 2021 2022
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2023 2024 2025
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2026 2027 2028 2029
        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer_desc, scope, dataset.dataset)

        ctx = [scope, real_fetch_list, trainer_instance]
2030
        if use_program_cache: self._add_ctx_cache(cache_key, ctx)
2031

2032 2033
        return ctx

2034 2035 2036 2037 2038 2039 2040
    def _prepare_fleet_executor_carrier(self,
                                        carrier_id="",
                                        program=None,
                                        scope=None,
                                        fleet_opt=None):
        num_micro_batches = fleet_opt[
            "num_micro_batches"] if "num_micro_batches" in fleet_opt else 1
2041
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2042
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2043
        nrank = len(trainer_endpoints)
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, \
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. " \
            "Or you can provide a list of task nodes to init fleet executor directly."
        if 'tasks' in fleet_opt:
            assert 'task_id_to_rank' in fleet_opt, "If you provide tasks to init fleet executor," \
                                                   " task_id_to_rank should also be provided."
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2054
        else:
2055 2056 2057 2058 2059 2060 2061 2062
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
                from paddle.distributed.fleet.fleet_executor_utils import run1f1b
                if "dist_strategy" not in fleet_opt or \
                   "pp_degree" not in fleet_opt["dist_strategy"] or \
                   fleet_opt["dist_strategy"]["pp_degree"] == 1:
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2063
                    program, cur_rank, fleet_opt.get('num_micro_batches', 1),
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
                    fleet_opt.get('dist_strategy', {}), nrank)
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
                if "dist_strategy" in fleet_opt and \
                   "pp_degree" in fleet_opt["dist_strategy"]:
                    assert fleet_opt["dist_strategy"]["pp_degree"] == 1, \
                        "For pipeline mode, the scheduler should be 1F1B instead of Origin."
                if "num_micro_batches" in fleet_opt:
                    assert fleet_opt["num_micro_batches"] == 1, \
                        "For origin scheduler mode, the num micro batches should be 1."
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " \
                      "but received " + str(scheduler) + "."
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2081 2082
        place = core.Place()
        place.set_place(self.place)
2083 2084
        # NOTE: the last argument is used to force create some vars in root scope,
        # won't be used during train.
2085
        self._fleet_executor.init(carrier_id, program.desc, scope, place,
2086
                                  num_micro_batches, tasks, task_id_to_rank, [])
2087

L
LiYuRio 已提交
2088 2089
    def _run_using_fleet_executor(self,
                                  program=None,
2090 2091 2092 2093 2094 2095
                                  feed=None,
                                  feed_var_name="feed",
                                  fetch_var_name="fetch",
                                  fetch_list=None):
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2096
        cached_scope = self._get_scope_cache(cache_key)
2097 2098 2099 2100
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2101 2102
            assert program._pipeline_opt, "program should have _pipeline_opt to start carrier"
            real_feed = [] if feed is None else feed
2103 2104 2105 2106 2107 2108 2109 2110 2111
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
            cached_program = self._add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)
2112 2113 2114 2115 2116 2117 2118 2119
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
2120
            self._add_program_cache(cache_key, cached_program)
2121
            fleet_opt = program._pipeline_opt["fleet_opt"]
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2133 2134 2135
                feed_program = self._add_feed_ops(program=feed_program,
                                                  feed=real_feed,
                                                  feed_var_name=feed_var_name)
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name)
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
                            core.op_proto_and_checker_maker.OpRole.Optimize)
                fetch_task.set_program(fetch_program)

2156 2157 2158 2159
            self._prepare_fleet_executor_carrier(cache_key,
                                                 program=cached_program,
                                                 scope=cached_scope,
                                                 fleet_opt=fleet_opt)
2160

2161
        if feed:
2162 2163 2164
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2165
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(cached_scope,
                                              lr_sheduler._var_name)
            tensor.set(data, self.place)

2178 2179
        self._fleet_executor.run(cache_key)

2180 2181 2182 2183
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2184 2185
        return None

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2204 2205 2206 2207
                    global_block._prepend_op(type='feed',
                                             inputs={'X': [feed_var]},
                                             outputs={'Out': [out]},
                                             attrs={'col': i})
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)

        return tmp_program

    def _add_fetch_ops(self,
                       program,
                       fetch_list,
                       fetch_var_name,
                       use_fetch_v2=False):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2242 2243 2244 2245 2246 2247 2248
                    var,
                    six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                        (i, type(var)))
                global_block.append_op(type=fetch_op,
                                       inputs={'X': [var]},
                                       outputs={'Out': [fetch_var]},
                                       attrs={'col': i})
2249 2250 2251

        return tmp_program

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
    def _run_pipeline(self,
                      program=None,
                      dataset=None,
                      scope=None,
                      thread=0,
                      is_infer=False,
                      debug=False,
                      fetch_list=None,
                      fetch_info=None,
                      print_period=100,
                      fetch_handler=None,
                      use_program_cache=False):
2264
        scope, real_fetch_list, trainer_instance = \
2265 2266 2267 2268 2269
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2280 2281
        self._default_executor.run_from_dataset(trainer_instance)

2282 2283 2284
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2285 2286 2287 2288 2289 2290 2291
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2292 2293 2294 2295 2296
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
2297 2298 2299
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2300 2301
                           print_period=100,
                           fetch_handler=None):
2302
        """
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2314

2315 2316
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2317
                if not provided, then default_main_program (not compiled) will be used.
2318
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2319 2320
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2321
            scope(Scope): the scope used to run this program, you can switch it to different scope
2322 2323 2324
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2325
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2326
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2327
                training, default is None
2328
            fetch_info(String List): print information for each Tensor, default is None
2329
            print_period(int): the number of mini-batches for each print, default is 100
2330
            fetch_handler(FetchHandler): a user define class for fetch output.
2331

2332 2333 2334 2335
        Returns:
            None

        Examples:
2336 2337

            .. code-block:: python
2338

2339
                import paddle
2340

2341 2342 2343 2344 2345 2346
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2347
                dataset.set_use_var([x, y])
2348
                dataset.set_thread(1)
2349 2350
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2351
                dataset.set_filelist(filelist)
2352 2353 2354
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2355

2356
        """
2357 2358 2359
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
2360

T
Thunderbrook 已提交
2361 2362 2363 2364 2365 2366 2367 2368
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
2369 2370 2371 2372 2373 2374 2375 2376
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=None,
                                               scope=scope,
                                               thread=1,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
T
Thunderbrook 已提交
2377

2378
        trainer._set_infer(False)
T
Thunderbrook 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

2400 2401 2402 2403 2404 2405 2406 2407
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2408 2409
                           print_period=100,
                           fetch_handler=None):
2410 2411 2412 2413 2414 2415 2416 2417
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2418

2419 2420 2421 2422
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2423
                if not provided, then default_main_program (not compiled) will be used.
2424
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2425 2426
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2427
            scope(Scope): the scope used to run this program, you can switch it to different scope
2428 2429 2430
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2431
            debug(bool): whether a user wants to run train_from_dataset 
2432
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2433
                during training
2434
            fetch_info(String List): print information for each Tensor, its length should be equal
2435 2436
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2437
            fetch_handler(FetchHandler): a user define class for fetch output.
2438 2439 2440

        Returns:
            None
2441
        
2442
        Examples:
2443
        
2444 2445
            .. code-block:: python

2446
              import paddle
2447

2448 2449 2450 2451 2452 2453
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2454
              dataset.set_use_var([x, y])
2455
              dataset.set_thread(1)
2456 2457
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2458
              dataset.set_filelist(filelist)
2459 2460
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2461
                                     dataset=dataset)
2462 2463

        """
2464 2465 2466
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)