random.py 44.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define random functions
S
silingtong123 已提交
16

17 18
import paddle
from paddle import _C_ops, _legacy_C_ops
19
from paddle.common_ops_import import Variable
20
from paddle.fluid.framework import _current_expected_place, in_dygraph_mode
21

22 23 24
from ..fluid.data_feeder import (
    check_dtype,
    check_shape,
25 26
    check_type,
    check_variable_and_dtype,
27
)
28 29 30 31 32
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
33
)
S
silingtong123 已提交
34

35 36
__all__ = []

S
silingtong123 已提交
37

L
Leo Chen 已提交
38
def bernoulli(x, name=None):
39
    r"""
L
Leo Chen 已提交
40

41
    For each element :math:`x_i` in input ``x``, take a sample from the Bernoulli distribution, also called two-point distribution, with success probability :math:`x_i`. The Bernoulli distribution with success probability :math:`x_i` is a discrete probability distribution with probability mass function
L
Leo Chen 已提交
42

43
    .. math::
44 45
        p(y)=\begin{cases}
            x_i,&y=1\\
46 47
            1-x_i,&y=0
        \end{cases}.
L
Leo Chen 已提交
48 49

    Args:
50 51 52
        x (Tensor): The input Tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

53
    Returns:
54
        Tensor: A Tensor filled samples from Bernoulli distribution, whose shape and dtype are same as ``x``.
L
Leo Chen 已提交
55 56 57 58

    Examples:
        .. code-block:: python

59
            import paddle
L
Leo Chen 已提交
60

L
Leo Chen 已提交
61
            paddle.set_device('cpu')  # on CPU device
62
            paddle.seed(100)
L
Leo Chen 已提交
63

64
            x = paddle.rand([2,3])
L
Leo Chen 已提交
65 66 67
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
68

69
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
70 71 72
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
73 74 75

    """

H
hong 已提交
76
    if in_dygraph_mode():
77
        return _C_ops.bernoulli(x)
78 79 80 81 82 83 84 85 86 87 88 89
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )  # maybe set out to int32 ?
        helper.append_op(
            type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={}
        )
        out.stop_gradient = True
        return out
L
Leo Chen 已提交
90 91


92
def poisson(x, name=None):
93
    r"""
94
    Returns a tensor filled with random number from a Poisson Distribution.
95 96 97

    .. math::

98
        out_i \sim Poisson (lambda = x_i)
99 100

    Args:
101
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type
102 103 104 105
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
106
    Returns:
107 108 109 110 111 112
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
113
            paddle.set_device('cpu')
114
            paddle.seed(100)
115 116 117

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
118 119
            #[[2., 5., 0.],
            # [5., 1., 3.]]
120 121

    """
H
hong 已提交
122
    if in_dygraph_mode():
123
        return _C_ops.poisson(x)
124 125
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")
126

127 128 129 130 131 132
        helper = LayerHelper("poisson", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='poisson', inputs={'X': x}, outputs={'Out': out}, attrs={}
        )
        return out
133 134


P
pangyoki 已提交
135 136
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
137
    Returns a Tensor filled with random values sampled from a Multinomical
P
pangyoki 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

157 158
            import paddle

C
cnn 已提交
159
            paddle.seed(100) # on CPU device
160
            x = paddle.rand([2,4])
161
            print(x)
162 163 164
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
165
            paddle.seed(200) # on CPU device
166
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
167
            print(out1)
168 169 170 171 172 173 174
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
175
            paddle.seed(300) # on CPU device
176
            out3 = paddle.multinomial(x, num_samples=3)
177
            print(out3)
178 179
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
180 181 182

    """

183
    assert (
184
        not core.is_compiled_with_rocm()
185
    ), "multinomial op is not supported on ROCM yet."
186

H
hong 已提交
187
    if in_dygraph_mode():
188
        return _C_ops.multinomial(x, num_samples, replacement)
189 190
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")
H
hong 已提交
191

192 193 194
        helper = LayerHelper("multinomial", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_('int64')
195
        )
196 197 198 199 200 201 202 203
        helper.append_op(
            type='multinomial',
            inputs={"X": x},
            outputs={'Out': out},
            attrs={'num_samples': num_samples, 'replacement': replacement},
        )
        out.stop_gradient = True
        return out
P
pangyoki 已提交
204 205


206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
def uniform_random_batch_size_like(
    input,
    shape,
    dtype='float32',
    input_dim_idx=0,
    output_dim_idx=0,
    min=-1.0,
    max=1.0,
    seed=0,
):
    """
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.
    .. code-block:: text
        *Case 1:
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]
            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0,
            input_dim_idx = 0,
            result.shape[0] = input.shape[0],
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
       *Case 2:
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1,
           input_dim_idx = 1,
           result.shape[1] = input.shape[1],
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
    Args:
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0.
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
    Returns:
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            from paddle.tensor import random
            paddle.enable_static()
            # example 1:
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = random.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
            # example 2:
            out_2 = random.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]
    """
    check_variable_and_dtype(
        input,
        'Input',
        ("float32", 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )
    check_type(shape, 'shape', (list, tuple), 'uniform_random_batch_size_like')
    check_dtype(
        dtype,
        'dtype',
        ('float32', 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_variable_for_type_inference(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype,
        },
    )

    return out


301
def gaussian(shape, mean=0.0, std=1.0, seed=0, dtype=None, name=None):
302
    """
303
    Returns a Tensor filled with random values sampled from a Gaussian
304 305 306
    distribution, with ``shape`` and ``dtype``.

    Args:
307 308 309
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
310 311
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
312
            is 1.0.
313 314
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
315 316 317
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
318
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
319 320 321

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
322
        distribution, with ``shape`` and ``dtype``.
323
    """
324 325
    op_type_for_check = 'gaussian/standard_normal/randn/normal'

326 327 328 329
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
330 331 332 333
                "{} only supports [float32, float64], but the default dtype is {}".format(
                    op_type_for_check, dtype
                )
            )
334 335 336
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

337
    if in_dygraph_mode():
338
        shape = paddle.utils.convert_shape_to_list(shape)
339
        place = _current_expected_place()
340
        return _C_ops.gaussian(
341 342
            shape, float(mean), float(std), seed, dtype, place
        )
343 344 345
    else:
        check_shape(shape, op_type_for_check)
        check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)
346

347 348 349 350 351 352 353 354
        inputs = {}
        attrs = {
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': dtype,
            'use_mkldnn': False,
        }
355
        paddle.utils.get_shape_tensor_inputs(
356
            inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check
357
        )
358

359 360 361 362 363 364 365 366 367 368
        helper = LayerHelper('gaussian', **locals())
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='gaussian_random',
            inputs=inputs,
            outputs={'Out': out},
            attrs=attrs,
        )
        out.stop_gradient = True
        return out
369 370 371 372


def standard_normal(shape, dtype=None, name=None):
    """
373
    Returns a Tensor filled with random values sampled from a standard
374 375 376 377
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
378 379 380
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
381
        dtype (str|np.dtype, optional): The data type of the output Tensor.
382 383 384
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
385 386 387 388 389 390 391 392 393 394 395 396 397 398
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
399
            out1 = paddle.standard_normal(shape=[2, 3])
400 401 402 403
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
404 405
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
406
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
407 408 409 410 411 412 413 414
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
415
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
416
            out3 = paddle.standard_normal(shape_tensor)
417 418 419 420
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
421
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
422 423


Z
zhupengyang 已提交
424 425
def randn(shape, dtype=None, name=None):
    """
426
    Returns a Tensor filled with random values sampled from a standard
Z
zhupengyang 已提交
427 428 429 430
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
431 432 433
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
Z
zhupengyang 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
457 458
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
474 475 476 477


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
478
    Returns a Tensor filled with random values sampled from a normal
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
496 497 498 499
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. If ``mean`` or ``std``
            is a Tensor, the shape of the output Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

516
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
517 518 519
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

520
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
521 522 523 524
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
525
    if not in_dygraph_mode():
526 527 528 529
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
530 531 532 533 534
                mean.dtype,
                'mean',
                ['float32', 'float64'],
                'normal',
                "If mean is Tensor, it's data type only support float32, float64.",
535 536 537
            )
        if isinstance(std, Variable):
            check_dtype(
538 539 540 541 542
                std.dtype,
                'std',
                ['float32', 'float64'],
                'normal',
                "If std is Tensor, it's data type only support float32, float64.",
543 544
            )
        if shape is not None:
545
            check_shape(shape, 'normal')
546 547 548 549 550 551 552 553 554 555 556 557 558 559

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
560
        return gaussian(shape=shape, mean=mean, std=std, name=name)
561 562

    out = out * std + mean
563
    if not in_dygraph_mode():
564 565 566 567
        out.stop_grediant = True
    return out


568
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
569
    """
570
    Returns a Tensor filled with random values sampled from a uniform
P
pangyoki 已提交
571 572 573
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
574

Z
zhupengyang 已提交
575
    .. code-block:: text
李灿 已提交
576

P
pangyoki 已提交
577 578 579 580 581 582
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
583 584 585
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
586 587 588 589
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
590 591 592 593
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
594
        seed(int, optional): Random seed used for generating samples. If seed is 0,
595
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
596
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
597
            time. Default is 0.
598 599
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
P
pangyoki 已提交
600 601 602 603 604 605 606

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python
607
          :name: code-example1
608

P
pangyoki 已提交
609 610 611 612
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
613 614 615 616
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
617 618 619

            # example 2:
            # attr shape is a list which contains Tensor.
620 621
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
622 623 624
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
625 626 627

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
628
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
629 630 631
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
632
    """
633 634 635 636
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
637 638 639 640
                "uniform/rand only supports [float32, float64], but the default dtype is {}".format(
                    dtype
                )
            )
641

P
pangyoki 已提交
642 643 644
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

645
    if in_dygraph_mode():
646
        shape = paddle.utils.convert_shape_to_list(shape)
647
        return _C_ops.uniform(
648 649 650 651 652 653 654
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
655 656 657 658 659 660 661 662
    else:
        check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
        check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
        check_type(min, 'min', (float, int, Variable), 'uniform/rand')
        check_type(max, 'max', (float, int, Variable), 'uniform/rand')

        inputs = dict()
        attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
663
        paddle.utils.get_shape_tensor_inputs(
664
            inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand'
665
        )
P
pangyoki 已提交
666

667 668 669 670 671 672 673 674 675 676
        helper = LayerHelper("uniform", **locals())
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="uniform_random",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out},
        )
        out.stop_gradient = True
        return out
P
pangyoki 已提交
677 678


J
JYChen 已提交
679 680 681
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
682
    This is the inplace version of OP ``uniform``, which returns a Tensor filled
J
JYChen 已提交
683 684
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
685

J
JYChen 已提交
686 687 688 689 690 691
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
692 693
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
694 695 696 697 698 699 700 701 702 703
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
704

J
JYChen 已提交
705 706 707 708 709 710 711 712 713
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
714
    return _C_ops.uniform_inplace_(x, min, max, seed, 0, 0, 1.0)
J
JYChen 已提交
715 716


717
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
718
    """
719
    Returns a Tensor filled with random integers from a discrete uniform
720 721
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
722 723

    Args:
724
        low (int, optional): The lower bound on the range of random values to generate.
725 726
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
727
        high (int, optional): The upper bound on the range of random values to
728 729
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
730 731 732
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. Default is [1].
733
        dtype (str|np.dtype, optional): The data type of the
734 735
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
736
        name (str, optional): The default value is None.  Normally there is no
737 738
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
739

740
    Returns:
741 742
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
743 744 745

    Examples:
        .. code-block:: python
746

747
            import paddle
748

749 750
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
751
            out1 = paddle.randint(low=-5, high=5, shape=[2, 3])
752 753 754 755
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
756 757
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
758
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
759 760 761 762 763
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
764
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
765
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
766 767
            # [[ 2, -3, -1],    # random
            #  [-3, -2,  1]])   # random
768 769 770

            # example 4:
            # data type is int32
771
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
772 773 774 775 776
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
777
            out5 = paddle.randint(10)
778
            # [7]  # random
S
silingtong123 已提交
779

780 781
    """
    if high is None:
782 783
        if low <= 0:
            raise ValueError(
784 785 786 787
                "If high is None, low must be greater than 0, but received low = {0}.".format(
                    low
                )
            )
788 789
        high = low
        low = 0
S
silingtong123 已提交
790
    if dtype is None:
W
Weilong Wu 已提交
791 792
        dtype = core.VarDesc.VarType.INT64
    elif not isinstance(dtype, core.VarDesc.VarType):
793
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
794

F
From00 已提交
795
    if in_dygraph_mode():
796
        shape = paddle.utils.convert_shape_to_list(shape)
F
From00 已提交
797
        place = _current_expected_place()
798
        return _C_ops.randint(low, high, shape, dtype, place)
799 800 801 802 803 804 805 806
    else:
        check_shape(shape, 'randint')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
        if low >= high:
            raise ValueError(
                "randint's low must less then high, but received low = {0}, "
                "high = {1}".format(low, high)
            )
S
silingtong123 已提交
807

808 809
        inputs = dict()
        attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
810
        paddle.utils.get_shape_tensor_inputs(
811
            inputs=inputs, attrs=attrs, shape=shape, op_type='randint'
812
        )
S
silingtong123 已提交
813

814 815 816 817 818 819 820
        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        return out
C
cc 已提交
821 822


823 824
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
825
    Returns a Tensor filled with random integers from a discrete uniform
826
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
827
    (use ``dtype`` if ``dtype`` is not None)
828 829 830
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
831
        x (Tensor): The input multi-dimensional tensor which specifies shape. The dtype of ``x``
832
            can be bool, int32, int64, float16, float32, float64.
833
        low (int, optional): The lower bound on the range of random values to generate.
834 835 836
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
837 838
            generate, the ``high`` is excluded in the range. Default is None.
            If ``high`` is None, the range is [0, ``low``).
839
        dtype (str|np.dtype, optional): The data type of the
840
            output tensor. Supported data types: bool, int32, int64, float16,
841 842 843 844 845 846
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

847
    Returns:
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
950 951 952 953
                "If high is None, low must be greater than 0, but received low = {0}.".format(
                    low
                )
            )
954 955 956 957 958 959
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
960
    shape = paddle.shape(x)
961 962 963 964

    if low >= high:
        raise ValueError(
            "randint_like's low must less then high, but received low = {0}, "
965 966
            "high = {1}".format(low, high)
        )
967

968
    if in_dygraph_mode():
969
        shape = paddle.utils.convert_shape_to_list(shape)
970 971 972 973 974 975 976 977 978 979 980 981
        out = _legacy_C_ops.randint(
            'shape',
            shape,
            'low',
            low,
            'high',
            high,
            'seed',
            0,
            'dtype',
            core.VarDesc.VarType.INT64,
        )
982 983
        out = paddle.cast(out, dtype)
        return out
984 985 986 987 988 989 990 991
    else:
        check_shape(shape, 'randint_like')
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'randint_like',
        )
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
        inputs = {"ShapeTensor": shape}
        attrs = {
            'low': low,
            'high': high,
            'seed': 0,
            'dtype': core.VarDesc.VarType.INT64,
        }

        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64
        )
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        out = paddle.cast(out, dtype)
        return out
1011 1012


1013
def randperm(n, dtype="int64", name=None):
C
cc 已提交
1014
    """
1015
    Returns a 1-D Tensor filled with random permutation values from 0
1016
    to n-1, with ``dtype``.
C
cc 已提交
1017 1018

    Args:
1019 1020
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
1021 1022
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
1023
        name (str, optional): The default value is None. Normally there is no
1024 1025
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
1026 1027

    Returns:
1028 1029
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
1030 1031 1032 1033

    Examples:
        .. code-block:: python

1034
            import paddle
C
cc 已提交
1035

1036
            out1 = paddle.randperm(5)
1037
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
1038

1039
            out2 = paddle.randperm(7, 'int32')
1040
            # [1, 6, 2, 0, 4, 3, 5]  # random
1041

C
cc 已提交
1042
    """
1043 1044 1045
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zyfncg 已提交
1046
    if in_dygraph_mode():
1047
        return _C_ops.randperm(n, dtype, _current_expected_place())
1048 1049 1050 1051 1052 1053 1054 1055
    else:
        if n < 1:
            raise ValueError(
                "The input n should be greater than 0 in randperm op."
            )
        check_dtype(
            dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'], 'randperm'
        )
C
cc 已提交
1056

1057 1058 1059 1060 1061 1062 1063 1064
        helper = LayerHelper("randperm", **locals())
        out = helper.create_variable_for_type_inference(dtype)
        attrs = {'n': n, 'dtype': dtype, 'seed': 0}
        helper.append_op(
            type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        return out
X
Xing Wu 已提交
1065 1066


1067
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
1068
    """
1069
    Returns a Tensor filled with random values sampled from a uniform
1070
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1071 1072

    Args:
1073 1074 1075
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1076
        dtype (str|np.dtype, optional): The data type of the output Tensor.
1077 1078 1079
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
1080
        name (str, optional): The default value is None. Normally there is no
1081 1082
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1083

X
Xing Wu 已提交
1084
    Returns:
1085 1086
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1087 1088 1089 1090

    Examples:
        .. code-block:: python

1091
            import paddle
1092

1093
            # example 1: attr shape is a list which doesn't contain Tensor.
1094
            out1 = paddle.rand(shape=[2, 3])
1095 1096 1097 1098
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
1099 1100
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
1101
            out2 = paddle.rand(shape=[dim1, dim2, 2])
1102 1103 1104 1105 1106 1107 1108 1109
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
1110
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1111
            out3 = paddle.rand(shape_tensor)
1112 1113
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1114
    """
1115
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1116 1117 1118


def exponential_(x, lam=1.0, name=None):
1119
    r"""
1120 1121
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

1122 1123
    ``lam`` is :math:`\lambda` parameter of Exponential Distribution.

1124 1125 1126 1127 1128 1129
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1130
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1131 1132 1133
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1134
    Returns:
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
1150
    if in_dygraph_mode():
1151
        return _C_ops.exponential_(x, lam)
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")

        helper = LayerHelper("exponential", **locals())
        helper.append_op(
            type='exponential',
            inputs={"X": x},
            outputs={'Out': x},
            attrs={"lambda": lam},
        )
        return x