nn.py 354.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
sneaxiy 已提交
182
    'py_func',
183
    'psroi_pool',
H
heqiaozhi 已提交
184
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
185
    'huber_loss',
Y
Yu Yang 已提交
186 187
]

J
jerrywgz 已提交
188 189
kIgnoreIndex = -100

Y
Yu Yang 已提交
190 191 192 193 194 195 196

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
197
       is_test=False,
198
       name=None):
Y
Yu Yang 已提交
199
    """
200
    **Fully Connected Layer**
Y
Yu Yang 已提交
201

202 203 204 205 206 207 208 209
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
210
    to the output as well.
C
caoying03 已提交
211

C
caoying03 已提交
212
    This process can be formulated as follows:
213 214 215

    .. math::

216
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
217 218 219

    In the above equation:

C
caoying03 已提交
220 221 222 223
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
224
    * :math:`Act`: The activation function.
C
caoying03 已提交
225
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
226 227

    Args:
R
ranqiu 已提交
228 229 230 231 232 233 234 235 236 237
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
238
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
239 240 241 242
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
243 244
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
245
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
246
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
247
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
248

249
    Returns:
F
fengjiayi 已提交
250
        Variable: The transformation result.
251 252

    Raises:
C
caoying03 已提交
253
        ValueError: If rank of the input tensor is less than 2.
254 255 256 257

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
258
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
259
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
260
    """
C
caoying03 已提交
261

C
caoying03 已提交
262
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
263 264 265 266

    dtype = helper.input_dtype()

    mul_results = []
267 268
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
269 270 271
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
272

Y
Yu Yang 已提交
273
        w = helper.create_parameter(
274
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
275
        tmp = helper.create_variable_for_type_inference(dtype)
276
        helper.append_op(
277 278 279
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
280
            outputs={"Out": tmp},
M
mozga-intel 已提交
281 282
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
283 284 285 286
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
287
    else:
X
Xin Pan 已提交
288
        pre_bias = helper.create_variable_for_type_inference(dtype)
289
        helper.append_op(
290 291 292
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
293
            attrs={"use_mkldnn": False})
294 295 296 297
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
298 299


300 301 302
def embedding(input,
              size,
              is_sparse=False,
303
              is_distributed=False,
304 305 306
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
307
    """
308 309
    **Embedding Layer**

310
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
311 312
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
313 314 315

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
316 317

    Args:
318 319 320 321 322
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
323
        is_distributed(bool): Whether to run lookup table from remote parameter server.
324 325
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
326
            with zeros whenever lookup encounters it in :attr:`input`. If
327
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
328 329
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
330
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
331

332 333 334
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
335

336 337
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
338

C
chengduoZH 已提交
339
          dict_size = len(dataset.ids)
340
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
341
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
342 343 344
    """

    helper = LayerHelper('embedding', **locals())
345
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
346 347
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
348 349
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
350
    tmp = helper.create_variable_for_type_inference(dtype)
351 352
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
353 354 355 356 357
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
358 359 360
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
361
            'remote_prefetch': remote_prefetch,
362 363
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
364 365 366
    return tmp


W
wopeizl 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
383

W
wopeizl 已提交
384 385 386 387 388 389 390 391 392 393 394
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
395

W
wopeizl 已提交
396 397 398 399
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
400

W
wopeizl 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
487 488


P
phlrain 已提交
489 490 491 492 493 494
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
495
         dropout_prob=0.0,
P
phlrain 已提交
496 497 498 499 500
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
501
    """
P
phlrain 已提交
502
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
503 504

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
505
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
506 507
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
508
    .. math::
M
minqiyang 已提交
509 510 511 512 513 514 515

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
516
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
517 518 519 520

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
521 522

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
523 524 525 526 527 528
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
529 530 531
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
532
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
533

M
minqiyang 已提交
534
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
535 536 537 538 539
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
540
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
541 542 543 544 545
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
546
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
547 548
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
549 550
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
551 552 553 554 555 556
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
557
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
558

L
liuhongyu 已提交
559 560

    Returns:
M
minqiyang 已提交
561 562
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
563
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
564

H
haowang101779990 已提交
565 566 567 568
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
569
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
570 571
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
572
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
588
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
589 590 591 592 593 594
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
595 596 597
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
657 658 659 660 661 662 663 664 665 666 667
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
668 669
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
670 671 672
    """
    **Dynamic LSTMP Layer**

673 674 675 676 677 678
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
679 680 681 682 683

    The formula is as follows:

    .. math::

684
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
685

686
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
687

688
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
689

690
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
691

692
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
693

694
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
695

696
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
697

Y
Yibing Liu 已提交
698 699 700 701 702 703
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
704
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
705
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
706
          bias vector).
Y
Yibing Liu 已提交
707 708 709
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
710
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
711
    * :math:`h`: The hidden state.
712
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
713 714
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
715
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
716
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
717
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
718 719
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
720 721 722 723

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
724

Y
Yibing Liu 已提交
725 726 727 728 729 730 731 732 733 734 735 736
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
737
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
738 739
                               hidden-hidden weight and projection weight.

740 741
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
742 743
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
744 745
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
746
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
747 748 749 750 751

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
752
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
753 754 755 756 757 758
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
759
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
760 761 762
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
763
                                - The shape is (1 x 7D).
C
chengduo 已提交
764 765 766 767 768

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
769 770 771 772 773 774 775 776 777
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
778
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
779 780
                              default "tanh".
        proj_activation(str): The activation for projection output.
781
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
782 783
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
784 785
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
786 787

    Returns:
788 789 790 791
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
792 793

    Examples:
794

Y
Yibing Liu 已提交
795 796
        .. code-block:: python

797 798 799 800
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
801
            hidden_dim, proj_dim = 512, 256
802
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
803
                                     act=None, bias_attr=None)
804 805 806
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
807 808 809 810
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
811
    """
812

C
chengduo 已提交
813
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
814
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
815
    size = size // 4
Y
Yibing Liu 已提交
816 817 818 819 820 821 822 823 824 825
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
826 827 828 829 830 831
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
860 861 862 863 864 865 866
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
867 868
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
869
    """
870
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
871

872 873 874
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
875

G
guosheng 已提交
876 877 878 879 880 881 882 883 884
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
885

G
guosheng 已提交
886
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
887

Q
Qiao Longfei 已提交
888 889 890

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
891 892 893 894 895 896 897 898 899 900 901 902
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
903
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
904 905
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
906 907 908 909
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
910
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
911 912

    Args:
913 914
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
915
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
916
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
917 918
            is the hidden size.
        size(int): The dimension of the gru cell.
919
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
920 921
            hidden-hidden weight matrix. Note:

922
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
923
              :math:`D` is the hidden size.
924
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
925
              The first part are weights of the update gate and reset gate with
926
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
927
              candidate hidden state with shape :math:`(D \\times D)`.
928 929 930 931 932

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
933
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
934
            the bias in the update gate, reset gate and candidate calculations.
935 936 937
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
938 939
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
940
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
941 942 943
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
944
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
945
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
946 947 948 949
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
950 951

    Returns:
G
guosheng 已提交
952
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
953
            and sequence length is the same with the input.
954

G
guosheng 已提交
955
    Examples:
956

G
guosheng 已提交
957 958
        .. code-block:: python

959 960 961 962
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
963
            hidden_dim = 512
964
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
965
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
966 967 968 969 970 971 972 973 974
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
975
    batch_size = input.shape[0]
G
guosheng 已提交
976
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
977
    if h_0:
G
guosheng 已提交
978
        assert h_0.shape == (
Y
Yancey 已提交
979 980 981
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
982

X
Xin Pan 已提交
983 984 985 986
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1000 1001
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1002 1003 1004 1005
        })
    return hidden


Y
Yu Yang 已提交
1006 1007 1008
def gru_unit(input,
             hidden,
             size,
1009 1010
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1011
             activation='tanh',
Q
Qiao Longfei 已提交
1012 1013
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1014
    """
1015 1016 1017
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1018
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1019
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1020

1021 1022
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1023

1024
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1025

1026
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1043 1044

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1045 1046 1047
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1048 1049
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1050 1051
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1052 1053 1054
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1055 1056 1057

    Args:
        input (Variable): The fc transformed input value of current step.
1058
        hidden (Variable): The hidden value of gru unit from previous step.
1059
        size (integer): The input dimension value.
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1074
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1075
            the bias in the update gate, reset gate and candidate calculations.
1076 1077 1078
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1079 1080
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1081 1082 1083 1084
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1085

1086 1087 1088 1089 1090 1091
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1092

1093
             # assuming we have x_t_data and prev_hidden of size=10
1094
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1095 1096
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1109
    size = size // 3
Y
Yu Yang 已提交
1110 1111

    # create weight
1112 1113
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1114

X
Xin Pan 已提交
1115 1116 1117
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1118
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1119
    # create bias
1120
    if helper.bias_attr:
Y
Yu Yang 已提交
1121 1122 1123
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1124
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1125 1126 1127

    helper.append_op(
        type='gru_unit',
1128
        inputs=inputs,
Y
Yu Yang 已提交
1129 1130 1131 1132 1133 1134
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1135 1136
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1137 1138 1139 1140 1141
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1142
@templatedoc()
1143
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1144 1145 1146 1147 1148 1149 1150
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1151
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1152 1153 1154 1155
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1156 1157 1158
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1159 1160

    """
Y
Yu Yang 已提交
1161 1162 1163 1164 1165 1166
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1167 1168 1169 1170 1171 1172 1173 1174
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1190 1191 1192 1193
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1194

W
wopeizl 已提交
1195 1196
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1197

W
wopeizl 已提交
1198
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1199

W
wopeizl 已提交
1200
        label(${label_type}): ${label_comment}
1201

W
wopeizl 已提交
1202 1203
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1204

W
wopeizl 已提交
1205 1206
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1207

W
wopeizl 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1218
                "Transition": transition,
W
wopeizl 已提交
1219 1220
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1221

W
wopeizl 已提交
1222
    return viterbi_path
Y
Yu Yang 已提交
1223 1224


Y
yi.wu 已提交
1225
@templatedoc()
F
fengjiayi 已提交
1226
def cos_sim(X, Y):
Y
Yu Yang 已提交
1227
    """
Y
yi.wu 已提交
1228 1229 1230
    ${comment}

    Args:
1231 1232
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1233

Y
yi.wu 已提交
1234
    Returns:
1235
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1236
    """
F
fengjiayi 已提交
1237
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1238 1239 1240
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1251 1252 1253 1254 1255
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1256
            dropout_implementation="downgrade_in_infer"):
1257 1258 1259 1260 1261
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1262
    training. The dropout operator randomly sets (according to the given dropout
1263 1264 1265
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1266 1267
    dropout op can be removed from the program to make the program more efficient.

1268
    Args:
1269 1270
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1271 1272 1273 1274 1275 1276 1277
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1278 1279
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1280
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1281 1282 1283 1284 1285 1286

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1287
                                        2. upscale_in_train, upscale the outcome at training time
1288

H
haowang101779990 已提交
1289 1290
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1291

H
haowang101779990 已提交
1292 1293
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1294

M
minqiyang 已提交
1295

1296
    Returns:
1297
        Variable: A tensor variable is the shape with `x`.
1298 1299

    Examples:
1300

1301 1302
        .. code-block:: python

1303 1304
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1305 1306
    """

F
fengjiayi 已提交
1307
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1308 1309 1310
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1311 1312 1313 1314

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1315 1316 1317 1318 1319
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1320 1321 1322 1323
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1324 1325
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1326
        })
1327 1328 1329
    return out


J
jerrywgz 已提交
1330
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1331
    """
Y
Yibing Liu 已提交
1332 1333
    **Cross Entropy Layer**

1334 1335 1336
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1337 1338

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1339
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1340

Y
Yibing Liu 已提交
1341
        .. math::
Y
yangyaming 已提交
1342

Y
Yibing Liu 已提交
1343 1344 1345
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1346 1347
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1348 1349 1350 1351 1352

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1353
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1354 1355 1356
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1357 1358
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1359
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1360

Y
Yibing Liu 已提交
1361
    Args:
Y
yangyaming 已提交
1362
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1363 1364 1365 1366
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1367
        label (Variable|list): the ground truth which is a 2-D tensor. When
1368 1369 1370 1371
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1372
        soft_label (bool): a flag indicating whether to
1373
                                           interpretate the given labels as soft
1374
                                           labels. Default: `False`.
M
minqiyang 已提交
1375 1376
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1377
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1378 1379 1380 1381 1382

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1383 1384 1385
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1386

H
haowang101779990 已提交
1387 1388
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1389

H
haowang101779990 已提交
1390 1391
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1392 1393 1394 1395 1396 1397

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1398
    """
F
fengjiayi 已提交
1399
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1400
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1401 1402 1403 1404 1405
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1406 1407
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1408 1409 1410
    return out


F
frankwhzhang 已提交
1411
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1412 1413 1414
    """
    Bayesian Personalized Ranking Loss Operator.

1415
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1416 1417 1418 1419 1420 1421
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1422 1423 1424 1425 1426 1427
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1428 1429
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1430 1431 1432
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1433 1434 1435
    Examples:
        .. code-block:: python

1436
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1437
    """
1438 1439 1440 1441 1442 1443

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1444
                'Label': [label]},
1445 1446 1447 1448
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1449
def square_error_cost(input, label):
Y
Yu Yang 已提交
1450
    """
1451 1452
    **Square error cost layer**

1453 1454
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1469 1470
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1471 1472

    Returns:
G
guosheng 已提交
1473
        Variable: The tensor variable storing the element-wise squared error \
1474
                  difference of input and label.
1475 1476 1477 1478 1479 1480 1481 1482

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1483
    """
F
fengjiayi 已提交
1484
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1485
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1486 1487 1488 1489 1490 1491
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1492
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1493
    helper.append_op(
F
fengjiayi 已提交
1494 1495
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1496 1497 1498
    return square_out


Y
yi.wu 已提交
1499
@templatedoc()
Y
Yu Yang 已提交
1500 1501 1502 1503
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1504
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1505
    """
Y
yi.wu 已提交
1506
    **Chunk Evaluator**
Y
yi.wu 已提交
1507

Y
yangyaming 已提交
1508
    This function computes and outputs the precision, recall and
1509
    F1-score of chunk detection.
Y
yi.wu 已提交
1510

M
minqiyang 已提交
1511
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1512
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1513 1514 1515 1516 1517 1518

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1519

Y
yi.wu 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1545

Y
yi.wu 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1570
    Args:
1571 1572 1573 1574 1575
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1576

Y
yi.wu 已提交
1577
    Returns:
Y
update  
yi.wu 已提交
1578 1579 1580
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1581

Y
yi.wu 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1594
    """
F
fengjiayi 已提交
1595
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1596 1597

    # prepare output
X
Xin Pan 已提交
1598 1599 1600 1601 1602 1603 1604
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1605 1606 1607 1608 1609 1610 1611 1612

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1613 1614 1615 1616
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1617 1618 1619
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1620 1621
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1622
        })
1623 1624
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1625 1626


1627
@templatedoc()
Y
Yu Yang 已提交
1628 1629 1630 1631 1632 1633 1634
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1635 1636
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1637 1638 1639 1640
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1641 1642 1643 1644 1645 1646 1647

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1661

1662 1663
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1664 1665 1666 1667 1668 1669 1670
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1671
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1682
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1683 1684 1685 1686 1687 1688
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1689
def sequence_softmax(input, use_cudnn=False, name=None):
1690 1691 1692
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1693
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1710 1711 1712
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1725 1726
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1727
    softmax_out = helper.create_variable_for_type_inference(dtype)
1728 1729 1730 1731 1732 1733 1734 1735
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1736
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1737
    """
1738
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1739
    has the same shape as the input.
Q
qiaolongfei 已提交
1740

1741 1742 1743 1744 1745 1746
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1747
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1748 1749 1750 1751 1752 1753 1754

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1755
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1756 1757 1758 1759 1760 1761 1762 1763

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1764 1765 1766
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1779 1780
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1781
    softmax_out = helper.create_variable_for_type_inference(dtype)
1782 1783 1784 1785 1786 1787 1788 1789
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1790 1791 1792
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1793 1794
           stride=1,
           padding=0,
1795
           dilation=1,
Y
Yu Yang 已提交
1796 1797 1798
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1799
           use_cudnn=True,
1800 1801
           act=None,
           name=None):
Y
Yu Yang 已提交
1802
    """
C
chengduoZH 已提交
1803
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1804 1805
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1806
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1807 1808 1809 1810 1811 1812 1813
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1814 1815 1816
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1817

1818
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1819

C
chengduoZH 已提交
1820 1821
    .. math::

C
refine  
chengduoZH 已提交
1822
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1823

T
tensor-tang 已提交
1824
    Where:
C
chengduoZH 已提交
1825

1826 1827 1828 1829 1830
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1831
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1832 1833 1834

    Example:

1835 1836
        - Input:

W
weixing02 已提交
1837
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1838

W
weixing02 已提交
1839
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1840

1841
        - Output:
T
tensor-tang 已提交
1842

W
weixing02 已提交
1843
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1844

C
chengduoZH 已提交
1845
        Where
1846 1847

        .. math::
C
chengduoZH 已提交
1848

W
weixing02 已提交
1849 1850
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1851 1852

    Args:
1853
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1854
        num_filters(int): The number of filter. It is as same as the output
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1872 1873 1874 1875 1876
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1877
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1878 1879 1880 1881 1882
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1883 1884
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1885 1886
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1887
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1888
            will be named automatically. Default: None
C
chengduoZH 已提交
1889 1890

    Returns:
G
guosheng 已提交
1891
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1892 1893
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1894
    Raises:
1895 1896
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1897

C
chengduoZH 已提交
1898 1899 1900
    Examples:
        .. code-block:: python

1901 1902
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1903 1904 1905
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1906
    assert param_attr is not False, "param_attr should not be False here."
1907
    l_type = 'conv2d'
X
xzl 已提交
1908 1909
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1910
        l_type = 'depthwise_conv2d'
1911 1912 1913 1914

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1915 1916 1917 1918 1919
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1920
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1921

C
chengduoZH 已提交
1922 1923 1924
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1925
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1926

C
chengduoZH 已提交
1927 1928
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1929 1930

    input_shape = input.shape
M
minqiyang 已提交
1931
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1932 1933

    def _get_default_param_initializer():
C
chengduo 已提交
1934 1935
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1936 1937 1938 1939 1940 1941 1942 1943
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1944
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1945

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1960
    helper.append_op(
1961
        type=l_type,
Y
Yu Yang 已提交
1962 1963 1964 1965 1966
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1967 1968 1969
        attrs={
            'strides': stride,
            'paddings': padding,
1970
            'dilations': dilation,
C
chengduoZH 已提交
1971
            'groups': groups,
1972
            'use_cudnn': use_cudnn,
1973
            'use_mkldnn': False,
C
chengduoZH 已提交
1974
        })
Y
Yu Yang 已提交
1975 1976 1977 1978 1979 1980

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1998 1999 2000 2001 2002 2003
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2013 2014
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2015 2016 2017
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2018
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2044
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2045 2046
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2047
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2048 2049
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2050
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2051 2052
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2053
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2054 2055 2056 2057 2058 2059
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2070 2071
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2072 2073
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2074
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2075
            will be named automatically. Default: None.
C
chengduoZH 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2088 2089
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2090 2091 2092
    """

    l_type = 'conv3d'
C
chengduo 已提交
2093
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2104
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2118 2119 2120
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2121 2122 2123 2124 2125 2126 2127 2128
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2129
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2144
            'use_mkldnn': False
C
chengduoZH 已提交
2145 2146
        })

2147
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2148 2149 2150 2151

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2152
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2153
    """
Y
yangyaming 已提交
2154 2155 2156
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2168
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2169 2170 2171 2172 2173
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2174
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2175 2176 2177 2178 2179 2180 2181

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2182 2183
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2184

L
Luo Tao 已提交
2185 2186
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2187
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2188
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2189
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2190 2191 2192 2193 2194 2195 2196

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2197

Y
yangyaming 已提交
2198
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2199 2200 2201 2202 2203
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2204 2205
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2206
    """
F
fengjiayi 已提交
2207
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2208
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2209 2210
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2211 2212 2213 2214 2215 2216

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2217 2218
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2219

Y
yangyaming 已提交
2220 2221 2222 2223 2224
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2225 2226 2227
    return pool_out


C
add doc  
chengduoZH 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2247
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2248 2249 2250 2251 2252
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2253
def sequence_first_step(input):
L
Luo Tao 已提交
2254
    """
L
Luo Tao 已提交
2255
    This function gets the first step of sequence.
L
Luo Tao 已提交
2256 2257 2258 2259

    .. code-block:: text

       x is a 1-level LoDTensor:
2260
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2261 2262 2263 2264 2265
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2266
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2267
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2268

L
Luo Tao 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2278

Y
yangyaming 已提交
2279
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2280 2281 2282
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2283 2284 2285
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2286
def sequence_last_step(input):
L
Luo Tao 已提交
2287
    """
L
Luo Tao 已提交
2288
    This function gets the last step of sequence.
L
Luo Tao 已提交
2289 2290 2291 2292

    .. code-block:: text

       x is a 1-level LoDTensor:
2293
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2294 2295 2296 2297 2298
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2299
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2300
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2301

L
Luo Tao 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2311

Y
yangyaming 已提交
2312
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2313 2314 2315
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2316 2317 2318
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2319 2320 2321 2322
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2323
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2324 2325 2326 2327 2328
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2329

H
haowang101779990 已提交
2330
              - Case:
Y
Yibing Liu 已提交
2331

2332
            Given the input Variable **input**:
2333

2334 2335 2336
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2337

2338
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2339

2340
            the output Variable will be
2341

2342 2343 2344
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2345

M
minqiyang 已提交
2346
    Note:
H
haowang101779990 已提交
2347
          The first dimension size of **input**, **offset** and **length**
2348
          should be equal. The **offset** should start from 0.
2349

Y
Yibing Liu 已提交
2350
    Args:
2351
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2352
                         sequences.
Y
Yibing Liu 已提交
2353 2354 2355 2356 2357 2358
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2359
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2370
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2371 2372 2373 2374
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2375
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2390
@templatedoc()
Y
Yu Yang 已提交
2391
def pool2d(input,
C
chengduoZH 已提交
2392 2393
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2394 2395
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2396
           global_pooling=False,
C
chengduoZH 已提交
2397
           use_cudnn=True,
2398
           ceil_mode=False,
2399 2400
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2401
    """
F
fengjiayi 已提交
2402
    ${comment}
2403 2404

    Args:
2405 2406 2407
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2408
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2409
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2410 2411
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2412
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2413 2414 2415 2416 2417 2418
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2419 2420 2421
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2422
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2423
                        layer will be named automatically.
2424
        exclusive (bool): Whether to exclude padding points in average pooling
2425
                          mode, default is true
F
fengjiayi 已提交
2426

2427
    Returns:
F
fengjiayi 已提交
2428
        Variable: The pooling result.
F
fengjiayi 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2442 2443 2444 2445
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2446
                            global_pooling=False)
Y
Yu Yang 已提交
2447 2448 2449 2450 2451
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2452

C
chengduoZH 已提交
2453 2454 2455 2456 2457
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2458 2459 2460 2461
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2462 2463
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2464

C
Add doc  
chengduoZH 已提交
2465
    l_type = 'pool2d'
2466 2467

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2468
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2469
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2470 2471

    helper.append_op(
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2483 2484
            "use_mkldnn": False,
            "exclusive": exclusive,
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2498 2499
           name=None,
           exclusive=True):
2500 2501
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2502
    pooling configurations mentioned in input parameters.
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2515
        exclusive (bool): Whether to exclude padding points in average pooling
2516
                          mode, default is true
2517

2518
    Returns:
2519
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2520 2521 2522 2523 2524
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2525

C
chengduoZH 已提交
2526 2527 2528 2529 2530
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2531 2532 2533
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2534

C
chengduoZH 已提交
2535 2536
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2537

2538 2539
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2540
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2541
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2542 2543

    helper.append_op(
2544
        type=l_type,
Y
Yu Yang 已提交
2545 2546 2547 2548 2549 2550 2551
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2552
            "paddings": pool_padding,
2553
            "use_cudnn": use_cudnn,
2554
            "ceil_mode": ceil_mode,
2555 2556
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2557 2558 2559 2560 2561
        })

    return pool_out


2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2595
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2596
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2597
          # of input data into m * n grids averagely and performs poolings in each
2598 2599
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2600
          #
2601 2602 2603 2604 2605 2606 2607 2608
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2609 2610
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2611
          pool_out = fluid.layers.adaptive_pool2d(
2612 2613
                            input=data,
                            pool_size=[3, 3],
2614
                            pool_type='avg')
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2625
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2651
    return (pool_out, mask) if require_index else pool_out
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2687 2688
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2689
          # of input data into l * m * n grids averagely and performs poolings in each
2690 2691
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2692
          #
2693 2694 2695 2696 2697 2698 2699 2700 2701
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2702
          #                 output[:, :, i, j, k] =
2703 2704
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2705 2706
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2707
          pool_out, mask = fluid.layers.adaptive_pool3d(
2708 2709
                            input=data,
                            pool_size=[3, 3],
2710
                            pool_type='avg')
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2721
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2747
    return (pool_out, mask) if require_index else pool_out
2748 2749


Y
Yu Yang 已提交
2750 2751 2752 2753 2754 2755 2756
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2757
               data_layout='NCHW',
Y
Yang Yang 已提交
2758
               in_place=False,
2759 2760
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2761
               moving_variance_name=None,
2762
               do_model_average_for_mean_and_var=False,
2763 2764
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2765
    """
Q
qiaolongfei 已提交
2766 2767 2768 2769
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2770

Q
qiaolongfei 已提交
2771
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2772

Q
qiaolongfei 已提交
2773 2774
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2775 2776 2777
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2790

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2804
    Args:
Q
qiaolongfei 已提交
2805
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2806 2807 2808 2809
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2810 2811 2812 2813 2814 2815 2816 2817
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2818
        data_layout(string, default NCHW): NCHW|NHWC
2819
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2820 2821 2822 2823
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2824
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2825
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2826 2827 2828 2829 2830
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2831 2832

    Returns:
Q
qiaolongfei 已提交
2833
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2834 2835 2836 2837 2838 2839 2840

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2841
    """
C
chengduo 已提交
2842
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2843 2844 2845
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2846 2847 2848 2849
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2867 2868 2869
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2870 2871

    bias = helper.create_parameter(
2872
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2873 2874 2875
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2876

2877 2878
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2879 2880 2881
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2882
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2883
        shape=param_shape,
W
Wu Yi 已提交
2884
        dtype=dtype)
2885 2886 2887 2888 2889 2890
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2891
            trainable=False,
W
wanghaoshuang 已提交
2892
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2893
        shape=param_shape,
W
Wu Yi 已提交
2894
        dtype=dtype)
2895
    variance.stop_gradient = True
Y
Yu Yang 已提交
2896 2897 2898 2899 2900 2901

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2902 2903 2904 2905
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2906

X
Xin Pan 已提交
2907 2908
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2926 2927 2928 2929
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2930
            "use_mkldnn": False,
2931 2932
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2933
        })
Y
Yu Yang 已提交
2934 2935 2936 2937

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3065
@templatedoc()
G
guosheng 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3076
    ${comment}
G
guosheng 已提交
3077 3078 3079

    The formula is as follows:

Y
yuyang18 已提交
3080
    ..  math::
G
guosheng 已提交
3081 3082 3083 3084 3085 3086 3087

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3088 3089 3090 3091 3092 3093 3094 3095
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3096

G
guosheng 已提交
3097 3098
    Args:
        input(Variable): The input tensor variable.
3099
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3100
            normalization. Default True.
3101
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3102 3103
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3104
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3105
            Default 1.
3106
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3107
            division by zero. Default 1e-05.
G
guosheng 已提交
3108
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3109 3110
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3111 3112
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3113
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3114 3115
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3116
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3117
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3118
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3119 3120 3121
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3122 3123

    Returns:
Y
yuyang18 已提交
3124
        ${y_comment}
G
guosheng 已提交
3125 3126 3127

    Examples:

Y
yuyang18 已提交
3128 3129 3130
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3146
    if shift:
G
guosheng 已提交
3147 3148 3149 3150 3151 3152
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3153 3154 3155 3156 3157
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3185
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3233 3234 3235
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_variable(dtype)
D
Dun 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3251 3252 3253 3254
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3255 3256 3257
                     padding=0,
                     stride=1,
                     dilation=1,
3258
                     groups=None,
C
caoying03 已提交
3259
                     param_attr=None,
3260
                     bias_attr=None,
C
chengduoZH 已提交
3261
                     use_cudnn=True,
3262
                     act=None,
C
caoying03 已提交
3263
                     name=None):
Y
Yu Yang 已提交
3264
    """
3265 3266 3267 3268 3269 3270 3271 3272
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3273 3274
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3275 3276 3277
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3278 3279 3280 3281 3282

    For each input :math:`X`, the equation is:

    .. math::

3283
        Out = \sigma (W \\ast X + b)
3284

3285
    Where:
3286 3287 3288

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3289 3290 3291 3292
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3293

3294 3295 3296 3297
    Example:

        - Input:

3298
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3299

3300
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3301 3302 3303

        - Output:

3304
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3305 3306

        Where
Y
Yu Yang 已提交
3307

3308 3309
        .. math::

3310 3311
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3312 3313
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3314 3315

    Args:
3316 3317 3318 3319
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3320 3321 3322 3323
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3352
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3353 3354 3355
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3356
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3357
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3358 3359

    Returns:
3360
        Variable: The tensor variable storing the convolution transpose result.
3361 3362

    Raises:
3363 3364
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3365 3366 3367 3368

    Examples:
       .. code-block:: python

3369 3370
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3371
    """
C
chengduo 已提交
3372
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3373 3374 3375 3376 3377 3378 3379 3380
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3381 3382 3383
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3384 3385 3386
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3387

C
chengduoZH 已提交
3388 3389
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3390

Y
Yu Yang 已提交
3391 3392 3393 3394 3395
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3396

Y
Yu Yang 已提交
3397 3398
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3399

C
chengduoZH 已提交
3400
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3401
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3402
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3403
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3404
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3405 3406 3407
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3408

3409 3410 3411 3412 3413 3414 3415
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3416
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3417
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3418

Y
Yu Yang 已提交
3419 3420 3421
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3422
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3423
    helper.append_op(
3424
        type=op_type,
Y
Yu Yang 已提交
3425 3426
        inputs={'Input': [input],
                'Filter': [img_filter]},
3427
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3428
        attrs={
3429
            'output_size': output_size,
3430 3431 3432 3433 3434
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3435 3436
        })

3437 3438 3439
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3440 3441


3442
def conv3d_transpose(input,
Y
Yu Yang 已提交
3443 3444 3445
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3446 3447 3448
                     padding=0,
                     stride=1,
                     dilation=1,
3449
                     groups=None,
C
caoying03 已提交
3450
                     param_attr=None,
3451
                     bias_attr=None,
C
chengduoZH 已提交
3452
                     use_cudnn=True,
3453
                     act=None,
C
caoying03 已提交
3454
                     name=None):
Y
Yu Yang 已提交
3455
    """
3456
    **Convlution3D transpose layer**
3457

3458
    The convolution3D transpose layer calculates the output based on the input,
3459
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3460 3461 3462 3463 3464 3465
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3466 3467 3468
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3469 3470 3471 3472 3473

    For each input :math:`X`, the equation is:

    .. math::

3474
        Out = \sigma (W \\ast X + b)
3475 3476 3477

    In the above equation:

3478 3479
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3480 3481 3482 3483
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3484

3485 3486 3487 3488
    Example:

        - Input:

3489
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3490

3491
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3492 3493 3494

        - Output:

3495
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3496 3497

        Where
Y
Yu Yang 已提交
3498

3499 3500
        .. math::

3501 3502 3503
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3504 3505

    Args:
3506
        input(Variable): The input image with [N, C, D, H, W] format.
3507 3508 3509
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3510
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3511 3512
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3513
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3514 3515 3516
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3517 3518
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3519
        stride(int|tuple): The stride size. If stride is a tuple, it must
3520 3521
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3522
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3523 3524 3525
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3526 3527 3528 3529 3530
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3531 3532 3533 3534 3535 3536 3537 3538 3539
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3540 3541
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3542 3543
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3544 3545
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3546 3547

    Returns:
3548
        Variable: The tensor variable storing the convolution transpose result.
3549 3550

    Raises:
3551 3552
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3553 3554 3555 3556

    Examples:
       .. code-block:: python

3557 3558
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3559
    """
C
chengduo 已提交
3560
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3561 3562
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3563
    if not isinstance(input, Variable):
3564
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3565 3566
    input_channel = input.shape[1]

3567 3568 3569
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3570

C
chengduoZH 已提交
3571 3572 3573
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3574 3575 3576 3577 3578 3579
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3580 3581 3582
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3583

3584
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3585
                         padding[0] - 1) // dilation[0] + 1
3586
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3587
                         padding[1] - 1) // dilation[1] + 1
3588
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3589
                         padding[2] - 1) // dilation[2] + 1
3590
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3591
    else:
3592 3593
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3594

3595
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3596
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3597 3598 3599
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3600
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3601
    helper.append_op(
3602
        type=l_type,
Y
Yu Yang 已提交
3603 3604
        inputs={'Input': [input],
                'Filter': [img_filter]},
3605
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3606 3607 3608 3609
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3610
            'groups': groups,
C
chengduoZH 已提交
3611 3612
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3613

3614 3615
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3616
    return out
Y
yangyaming 已提交
3617 3618


Y
yangyaming 已提交
3619
def sequence_expand(x, y, ref_level=-1, name=None):
3620
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3621 3622 3623 3624
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3625 3626 3627 3628 3629

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3630
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3631
                x.data = [[a], [b], [c], [d]]
3632 3633 3634
                x.dims = [4, 1]

            y is a LoDTensor:
3635 3636
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3637

Y
yangyaming 已提交
3638
            ref_level: 0
3639

Y
yangyaming 已提交
3640
            then output is a 1-level LoDTensor:
3641
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3642
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3643 3644 3645 3646
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3647
                x.data = [[a], [b], [c]]
3648 3649 3650
                x.dims = [3, 1]

            y is a LoDTensor:
3651
                y.lod = [[2, 0, 3]]
3652

Y
yangyaming 已提交
3653
            ref_level: -1
3654

Y
yangyaming 已提交
3655 3656 3657
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3658 3659 3660
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3661 3662
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3663
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3664
                        will be named automatically.
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3675
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3676
    """
Y
yangyaming 已提交
3677
    helper = LayerHelper('sequence_expand', input=x, **locals())
3678
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3679
    tmp = helper.create_variable_for_type_inference(dtype)
3680
    helper.append_op(
Y
yangyaming 已提交
3681 3682 3683 3684 3685
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3686
    return tmp
3687 3688


C
chengduo 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3745
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3746 3747 3748 3749 3750 3751 3752 3753
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3754
@templatedoc()
3755
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3756 3757 3758 3759 3760
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3761 3762 3763
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3764
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3765 3766 3767 3768
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3769 3770 3771
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3772

F
fengjiayi 已提交
3773
    Returns:
M
minqiyang 已提交
3774
        Variable: The padded sequence batch and the original lengths before
3775
                  padding. All sequences has the same length.
M
minqiyang 已提交
3776

F
fengjiayi 已提交
3777 3778 3779 3780 3781 3782 3783
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3784
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3785
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3786 3787 3788 3789 3790
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3791 3792
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3793 3794 3795 3796

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3797 3798 3799 3800 3801 3802
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3803 3804
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3805
        attrs={'padded_length': maxlen})
3806
    return out, length
F
fengjiayi 已提交
3807 3808


3809
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3810
    """
3811
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3812

3813 3814
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3824 3825 3826
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3827
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3828 3829 3830 3831 3832 3833

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3834
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3835 3836 3837 3838 3839 3840

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3841 3842
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3857
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3869 3870 3871 3872 3873 3874 3875 3876 3877
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3878 3879
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3880 3881 3882

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3883 3884

    This layer does the search in beams for one time step. Specifically, it
3885 3886 3887 3888 3889 3890
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3891

3892 3893 3894 3895 3896 3897 3898 3899
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3900

3901
    Args:
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3927

3928
    Returns:
3929 3930
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3931 3932 3933 3934

    Examples:
        .. code-block:: python

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3952 3953 3954 3955
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3956 3957 3958
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3959 3960 3961 3962 3963

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3964
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3982 3983 3984 3985 3986 3987 3988
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3989

3990 3991 3992 3993 3994 3995 3996 3997 3998
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3999

4000 4001 4002 4003 4004 4005
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4006

4007 4008
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4009

4010 4011 4012 4013 4014 4015
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4016 4017
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4033 4034 4035 4036
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4037
              param_attr=None,
C
caoying03 已提交
4038 4039
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4040 4041 4042 4043
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4044
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4045

4046
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4047

4048
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4049

4050
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4051 4052 4053

            h_t & = o_t tanh(c_t)

4054 4055 4056 4057 4058 4059
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4060 4061 4062

        .. math::

4063
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4064 4065 4066 4067 4068 4069 4070 4071

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4072
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4073 4074

    Args:
Y
yangyaming 已提交
4075 4076 4077 4078 4079 4080
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4081
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4094 4095
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4096 4097

    Returns:
Y
yangyaming 已提交
4098
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4099 4100

    Raises:
4101 4102 4103 4104
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4105 4106 4107 4108 4109 4110

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4111
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4112
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4113
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4130
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4131 4132 4133 4134
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4135 4136
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4137 4138 4139
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4140
    size = cell_t_prev.shape[1]
4141
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4142 4143
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4144
                param_attr=param_attr,
4145
                bias_attr=bias_attr)
Y
yangyaming 已提交
4146
    dtype = x_t.dtype
X
Xin Pan 已提交
4147 4148
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4158
    return h, c
G
guosheng 已提交
4159 4160


C
caoying03 已提交
4161
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4162
    """
Y
yangyaming 已提交
4163
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4164 4165 4166

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4167
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4168 4169
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4170 4171
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4172
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4173
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4174
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4175 4176
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4177 4178 4179

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4180

G
guosheng 已提交
4181 4182 4183 4184 4185 4186
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4187
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4188 4189 4190 4191
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4192 4193 4194 4195

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4196
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4197 4198 4199
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4200 4201
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4202
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4203 4204
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4205 4206 4207 4208 4209
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4210
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4211 4212 4213 4214
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4215 4216


C
caoying03 已提交
4217
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4218
    """
Y
Yibing Liu 已提交
4219
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4220 4221 4222

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4223 4224 4225
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4226
            must be in the range :math:`[-rank(input), rank(input))`. If
4227
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4228
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4229 4230
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4231
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4232
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4233
                       will be named automatically.
G
guosheng 已提交
4234 4235

    Returns:
Y
Yibing Liu 已提交
4236
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4237

G
guosheng 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4248 4249
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4250 4251 4252 4253 4254 4255 4256

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4257 4258
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4259
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4260 4261
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4262 4263 4264 4265 4266
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4267
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4268 4269 4270 4271
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4272 4273


C
caoying03 已提交
4274
def reduce_max(input, dim=None, keep_dim=False, name=None):
4275
    """
Y
yangyaming 已提交
4276
    Computes the maximum of tensor elements over the given dimension.
4277 4278 4279

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4280
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4281 4282 4283
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4284
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4285 4286
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4287
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4288 4289
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4290 4291 4292

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4293

4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4305 4306 4307 4308 4309 4310 4311

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4312 4313
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4314
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4315 4316
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4317 4318 4319 4320 4321
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4322
            'dim': dim if dim != None else [0],
4323 4324 4325 4326 4327 4328
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4329
def reduce_min(input, dim=None, keep_dim=False, name=None):
4330
    """
Y
yangyaming 已提交
4331
    Computes the minimum of tensor elements over the given dimension.
4332 4333 4334

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4335
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4336 4337 4338
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4339
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4340 4341
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4342
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4343 4344
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4345 4346 4347

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4348

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4360 4361 4362 4363 4364 4365 4366

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4367 4368
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4369
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4370 4371
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4372 4373 4374 4375 4376
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4377
            'dim': dim if dim != None else [0],
4378 4379 4380 4381
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4382 4383


4384 4385 4386 4387 4388 4389
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4390
        dim (list|int|None): The dimensions along which the product is performed. If
4391 4392
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4393 4394
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4395 4396 4397
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4398
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4399
            layer will be named automatically.
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4414
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4415
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4416 4417 4418 4419 4420 4421 4422

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4423 4424
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4425
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4426 4427
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4428 4429 4430 4431 4432
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4433
            'dim': dim if dim != None else [0],
4434 4435 4436 4437 4438 4439
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4440
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4441
    """
C
caoying03 已提交
4442
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4443 4444 4445

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4446 4447 4448 4449 4450
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4451
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4452
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4453
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4454 4455
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4456 4457

    Returns:
D
dzhwinter 已提交
4458
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4468 4469
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4485
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4508
    .. math::
4509 4510

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4511 4512 4513 4514 4515

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4516
        x(Variable|list): The input tensor to l2_normalize layer.
4517
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4518 4519
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4520
        epsilon(float): The epsilon value is used to avoid division by zero, \
4521
            the defalut value is 1e-10.
4522
        name(str|None): A name for this layer(optional). If set None, the layer \
4523
            will be named automatically.
C
caoying03 已提交
4524 4525

    Returns:
4526
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4527 4528

    Examples:
4529

C
caoying03 已提交
4530 4531
        .. code-block:: python

4532 4533 4534 4535
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4536 4537
    """

F
fengjiayi 已提交
4538 4539
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4540 4541
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4542 4543
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4544
    helper.append_op(
4545 4546 4547 4548
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4549
        attrs={
4550 4551
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4552 4553
        })
    return out
4554 4555


S
sneaxiy 已提交
4556
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4557
    """
Y
ying 已提交
4558 4559 4560 4561
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4562

C
chengduoZH 已提交
4563
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4564
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4565

4566 4567 4568 4569 4570
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4571
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4572

C
chengduoZH 已提交
4573
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4574
      performs in the following way.
G
guosheng 已提交
4575

4576
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4577
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4578
        last two dimensions and a batched matrix multiply supporting broadcast
4579
        applies on the two tensors.
G
guosheng 已提交
4580

Y
ying 已提交
4581 4582
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4583
    removed after matrix multiplication.
G
guosheng 已提交
4584 4585 4586

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4587 4588 4589
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4590
        alpha (float): The scale of output. Default 1.0.
4591
        name(str|None): A name for this layer(optional). If set None, the layer
4592
            will be named automatically.
G
guosheng 已提交
4593 4594

    Returns:
4595
        Variable: The product Tensor variable.
G
guosheng 已提交
4596

G
guosheng 已提交
4597 4598 4599
    Examples:
        .. code-block:: python

4600
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4601 4602
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4603

4604 4605
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4606

4607 4608
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4609

4610 4611
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4612 4613 4614 4615

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4616 4617
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4618

Y
ying 已提交
4619
            # x: [M], y: [N]
4620
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4621
    """
Y
ying 已提交
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4634
            y_shape = y_shape + [1]
Y
ying 已提交
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4651
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4652
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4653
    helper.append_op(
4654 4655 4656 4657
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4658 4659 4660
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4661
            'alpha': float(alpha),
S
sneaxiy 已提交
4662
        })
4663
    return out
4664 4665


4666
def topk(input, k, name=None):
Q
qingqing01 已提交
4667 4668 4669 4670
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4671
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4672 4673 4674 4675 4676 4677
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4699 4700 4701
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4702
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4703
                 of input.
4704
        name(str|None): A name for this layer(optional). If set None, the layer
4705
                       will be named automatically.
F
fengjiayi 已提交
4706
                       Default: None
Q
qingqing01 已提交
4707 4708

    Returns:
4709 4710 4711
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4712
        within the last dimension of input.
Q
qingqing01 已提交
4713

F
fengjiayi 已提交
4714 4715
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4716 4717 4718 4719 4720 4721 4722

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4723 4724
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4725 4726 4727 4728 4729 4730
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4731 4732
    helper.append_op(
        type="top_k",
W
whs 已提交
4733
        inputs=inputs,
Q
qingqing01 已提交
4734 4735
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4736
        attrs=attrs)
Q
qingqing01 已提交
4737 4738 4739 4740 4741
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4742
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4743
    """
Y
ying 已提交
4744 4745 4746 4747 4748 4749 4750 4751 4752
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4753

Y
ying 已提交
4754
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4755

4756
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4757 4758
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4759
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4760

4761
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4762 4763
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4764

4765 4766 4767
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4768
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4769
                          the length of reference string.
4770
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4771
                                     calculating edit distance.
4772
        name (str): The name of this layer. It is optional.
4773

W
wanghaoshuang 已提交
4774
    Returns:
W
wanghaoshuang 已提交
4775
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4776 4777 4778 4779

    Examples:
        .. code-block:: python

T
tink2123 已提交
4780 4781
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4782
            cost = fluid.layers.edit_distance(input=x,label=y)
4783
    """
4784
    helper = LayerHelper("edit_distance", **locals())
4785

4786
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4787
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4788 4789
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4790 4791 4792 4793 4794

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4795
            attrs={"tokens": ignored_tokens})
4796 4797 4798 4799 4800
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4801
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4802
            attrs={"tokens": ignored_tokens})
4803 4804
        label = erased_label

4805
    # edit distance op
X
Xin Pan 已提交
4806 4807
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4808 4809 4810 4811
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4812 4813
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4814 4815
        attrs={"normalized": normalized})

4816
    return edit_distance_out, sequence_num
4817 4818 4819 4820 4821


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4822

Y
ying 已提交
4823 4824 4825 4826
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4844
        input.lod = [[4, 4]]
M
minqiyang 已提交
4845

W
whs 已提交
4846
        Computation:
4847

W
whs 已提交
4848 4849 4850 4851 4852 4853
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4854 4855 4856 4857 4858

        output.data = [[2],
                       [1],
                       [3]]

4859
        output.lod = [[2, 1]]
4860

W
whs 已提交
4861

4862 4863
    Args:

Y
ying 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4873
        name (str): The name of this layer. It is optional.
4874 4875

    Returns:
H
haowang101779990 已提交
4876 4877 4878
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4879
                  LoD [[]] and dims [1, 1].
4880 4881 4882 4883 4884

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4885

4886
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4887
    """
4888
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4889
    _, topk_indices = topk(input, k=1)
4890 4891

    # ctc align op
X
Xin Pan 已提交
4892
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4893 4894 4895
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4896
        outputs={"Output": [ctc_out]},
4897 4898
        attrs={"merge_repeated": True,
               "blank": blank})
4899
    return ctc_out
4900 4901


W
Wu Yi 已提交
4902
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4903
    """
4904 4905
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4906
    to compute Connectionist Temporal Classification (CTC) loss.
4907 4908
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4909 4910 4911
    input tensor.

    Args:
4912
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4913 4914 4915 4916
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4917
       label (Variable): The ground truth of variable-length sequence,
4918 4919 4920
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4921 4922
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4923 4924 4925
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4926
         follewed by a mean_op.
W
Wu Yi 已提交
4927
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4928 4929

    Returns:
4930 4931
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4932 4933

    Examples:
4934

W
wanghaoshuang 已提交
4935
        .. code-block:: python
4936

4937 4938 4939
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4940 4941

    """
F
fengjiayi 已提交
4942
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4943 4944
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4945 4946 4947 4948 4949 4950
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4951 4952 4953 4954 4955
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4956
    return loss_out
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4972 4973 4974
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4975 4976 4977 4978 4979
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4980

4981
            out.lod  = [[0, 1, 3]]
4982 4983 4984 4985

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4986 4987 4988 4989 4990 4991 4992
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4993 4994 4995

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4996 4997

    Returns:
4998

4999 5000 5001 5002 5003
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5004
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5005
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5006 5007
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5008
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5009 5010 5011 5012 5013 5014
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5015 5016


5017 5018 5019 5020
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5021 5022 5023 5024 5025 5026
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5027
        num_neg_samples=None,
5028 5029 5030
        name=None,
        sampler="uniform",
        custom_dist=None,
5031 5032
        seed=0,
        is_sparse=False):
5033 5034 5035 5036 5037 5038 5039
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5040 5041
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5042
            sample is 1.0.
C
chengduo 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5052
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5053 5054
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5055 5056 5057
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5058
        custom_dist (float[]): A float[] with size=num_total_classes.
5059 5060 5061 5062
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5063
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5064

5065
    Returns:
Y
Yibing Liu 已提交
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5093 5094 5095 5096 5097 5098 5099 5100 5101

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5102

5103
    """
Y
Yang Yu 已提交
5104 5105 5106
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5107 5108

    dim = input.shape[1]
Y
Yang Yu 已提交
5109 5110 5111 5112 5113 5114
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5115
    inputs = {}
C
chengduo 已提交
5116 5117 5118 5119 5120 5121 5122
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5123 5124 5125
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5126

5127 5128 5129 5130
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5131 5132 5133 5134 5135 5136 5137

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5190 5191 5192 5193
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5194 5195 5196 5197 5198
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5199 5200 5201 5202
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5203

Y
Yang Yu 已提交
5204 5205
    attrs = {
        'num_total_classes': int(num_total_classes),
5206 5207
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5208
        'sampler': sampler,
5209 5210
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5211
    }
Y
Yang Yu 已提交
5212 5213 5214

    helper.append_op(
        type='nce',
C
chengduo 已提交
5215
        inputs=inputs,
Y
Yang Yu 已提交
5216 5217 5218 5219 5220 5221
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5222
    return cost / (num_neg_samples + 1)
5223 5224


C
chengduo 已提交
5225 5226
def hsigmoid(input,
             label,
5227
             num_classes,
C
chengduo 已提交
5228 5229
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5230
             name=None,
5231 5232 5233
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5234
             is_sparse=False):
W
weixing02 已提交
5235 5236
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5237
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5238
    complete binary tree, or you can use is_custom to pass your own tree to
5239
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5240 5241 5242 5243 5244 5245
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5246
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5247
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5248

5249 5250
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5251 5252 5253 5254
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5255
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5256
       related to the same batch of inputs.
5257

W
weixing02 已提交
5258
    Args:
M
minqiyang 已提交
5259
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5260 5261 5262 5263
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5264 5265
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5266
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5278
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5279
            it should be in leaf -> root order
M
minqiyang 已提交
5280 5281 5282
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5283
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5284
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5285
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5286
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5287
             of W and input will be sparse.
W
weixing02 已提交
5288 5289

    Returns:
J
JiabinYang 已提交
5290
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5291 5292 5293 5294 5295

    Examples:

        .. code-block:: python

G
guosheng 已提交
5296 5297 5298
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5299 5300 5301 5302
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5303 5304
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5305
    dim = input.shape[1]
5306
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5307 5308 5309
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5310 5311 5312 5313
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5314 5315
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5316 5317 5318
    else:
        pass

J
JiabinYang 已提交
5319
    weights = None
5320 5321 5322 5323
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5324
    if not is_custom:
J
JiabinYang 已提交
5325 5326 5327 5328 5329 5330 5331 5332
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5333
            shape=[num_classes, dim],
J
JiabinYang 已提交
5334 5335
            is_bias=False,
            dtype=input.dtype)
5336 5337 5338
    inputs = {
        "X": input,
        "W": weights,
5339
        "PathTable": path_table,
5340
        "PathCode": path_code,
5341 5342
        "Label": label
    }
W
weixing02 已提交
5343
    if helper.bias_attr:
5344
        if not is_custom:
J
JiabinYang 已提交
5345 5346
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5347
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5348 5349 5350 5351 5352 5353
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5354
                shape=[num_classes, 1],
J
JiabinYang 已提交
5355 5356 5357
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5358 5359
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5360
        inputs=inputs,
W
weixing02 已提交
5361
        outputs={"Out": out,
5362 5363 5364 5365 5366 5367 5368
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5369 5370 5371
    return out


Y
fix ci.  
ying 已提交
5372
def transpose(x, perm, name=None):
Y
ying 已提交
5373 5374 5375 5376 5377 5378 5379
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5380 5381 5382
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5383 5384 5385 5386 5387 5388 5389

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5390
            # use append_batch_size=False to avoid prepending extra
5391
            # batch size in shape
5392
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5393
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5394
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5395 5396
    """

Y
fix ci.  
ying 已提交
5397
    if len(perm) != len(x.shape):
Y
ying 已提交
5398 5399 5400
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5401 5402 5403 5404 5405 5406
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5407 5408

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5409 5410
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5411
    helper.append_op(
5412
        type='transpose2',
Y
fix ci.  
ying 已提交
5413
        inputs={'X': [x]},
5414 5415
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5416 5417
        attrs={'axis': perm})
    return out
5418 5419


5420 5421 5422 5423 5424 5425 5426
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5427
    """
5428 5429 5430 5431 5432 5433 5434
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5463 5464 5465 5466 5467 5468 5469 5470 5471
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5472 5473 5474
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5475 5476 5477 5478 5479
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5507 5508 5509
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5522
            output.dims = {8, 8}
5523

5524
            output.lod = [[4, 4]]
5525

T
Tink_Y 已提交
5526
    Examples:
5527 5528 5529

        .. code-block:: python

5530 5531
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5532 5533

    """
W
wanghaoshuang 已提交
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5544 5545 5546 5547 5548 5549 5550
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5551
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5552
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5553
    helper.append_op(
5554
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5555
    return out
5556 5557


Y
yuyang18 已提交
5558
@templatedoc()
5559
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5560 5561
    """
    ${comment}
5562 5563

    Args:
Y
yuyang18 已提交
5564
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5565 5566
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5567 5568 5569 5570 5571
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5572
        ${out_comment}.
5573 5574

    Examples:
Y
yuyang18 已提交
5575 5576 5577 5578
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5579 5580 5581 5582 5583 5584
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5585
    out = helper.create_variable_for_type_inference(dtype)
5586 5587 5588 5589 5590
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5591
    return helper.append_activation(out)
5592 5593


Y
yuyang18 已提交
5594
@templatedoc()
5595 5596
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5597 5598 5599 5600 5601 5602 5603
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5604 5605

    Args:
Y
yuyang18 已提交
5606 5607
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5608 5609

    Returns:
Y
yuyang18 已提交
5610
        ${out_comment}.
5611 5612
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5613 5614 5615 5616 5617

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5618
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5619 5620 5621 5622 5623 5624
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5625 5626


5627 5628 5629
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5630
                               ignore_index=kIgnoreIndex,
5631 5632
                               numeric_stable_mode=False,
                               return_softmax=False):
5633 5634
    """
    **Softmax With Cross Entropy Operator.**
5635

5636 5637 5638 5639
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5640

5641 5642 5643
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5644

5645 5646 5647
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5648

5649
    The equation is as follows:
5650

5651
    1) Hard label (one-hot label, so every sample has exactly one class)
5652

5653 5654 5655 5656
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5657

5658 5659 5660
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5661

5662 5663 5664 5665
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5666 5667 5668
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5669

H
haowang101779990 已提交
5670
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5671

H
haowang101779990 已提交
5672
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5673

H
haowang101779990 已提交
5674
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5675 5676 5677

    and then cross entropy loss is calculated by softmax and label.

5678 5679 5680 5681 5682 5683 5684 5685
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5686 5687
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5688
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5689 5690 5691
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5692 5693 5694
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5695
                                    stable algorithm. Default: False
5696
        return_softmax (bool): A flag indicating whether to return the softmax
5697
                               along with the cross entropy loss. Default: False
5698

5699
    Returns:
H
haowang101779990 已提交
5700 5701 5702 5703 5704
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5705 5706 5707 5708 5709 5710 5711

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5712 5713
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5714 5715
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5716 5717
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5718 5719 5720 5721 5722 5723
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5724 5725 5726 5727 5728
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5729 5730 5731 5732

    if return_softmax:
        return loss, softmax

5733 5734 5735 5736 5737
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5738 5739
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5740
    For each instance, it computes the smooth L1 loss element by element first
5741
    and then sums all the losses. So the shape of ouput Variable is
5742
    [batch_size, 1].
5743

5744 5745
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5746
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5747
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5748
            L1 loss op with same shape as :attr:`x`.
5749
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5750 5751
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5752
            by this tensor element by element.
5753
        outside_weight (Variable|None): A tensor with rank at least 2. This
5754 5755
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5756
            element by element.
5757
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5758 5759
           scalar with default value 1.0.

5760
    Returns:
5761
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5762 5763 5764 5765 5766

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5767 5768
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5769
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5770
            out = fluid.layers.smooth_l1(x=fc, y=label)
5771
    """
5772

5773
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5774 5775
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5788 5789 5790 5791


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5792
    This layer creates the one-hot representations for input indices.
5793 5794

    Args:
Y
Yibing Liu 已提交
5795 5796
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5797 5798

    Returns:
Y
Yibing Liu 已提交
5799
        Variable: The one-hot representations of input.
5800 5801

    Examples:
C
caoying03 已提交
5802
        .. code-block:: python
5803

Y
Yibing Liu 已提交
5804 5805
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5806 5807
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5808
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5809 5810 5811 5812 5813 5814
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5815 5816


Y
Yu Yang 已提交
5817
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5818
    """
Y
yi.wu 已提交
5819 5820 5821
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5822 5823 5824 5825 5826 5827

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5828 5829
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5830 5831 5832 5833 5834 5835

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5836 5837
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5838 5839
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5840 5841 5842 5843 5844
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5845
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5846
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5847 5848
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5849 5850
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5851 5852 5853
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5854 5855


5856
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5857
    """
C
caoying03 已提交
5858 5859
    Gives a new shape to the input Tensor without changing its data.

5860 5861 5862 5863 5864
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5865

5866
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5867

5868 5869 5870 5871
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5872
    2. 0 means the actual dimension value is going to be copied from the
5873 5874 5875 5876
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5877 5878

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5879
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5880
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5881

5882
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5883 5884
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5885 5886
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5887
    dimensions.
C
caoying03 已提交
5888

5889
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5890 5891 5892 5893
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5894 5895

    Args:
5896
        x(variable): The input tensor.
C
caoying03 已提交
5897 5898
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5899 5900 5901 5902 5903
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5904 5905
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5906 5907 5908 5909 5910 5911 5912
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5913
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5914

5915
    Returns:
G
guosheng 已提交
5916 5917 5918 5919
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5920

X
Xin Pan 已提交
5921 5922 5923
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5924 5925
    Examples:
        .. code-block:: python
G
guosheng 已提交
5926

5927
            data = fluid.layers.data(
5928
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5929
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5930
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5931 5932 5933
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5934
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5935 5936 5937 5938 5939
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5940

5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5956
    helper = LayerHelper("reshape2", **locals())
5957 5958
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5959
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5960
    helper.append_op(
5961
        type="reshape2",
X
Xin Pan 已提交
5962
        inputs=inputs,
D
dzhwinter 已提交
5963
        attrs={"shape": shape},
5964 5965
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5966

D
dzhwinter 已提交
5967
    return helper.append_activation(out)
5968

5969

5970
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5971
    """
M
minqiyang 已提交
5972 5973 5974
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5975
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5976

H
haowang101779990 已提交
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
5998

Y
Yibing Liu 已提交
5999
    Args:
6000
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6001
        axes (list): List of integers, indicating the dimensions to be squeezed.
6002
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6003 6004 6005 6006 6007 6008 6009 6010

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6011
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6012 6013
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6014 6015
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6016
    helper.append_op(
6017
        type="squeeze2",
6018
        inputs={"X": input},
Y
Yibing Liu 已提交
6019
        attrs={"axes": axes},
6020 6021
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6022

6023 6024 6025
    return out


6026
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6027
    """
M
minqiyang 已提交
6028 6029 6030
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6031

M
minqiyang 已提交
6032
    For example:
H
haowang101779990 已提交
6033 6034 6035

    .. code-block:: text

M
minqiyang 已提交
6036
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6037
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6038

Y
Yibing Liu 已提交
6039
    Args:
6040
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6041
        axes (list): List of integers, indicating the dimensions to be inserted.
6042
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6043 6044 6045 6046 6047 6048 6049 6050

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6051
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6052 6053
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6054 6055
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6056
    helper.append_op(
6057
        type="unsqueeze2",
6058
        inputs={"X": input},
Y
Yibing Liu 已提交
6059
        attrs={"axes": axes},
6060 6061
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6062

6063 6064
    return out

6065

Y
yangyaming 已提交
6066
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6067
    """
Y
Yibing Liu 已提交
6068
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6069 6070 6071 6072
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6073
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6074 6075 6076 6077 6078 6079

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6080
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6081 6082 6083
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6084
            target_lod: [4, 2]
Y
yangyaming 已提交
6085 6086

            then we get a 1-level LoDTensor:
6087
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6088 6089 6090 6091 6092 6093
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6094
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6095 6096 6097 6098
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6099
                y.data = [[2, 4]]
Y
yangyaming 已提交
6100 6101 6102
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6103
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6104 6105 6106 6107 6108 6109
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6110
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6111 6112 6113 6114
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6115
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6116 6117 6118 6119
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6120
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6121 6122 6123 6124 6125
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6126
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6127
                           from :attr:`y`.
Y
yangyaming 已提交
6128
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6129
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6130 6131

    Returns:
Y
Yibing Liu 已提交
6132
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6133 6134

    Raises:
Y
Yibing Liu 已提交
6135
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6136 6137 6138 6139 6140 6141 6142 6143 6144

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6145
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6171
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6200 6201
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6214 6215 6216
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6230 6231 6232 6233


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6234
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6235
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6236

G
guosheng 已提交
6237 6238 6239 6240
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6263
                         The length of :attr:paddings must be
G
guosheng 已提交
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6274

G
guosheng 已提交
6275 6276 6277 6278 6279 6280
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6281
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6282 6283 6284 6285 6286 6287 6288
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6289 6290


C
chengduo 已提交
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6322 6323
		And
            pad_value = -1,
C
chengduo 已提交
6324

T
Tink_Y 已提交
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6360
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6361 6362 6363 6364 6365 6366 6367 6368 6369
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6370 6371 6372 6373 6374 6375 6376
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6377 6378
    called label-smoothing regularization (LSR).

6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6402
                              be :math:`(1, class\_num)`.
6403 6404
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6405
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6425
    smooth_label = helper.create_variable_for_type_inference(dtype)
6426 6427 6428 6429 6430 6431 6432
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6433 6434


W
wopeizl 已提交
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6471 6472


J
jerrywgz 已提交
6473 6474 6475 6476 6477 6478
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6479 6480
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6497 6498 6499
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6500 6501 6502 6503 6504 6505
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6506
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6547 6548
        .. code-block:: python

W
whs 已提交
6549 6550 6551 6552
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6553
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6554 6555 6556 6557 6558 6559
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6560 6561


6562 6563 6564 6565
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6566 6567
                 resample='BILINEAR',
                 actual_shape=None):
6568
    """
Q
qiaolongfei 已提交
6569
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6570

6571
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6572 6573 6574
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6575

6576
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6577

6578
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6579

6580
    Args:
6581
        input (Variable): The input tensor of image resize layer,
6582 6583
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6584
        out_shape(list|tuple|Variable|None): Output shape of image resize
6585 6586
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6587
        scale(float|None): The multiplier for the input height or width.
6588 6589 6590
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6591 6592
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6593
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6594
                       currently.
6595
                       Default: 'BILINEAR'
6596 6597 6598
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6599
                                :attr:`out_shape` and :attr:`scale` specifying
6600 6601 6602 6603 6604 6605 6606
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6607 6608
                                constructing stage.
                                Default: None
6609 6610

    Returns:
Q
update  
qiaolongfei 已提交
6611 6612
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6613

6614 6615 6616
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6617
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6618 6619 6620 6621
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6622 6623 6624
    Examples:
        .. code-block:: python

6625
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6626
    """
6627 6628 6629 6630
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6631 6632
    if resample not in resample_methods:
        raise ValueError(
6633
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6634
        )
6635
    resample_type = resample_methods[resample]
6636
    if out_shape is None and scale is None:
6637
        raise ValueError("One of out_shape and scale must not be None.")
6638
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6639
    dtype = helper.input_dtype()
6640 6641 6642 6643

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6644 6645 6646
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6647
    if out_shape is not None:
6648 6649 6650 6651
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6652
            inputs['OutSize'] = out_shape
6653 6654 6655 6656 6657 6658 6659 6660
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6661 6662 6663 6664
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6665 6666 6667 6668 6669
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6670
    out = helper.create_variable_for_type_inference(dtype)
6671
    helper.append_op(
6672
        type='{}_interp'.format(resample_type),
6673
        inputs=inputs,
6674
        outputs={"Out": out},
6675 6676 6677
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6678
    return out
F
stash  
fengjiayi 已提交
6679 6680


6681
@templatedoc(op_type="bilinear_interp")
6682 6683 6684 6685 6686
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6687
    """
6688 6689
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6690 6691
    in priority order.

6692 6693 6694 6695
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6696 6697
    again in the other direction.

6698
    For details of bilinear interpolation, please refer to Wikipedia:
6699
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6700 6701 6702 6703 6704

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6705

Y
yuyang18 已提交
6706 6707 6708 6709 6710
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6711 6712 6713
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6714
                                :attr:`out_shape` and :attr:`scale` specifying
6715 6716 6717 6718 6719 6720 6721
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6722 6723
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6724 6725 6726

    Returns:
        ${out_comment}.
6727 6728 6729 6730 6731

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6732 6733
    """

6734
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6735 6736


6737
@templatedoc(op_type="nearest_interp")
6738 6739 6740 6741 6742
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6743
    """
6744
    Resize input by performing nearest neighbor interpolation in both the
6745 6746
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6747 6748
    out_shape and scale in priority order.

6749
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6750
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6751 6752 6753 6754 6755

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6756

Y
yuyang18 已提交
6757 6758 6759 6760 6761
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6762 6763 6764
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6765
                                :attr:`out_shape` and :attr:`scale` specifying
6766 6767 6768 6769 6770 6771 6772
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6773 6774
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6775 6776 6777

    Returns:
        ${out_comment}.
6778 6779 6780 6781 6782

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6783 6784
    """

6785
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6786 6787 6788 6789


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6790 6791 6792
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6793 6794 6795 6796 6797 6798 6799
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6800
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6801

6802
    Returns:
Q
update  
qiaolongfei 已提交
6803
        Variable: The output is a 4-D tensor of the shape
6804
        (num_batches, channls, out_h, out_w).
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6815 6816 6817
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6818 6819 6820
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6821 6822
def gather(input, index):
    """
Q
qiaolongfei 已提交
6823 6824
    **Gather Layer**

6825
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6826 6827 6828 6829
    of X indexed by `index` and concatenate them together.

    .. math::

6830
        Out = X[Index]
W
whs 已提交
6831 6832 6833 6834 6835 6836 6837


    .. code-block:: text


                Given:

6838 6839
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6850
        input (Variable): The source input with rank>=1.
W
whs 已提交
6851 6852 6853 6854 6855 6856
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6857

W
whs 已提交
6858 6859 6860 6861 6862 6863
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6864
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6865 6866 6867 6868 6869 6870 6871 6872
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6904
    out = helper.create_variable_for_type_inference(dtype)
6905 6906 6907 6908 6909 6910 6911 6912 6913
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6914 6915 6916 6917 6918 6919 6920 6921 6922
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
6923

Q
Qingsheng Li 已提交
6924
    Given the following input:
H
haowang101779990 已提交
6925

Q
Qingsheng Li 已提交
6926
    .. code-block:: text
H
haowang101779990 已提交
6927

Q
Qingsheng Li 已提交
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
6940

Q
Qingsheng Li 已提交
6941
    .. code-block:: text
H
haowang101779990 已提交
6942

Q
Qingsheng Li 已提交
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
6958
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6969
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6970 6971 6972 6973 6974 6975 6976 6977 6978
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6992

6993 6994 6995
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6996
    """
F
stash  
fengjiayi 已提交
6997
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6998
    dtype = x.dtype
X
Xin Pan 已提交
6999
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7000
    if seed is None:
7001
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7002
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7003
    if isinstance(seed, int):
F
fengjiayi 已提交
7004 7005 7006 7007 7008
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7009 7010 7011 7012
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7013
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7014 7015
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7016 7017
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7018
    return out
W
whs 已提交
7019 7020


7021
def log(x, name=None):
W
wanghaoshuang 已提交
7022 7023 7024 7025 7026
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7027
        Out = \\ln(x)
W
wanghaoshuang 已提交
7028 7029

    Args:
7030
        x (Variable): Input tensor.
7031 7032
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7033 7034 7035 7036 7037 7038 7039 7040

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7041
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7042 7043
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7044
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7045
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7046
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7047 7048 7049
    return out


7050
def relu(x, name=None):
W
wanghaoshuang 已提交
7051 7052
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7053
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7054 7055 7056 7057
    the tensor elementwise.

    .. math::

7058
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7059 7060

    Args:
7061
        x (Variable): The input tensor.
7062 7063
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7064 7065 7066 7067 7068 7069 7070 7071

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7072
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7073 7074
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7075
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7076
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7077 7078
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7079
    return out
7080 7081


C
chengduo 已提交
7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7123 7124 7125
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7126 7127 7128 7129
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7130
    .. math::
7131

H
haowang101779990 已提交
7132
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7133

7134
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7135 7136 7137 7138 7139
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7140
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7141
                           Its shape should be the same as input.
7142
        num_classes (int): The possible number of labels.
W
whs 已提交
7143 7144

    Returns:
M
minqiyang 已提交
7145 7146
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7147
                     Three variables:
M
minqiyang 已提交
7148

H
haowang101779990 已提交
7149 7150 7151
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7152 7153 7154 7155

    Examples:

        .. code-block:: python
7156

W
whs 已提交
7157 7158 7159 7160
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7161 7162 7163
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7164 7165
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7166 7167
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7168
        outputs={
W
whs 已提交
7169 7170 7171
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7172 7173 7174
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7243
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7244 7245 7246 7247 7248

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7249
            isinstance(shape, Variable)):
7250 7251 7252 7253 7254
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7255
    out = helper.create_variable_for_type_inference(x.dtype)
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7273 7274


W
whs 已提交
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7292

W
whs 已提交
7293
              out_shape = [2, 3, 5, 5]
7294

W
whs 已提交
7295
          Step 1:
7296

W
whs 已提交
7297 7298 7299
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7300

W
whs 已提交
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7346
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7347
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7360

W
whs 已提交
7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7372
            isinstance(out_shape, Variable)):
W
whs 已提交
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7394 7395
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7396

7397 7398
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7399
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7400 7401 7402
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7403

7404 7405
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7406

H
haowang101779990 已提交
7407 7408
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7409 7410
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7411

H
haowang101779990 已提交
7412 7413 7414 7415 7416 7417 7418 7419
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7420 7421 7422

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7457
    out = helper.create_variable_for_type_inference("float32")
7458 7459 7460 7461 7462 7463 7464 7465

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7466 7467


M
minqiyang 已提交
7468 7469
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7470
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7471
    which compares left score and right score passed in.
M
minqiyang 已提交
7472
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7473 7474 7475

    .. math::

H
haowang101779990 已提交
7476
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7477 7478

    Args:
M
minqiyang 已提交
7479
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7480 7481
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7482
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7483 7484
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7485

M
minqiyang 已提交
7486
    Returns:
M
minqiyang 已提交
7487
       Variable: The ranking loss.
H
haowang101779990 已提交
7488

M
minqiyang 已提交
7489
    Raises:
M
minqiyang 已提交
7490
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7491

M
minqiyang 已提交
7492
    Examples:
H
haowang101779990 已提交
7493

M
minqiyang 已提交
7494
        .. code-block:: python
H
haowang101779990 已提交
7495

M
minqiyang 已提交
7496 7497 7498 7499 7500
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7501
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7502 7503 7504 7505 7506 7507
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7508 7509
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7533
        .. code-block:: text
W
whs 已提交
7534

T
Tink_Y 已提交
7535
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7536

T
Tink_Y 已提交
7537 7538
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7539

T
Tink_Y 已提交
7540
	      Case 0:
M
minqiyang 已提交
7541

T
Tink_Y 已提交
7542 7543 7544
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7545

T
Tink_Y 已提交
7546 7547 7548
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7549

T
Tink_Y 已提交
7550
	      Case 1:
M
minqiyang 已提交
7551

T
Tink_Y 已提交
7552 7553
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7554

T
Tink_Y 已提交
7555 7556 7557
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7558

T
Tink_Y 已提交
7559
	      Case 2:
M
minqiyang 已提交
7560

T
Tink_Y 已提交
7561 7562
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7563

T
Tink_Y 已提交
7564 7565 7566
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7567 7568


W
whs 已提交
7569 7570
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7571
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7595
    out = helper.create_variable_for_type_inference(dtype)
7596 7597 7598 7599 7600 7601 7602 7603 7604
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7605
    helper.append_op(
7606
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7607 7608 7609 7610

    return out


7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7623 7624 7625 7626 7627

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7628 7629
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7630 7631
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7632
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7653 7654 7655 7656 7657

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7658 7659
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7660 7661
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7662
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7683 7684 7685 7686 7687

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7688 7689
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7690 7691
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7692
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7714 7715 7716 7717 7718

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7719
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7720
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7721 7722
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7723
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7746 7747 7748 7749 7750

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7751 7752
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7753 7754
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7755
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7777 7778 7779 7780 7781

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7782 7783
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7784 7785
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7786
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7787 7788 7789 7790 7791 7792 7793 7794
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7795 7796 7797 7798
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
7799 7800
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
7801 7802 7803

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7804
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7805
          weight (alpha).
J
jerrywgz 已提交
7806
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7807 7808 7809
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7810
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7811
          will be named automatically.
J
jerrywgz 已提交
7812 7813 7814 7815 7816 7817 7818 7819

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7820
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7834
        attr=helper.param_attr,
J
jerrywgz 已提交
7835 7836 7837 7838
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7839
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7840 7841 7842 7843 7844 7845 7846 7847 7848
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7859
    Returns:
7860
        output(${out_type}): ${out_comment}
7861 7862 7863

    Examples:

7864
    .. code-block:: python
7865

H
haowang101779990 已提交
7866 7867
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7868 7869
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7870
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7889
    Returns:
7890
        output(${out_type}): ${out_comment}
7891 7892 7893 7894 7895

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7896 7897
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
7898 7899
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7900
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7918
    Returns:
7919
        output(${out_type}): ${out_comment}
7920 7921 7922 7923 7924

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7925 7926
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
7927 7928
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7929
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7930 7931 7932 7933 7934 7935 7936 7937
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7938 7939 7940 7941
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
7942

H
haowang101779990 已提交
7943
    For Example:
M
minqiyang 已提交
7944

H
haowang101779990 已提交
7945
    .. code-block:: text
7946

H
haowang101779990 已提交
7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
7968 7969 7970

    Args:
        x (Variable): A tensor of rank >= axis.
7971 7972
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7973 7974 7975 7976 7977 7978 7979 7980
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
7981 7982 7983
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
7984 7985 7986 7987
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7988
        ValueError: If axis is not in range [0, rank(x)].
7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8005 8006
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8007
    helper.append_op(
8008
        type='flatten2',
8009
        inputs={"X": x},
8010 8011
        outputs={'Out': out,
                 'XShape': x_shape},
8012 8013
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8014 8015


C
chenweihang 已提交
8016
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8017
    """
C
chenweihang 已提交
8018
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8019
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8020 8021
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8022

H
haowang101779990 已提交
8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8040 8041

    Args:
C
chenweihang 已提交
8042 8043 8044
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8056 8057
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8058 8059 8060 8061 8062 8063
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8064
    return out
8065

8066

S
sneaxiy 已提交
8067 8068 8069 8070 8071 8072 8073 8074 8075
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8076

S
sneaxiy 已提交
8077
    .. math::
8078

S
sneaxiy 已提交
8079 8080 8081
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8082
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8083 8084 8085 8086
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8087 8088 8089
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8090 8091
    Returns:
        Variable: The output sequence mask.
8092

S
sneaxiy 已提交
8093 8094
    """

Q
qingqing01 已提交
8095
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8096
    if name is None:
X
Xin Pan 已提交
8097
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8098
    else:
X
Xin Pan 已提交
8099
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8100

Q
qingqing01 已提交
8101 8102 8103
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8104 8105
        outputs={'Y': out},
        attrs={
8106
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8107 8108 8109
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8110 8111


X
Xin Pan 已提交
8112
def stack(x, axis=0):
S
sneaxiy 已提交
8113 8114 8115 8116
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8117 8118 8119 8120 8121 8122 8123

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8124
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8125
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8126 8127

    Args:
8128
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8129
        axis (int|None): The axis along which all inputs are stacked.
8130

S
sneaxiy 已提交
8131 8132
    Returns:
        Variable: The stacked variable.
8133

S
sneaxiy 已提交
8134 8135
    """

X
Xin Pan 已提交
8136 8137 8138 8139 8140 8141
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8142
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8143
    helper.append_op(
S
sneaxiy 已提交
8144 8145
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8146

X
Xin Pan 已提交
8147
    return out
D
dzhwinter 已提交
8148 8149 8150 8151 8152 8153 8154


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8155

D
dzhwinter 已提交
8156 8157 8158
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8159
    raised.
D
dzhwinter 已提交
8160 8161

    Args:
M
minqiyang 已提交
8162
        x (Variable): Input variable.
D
dzhwinter 已提交
8163 8164
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8165

D
dzhwinter 已提交
8166 8167
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8168

D
dzhwinter 已提交
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8179
    for _ in range(num):
X
Xin Pan 已提交
8180
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8181 8182 8183 8184 8185 8186 8187 8188

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8201

W
whs 已提交
8202 8203 8204 8205
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8206

W
whs 已提交
8207
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8208

W
whs 已提交
8209
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8210

W
whs 已提交
8211 8212 8213 8214
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8215

W
whs 已提交
8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8232
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8233 8234 8235 8236 8237 8238
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8239 8240


G
fix  
gongweibao 已提交
8241 8242 8243
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8244
@templatedoc()
G
fix  
gongweibao 已提交
8245 8246 8247 8248 8249 8250 8251 8252 8253
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8254
    ${comment}
G
fix  
gongweibao 已提交
8255 8256

    Args:
G
gongweibao 已提交
8257 8258 8259
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8260
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8261 8262 8263
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8264 8265
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8266
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8267

8268 8269 8270 8271 8272
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8273 8274 8275
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8276
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8293 8294


G
gongweibao 已提交
8295
@templatedoc()
X
Xin Pan 已提交
8296
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8297
    """
G
gongweibao 已提交
8298
    ${comment}
G
fix  
gongweibao 已提交
8299 8300

    Args:
G
gongweibao 已提交
8301 8302 8303 8304
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8305 8306 8307
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8308
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8309

8310 8311 8312 8313
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8314 8315 8316
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8317
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8318 8319 8320 8321 8322 8323 8324 8325 8326 8327
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8328
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8329 8330 8331 8332 8333
        })

    return out


G
gongweibao 已提交
8334
@templatedoc()
G
fix  
gongweibao 已提交
8335
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8336
    """
G
gongweibao 已提交
8337
    ${comment}
G
fix  
gongweibao 已提交
8338 8339

    Args:
G
gongweibao 已提交
8340 8341 8342 8343
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8344
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8345 8346

    Returns:
G
gongweibao 已提交
8347
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8348

8349 8350 8351 8352 8353 8354 8355 8356 8357 8358
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8359 8360 8361
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8362
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8374
@templatedoc()
G
fix  
gongweibao 已提交
8375 8376 8377 8378 8379 8380 8381 8382 8383
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8384
    ${comment}
G
fix  
gongweibao 已提交
8385 8386

    Args:
G
gongweibao 已提交
8387 8388
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8389
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8390 8391 8392 8393
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8394
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8395 8396

    Returns:
G
gongweibao 已提交
8397
        out (Variable): ${out_comment}
8398 8399 8400 8401 8402 8403 8404 8405

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8406 8407 8408
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8409
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8428
@templatedoc()
X
Xin Pan 已提交
8429
def sum(x):
G
fix  
gongweibao 已提交
8430
    """
G
gongweibao 已提交
8431
    ${comment}
G
fix  
gongweibao 已提交
8432 8433

    Args:
G
gongweibao 已提交
8434
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8435 8436

    Returns:
G
gongweibao 已提交
8437
        out (Variable): ${out_comment}
8438 8439 8440 8441 8442 8443

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8444 8445 8446
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8447 8448
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8449 8450 8451 8452
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8453
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8454 8455 8456 8457

    return out


G
gongweibao 已提交
8458
@templatedoc()
G
fix  
gongweibao 已提交
8459 8460
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8461
    ${comment}
G
fix  
gongweibao 已提交
8462 8463

    Args:
G
gongweibao 已提交
8464 8465 8466 8467
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8468 8469

    Returns:
G
gongweibao 已提交
8470
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8471

8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8483 8484 8485
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8486 8487
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8499
@templatedoc()
G
fix  
gongweibao 已提交
8500 8501
def shape(input):
    """
G
gongweibao 已提交
8502
    ${comment}
G
fix  
gongweibao 已提交
8503 8504

    Args:
G
gongweibao 已提交
8505
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8506 8507

    Returns:
G
gongweibao 已提交
8508
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8509

8510 8511 8512 8513 8514 8515
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8516 8517 8518
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8519 8520
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8521
    helper.append_op(
G
fix  
gongweibao 已提交
8522
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8523 8524

    return out
G
merge  
gongweibao 已提交
8525 8526


S
sneaxiy 已提交
8527 8528 8529 8530 8531 8532 8533 8534
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8535 8536
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8537
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8538 8539 8540
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8541

S
sneaxiy 已提交
8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8553
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8554 8555 8556 8557 8558 8559 8560 8561
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8562
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8563
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8564 8565 8566 8567 8568 8569

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8570
    if name is None:
X
Xin Pan 已提交
8571
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8572 8573 8574
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8575 8576 8577 8578 8579 8580 8581 8582 8583 8584

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8585
    return helper.append_activation(out)
S
sneaxiy 已提交
8586 8587


X
Xin Pan 已提交
8588
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8589 8590 8591
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8592
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8593 8594 8595
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8596
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8597 8598 8599
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8600
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8601 8602 8603
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8604
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8605 8606 8607
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8608
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8609 8610 8611
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8612
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8624 8625
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8626
        ])
M
minqiyang 已提交
8627 8628


8629
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8630 8631
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8632 8633
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8634 8635 8636

    if out is None:
        if name is None:
X
Xin Pan 已提交
8637
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8653
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8665 8666 8667 8668 8669 8670 8671 8672 8673

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8674 8675 8676 8677 8678 8679 8680
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8681
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8693 8694 8695 8696 8697 8698 8699 8700 8701

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8702 8703 8704 8705 8706 8707 8708
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8709
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8721 8722 8723 8724 8725 8726 8727 8728 8729

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8730 8731 8732 8733 8734 8735 8736
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8737
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8738 8739 8740 8741 8742 8743 8744 8745 8746 8747
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8748 8749 8750 8751 8752 8753 8754

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8755 8756 8757 8758
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8774 8775 8776 8777 8778 8779 8780

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8781 8782 8783 8784 8785
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8786 8787 8788 8789
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8813 8814 8815 8816 8817 8818 8819

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8820 8821 8822 8823 8824
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8825 8826 8827 8828
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8829 8830 8831 8832 8833 8834 8835 8836

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8855
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8856 8857 8858 8859 8860 8861 8862 8863 8864 8865
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8908
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8909 8910 8911 8912 8913 8914 8915 8916 8917
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8918 8919
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8920 8921 8922 8923 8924 8925
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8926 8927 8928 8929
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8930 8931 8932 8933 8934 8935
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8936
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8937 8938 8939 8940 8941 8942 8943 8944 8945
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8946
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8947 8948 8949 8950 8951 8952 8953 8954
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8955
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8976
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8977 8978 8979 8980 8981 8982 8983 8984 8985 8986
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8987 8988


J
JiabinYang 已提交
8989
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8990
    """
J
JiabinYang 已提交
8991
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8992 8993 8994

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8995
    The attr blocksize indicates the input block size.
8996 8997

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8998
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8999 9000

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9001
    (but keeping all data)
J
JiabinYang 已提交
9002

J
JiabinYang 已提交
9003
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9004
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9005 9006 9007 9008 9009
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9010
    Args:
J
JiabinYang 已提交
9011
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9012
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9013 9014

    Returns:
J
JiabinYang 已提交
9015
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9016 9017

    Raises:
J
JiabinYang 已提交
9018
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9019 9020 9021 9022 9023 9024

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9025
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9026
                x=data, blocksize=2)
J
JiabinYang 已提交
9027 9028
    """

J
JiabinYang 已提交
9029
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9030

J
JiabinYang 已提交
9031 9032
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9033 9034

    if name is None:
J
JiabinYang 已提交
9035 9036
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9037 9038 9039 9040 9041
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9042
        type="space_to_depth",
J
JiabinYang 已提交
9043
        inputs={"X": x},
J
JiabinYang 已提交
9044
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9045
        outputs={"Out": out})
J
JiabinYang 已提交
9046 9047
    return out

J
JiabinYang 已提交
9048

S
sneaxiy 已提交
9049 9050
@templatedoc()
def sequence_reverse(x, name=None):
9051
    """
S
sneaxiy 已提交
9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9063
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9064 9065 9066 9067 9068 9069 9070 9071 9072 9073
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9074 9075


9076 9077 9078 9079 9080 9081
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9082

9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9102
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9115 9116


B
barrierye 已提交
9117
def similarity_focus(input, axis, indexes, name=None):
9118
    """
B
barrierye 已提交
9119
    SimilarityFocus Operator
B
barrierye 已提交
9120 9121

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9122

9123 9124 9125
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9126
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9127 9128 9129 9130 9131 9132 9133
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9134
       each index.
B
barrierye 已提交
9135 9136 9137 9138
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9188
    Args:
9189
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9190
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9191
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9192
            1, 2 or 3.
B
barrierye 已提交
9193
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9194 9195

    Returns:
H
haowang101779990 已提交
9196 9197
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9198

B
barrierye 已提交
9199 9200
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9201

B
barrierye 已提交
9202
            data = fluid.layers.data(
B
barrierye 已提交
9203 9204
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9205

B
barrierye 已提交
9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9218 9219 9220 9221 9222
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9223 9224 9225 9226 9227 9228 9229
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9230 9231


M
minqiyang 已提交
9232 9233
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9234 9235
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9236 9237
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9276
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9277
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9278 9279 9280 9281 9282 9283

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9284

M
minqiyang 已提交
9285 9286 9287
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9288 9289
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9290 9291
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9292 9293 9294 9295 9296 9297 9298
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9299 9300


D
dengkaipeng 已提交
9301
@templatedoc()
9302 9303
def grid_sampler(x, grid, name=None):
    """
9304
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9305
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9306 9307 9308 9309
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9310
    interpolation value of 4 nearest corner points.
9311

H
haowang101779990 已提交
9312
    .. code-block:: text
9313

H
haowang101779990 已提交
9314 9315
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9316

H
haowang101779990 已提交
9317 9318
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9319

H
haowang101779990 已提交
9320 9321 9322
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9323

H
haowang101779990 已提交
9324 9325 9326 9327 9328 9329 9330 9331 9332
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9333

H
haowang101779990 已提交
9334 9335 9336 9337
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9338

H
haowang101779990 已提交
9339 9340 9341 9342
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9343

H
haowang101779990 已提交
9344 9345 9346 9347
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9348

H
haowang101779990 已提交
9349 9350
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9351 9352

    Args:
9353 9354 9355
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9356 9357

    Returns:
H
haowang101779990 已提交
9358
        Variable: Output of shape [N, C, H, W] data samples input X
9359 9360
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9361 9362 9363 9364 9365 9366 9367 9368
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9369

D
dengkaipeng 已提交
9370 9371 9372 9373 9374 9375 9376 9377 9378
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9379
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9380 9381
    ipts = {'X': x, 'Grid': grid}

9382
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9383 9384 9385
    return out


G
gmcather 已提交
9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
H
heqiaozhi 已提交
9452
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound 
H
heqiaozhi 已提交
9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9474 9475 9476 9477
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9478
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9479 9480
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9481
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9482 9483

    .. math::
H
haowang101779990 已提交
9484 9485 9486
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9487 9488

    Where:
H
haowang101779990 已提交
9489 9490
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9505

G
gmcather 已提交
9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9522 9523 9524 9525 9526 9527 9528 9529 9530 9531


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9532
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9533

Q
Qiao Longfei 已提交
9534
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9535 9536 9537
    For example:

    .. math::
H
haowang101779990 已提交
9538
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9539

Q
Qiao Longfei 已提交
9540
    In this formula:
9541 9542
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9543
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9544
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9545 9546 9547
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9548 9549
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9550 9551 9552
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9553
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9554
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9555
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9556 9557 9558 9559
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9560
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9561 9562 9563 9564

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9565
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9566 9567
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9568
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9569 9570 9571 9572

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9573
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9614 9615


S
sneaxiy 已提交
9616
class PyFuncRegistry(object):
S
sneaxiy 已提交
9617 9618 9619
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9620
        if func is None or not callable(func):
S
sneaxiy 已提交
9621 9622 9623
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9624
        # find named args using reflection
S
sneaxiy 已提交
9625 9626 9627 9628 9629 9630 9631
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9632 9633 9634
        '''
        Why record self here?

M
minqiyang 已提交
9635 9636
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
9637
           to find the registered function corresponding
M
minqiyang 已提交
9638
           to :code:`idx`.
S
sneaxiy 已提交
9639

M
minqiyang 已提交
9640 9641
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
9642
           whose reference count is 1 would cause
M
minqiyang 已提交
9643
           segmentation fault error in C++ side.
S
sneaxiy 已提交
9644 9645
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9646
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9661 9662 9663 9664 9665 9666 9667 9668 9669
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9670

S
sneaxiy 已提交
9671 9672
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9673 9674

        ret = []
S
sneaxiy 已提交
9675 9676 9677
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9678 9679
                continue

S
sneaxiy 已提交
9680 9681
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9682

S
sneaxiy 已提交
9683 9684 9685
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9686

S
sneaxiy 已提交
9687
        return tuple(ret)
S
sneaxiy 已提交
9688 9689


S
sneaxiy 已提交
9690 9691 9692 9693
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
9694

S
sneaxiy 已提交
9695 9696 9697 9698 9699 9700 9701 9702
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9703
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9704

S
sneaxiy 已提交
9705 9706
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9707 9708 9709 9710
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9711
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
9712
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
9713 9714
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9715 9716 9717 9718 9719
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
9720
            should create :code:`out` beforehand.
S
sneaxiy 已提交
9721
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
9722
                                       None means no backward. Default None.
S
sneaxiy 已提交
9723
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
9724
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
9725 9726
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
9727
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
9728 9729 9730

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9731 9732

    Examples:
M
minqiyang 已提交
9733

S
sneaxiy 已提交
9734 9735 9736 9737 9738
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
9739
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
9740 9741
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
9742
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
9743 9744 9745
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
9746
        >>>
S
sneaxiy 已提交
9747 9748 9749 9750 9751
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
9752
        >>>     print(x)
S
sneaxiy 已提交
9753 9754 9755 9756 9757 9758
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
9759
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
9760 9761
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
9762 9763
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
9764 9765 9766 9767 9768 9769 9770 9771
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9772
    """
S
sneaxiy 已提交
9773
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9774 9775 9776
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9777
        x = [x]
S
sneaxiy 已提交
9778 9779
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9780

S
sneaxiy 已提交
9781 9782 9783
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9784
        out_list = [out]
S
sneaxiy 已提交
9785
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9786
        out_list = out
S
sneaxiy 已提交
9787 9788 9789
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9790

S
sneaxiy 已提交
9791 9792
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9793
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9794 9795

    for each_out in out_list:
S
sneaxiy 已提交
9796 9797
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9798 9799
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9800

S
sneaxiy 已提交
9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9816 9817 9818 9819

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9820 9821
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9822 9823 9824
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9825
        })
S
sneaxiy 已提交
9826
    return out
S
sneaxiy 已提交
9827 9828 9829


# For debug usage
S
sneaxiy 已提交
9830 9831 9832 9833
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9886

M
minqiyang 已提交
9887

M
minqiyang 已提交
9888
def huber_loss(input, label, delta):
9889
    """
M
minqiyang 已提交
9890 9891 9892
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9893 9894 9895 9896

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9897
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9898 9899 9900 9901

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9902
        huber\_loss = 0.5 * (label - input) * (label - input)
9903 9904 9905 9906 9907 9908 9909


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9910
        delta (float): The parameter of huber loss, which controls
9911 9912 9913
                       the range of outliers

    Returns:
M
minqiyang 已提交
9914
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9915 9916 9917 9918 9919

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9920
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9921
    """
M
minqiyang 已提交
9922
    helper = LayerHelper('huber_loss', **locals())
9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out