nn.py 141.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
M
minqiyang 已提交
16 17
from .. import core
from ..layers import utils
18
from ..layers import nn as F
19
from .. import dygraph_utils
M
minqiyang 已提交
20
from . import layers
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from ..framework import (
    Variable,
    _non_static_mode,
    OpProtoHolder,
    Parameter,
    _dygraph_tracer,
    _varbase_creator,
    default_main_program,
    _global_flags,
    in_dygraph_mode,
    _in_legacy_dygraph,
)
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
M
minqiyang 已提交
39
from ..param_attr import ParamAttr
40
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
41 42
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
43
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
44
import numpy as np
45
import numbers
46
import logging
47
import os
48
import paddle.utils.deprecated as deprecated
49
from paddle import _C_ops, _legacy_C_ops
50

51
__all__ = [
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    'Conv2D',
    'Conv3D',
    'Pool2D',
    'Linear',
    'BatchNorm',
    'Dropout',
    'Embedding',
    'GRUUnit',
    'InstanceNorm',
    'LayerNorm',
    'NCE',
    'PRelu',
    'BilinearTensorProduct',
    'Conv2DTranspose',
    'Conv3DTranspose',
    'GroupNorm',
    'SpectralNorm',
    'TreeConv',
    'Flatten',
71
]
M
minqiyang 已提交
72 73


X
Xin Pan 已提交
74
class Conv2D(layers.Layer):
75
    r"""
76 77
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
78 79 80
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
81 82 83
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
84
    and W is the width of the filter. If the groups is greater than 1,
85
    C will equal the number of input feature map divided by the groups.
86
    Please refer to UFLDL's `convolution
87
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
88
    for more details.
89 90 91 92 93 94 95 96
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

97
        Out = \\sigma (W \\ast X + b)
98 99 100

    Where:

101 102
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
103
    * :math:`\\ast`: Convolution operation.
104
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

127
    Parameters:
128
        num_channels(int): The number of channels in the input image.
129
        num_filters(int): The number of filter. It is as same as the output
130 131
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
132 133
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
134
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
135
            contain two integers, (stride_H, stride_W). Otherwise, the
136 137
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
138
            contain two integers, (padding_H, padding_W). Otherwise, the
139 140
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
141
            contain two integers, (dilation_H, dilation_W). Otherwise, the
142
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
143
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
144 145 146
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
147 148
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
149 150 151 152
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
153
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
154 155 156 157
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
158 159 160 161 162
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
163

164 165 166 167
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
168

169 170
    Returns:
        None
171

172
    Raises:
173
        ValueError: if ``use_cudnn`` is not a bool value.
174 175 176

    Examples:
        .. code-block:: python
L
lujun 已提交
177

178 179 180 181 182
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

183
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
184
          with fluid.dygraph.guard():
185
              conv2d = Conv2D(3, 2, 3)
186 187
              data = to_variable(data)
              conv = conv2d(data)
188 189 190

    """

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
M
minqiyang 已提交
206
        assert param_attr is not False, "param_attr should not be False here."
207
        super().__init__()
208

209 210 211 212 213 214
        if (
            core.is_compiled_with_cuda()
            and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
                "FLAGS_conv2d_disable_cudnn"
            ]
        ):
215 216
            use_cudnn = False

217
        self._num_channels = num_channels
M
minqiyang 已提交
218 219 220 221
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
222
        self._act = act
M
minqiyang 已提交
223 224 225
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
226
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
227 228 229 230 231
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
232

233 234 235 236 237 238
        if (
            self._num_channels == self._groups
            and num_filters % self._num_channels == 0
            and not self._use_cudnn
            and not self._use_mkldnn
        ):
239 240 241
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
242

243 244
        # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
        if core.is_compiled_with_npu():
245 246 247 248
            if (
                self._num_channels == self._groups
                and self._num_channels == self._num_filters
            ):
249
                self._l_type = 'depthwise_conv2d'
250
            else:
251
                self._l_type = 'conv2d'
252

253
        self._num_channels = num_channels
254 255
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
256
        else:
257
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
258
                raise ValueError("num_channels must be divisible by groups.")
259 260
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
261
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
262 263

        def _get_default_param_initializer():
264 265 266 267
            filter_elem_num = (
                filter_size[0] * filter_size[1] * self._num_channels
            )
            std = (2.0 / filter_elem_num) ** 0.5
M
minqiyang 已提交
268 269
            return Normal(0.0, std, 0)

270
        self.weight = self.create_parameter(
271
            attr=self._param_attr,
M
minqiyang 已提交
272 273
            shape=filter_shape,
            dtype=self._dtype,
274 275
            default_initializer=_get_default_param_initializer(),
        )
M
minqiyang 已提交
276

277 278 279 280 281 282
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
M
minqiyang 已提交
283 284

    def forward(self, input):
H
hong 已提交
285
        if in_dygraph_mode() and self._l_type == "conv2d":
286 287 288 289 290 291 292
            pre_bias = _C_ops.conv2d(
                input,
                self.weight,
                self._stride,
                self._padding,
                "EXPLICIT",
                self._dilation,
293
                self._groups if self._groups else 1,
294 295
                "NCHW",
            )
H
hong 已提交
296 297 298 299 300
            if self.bias is not None:
                pre_act = F.elementwise_add(pre_bias, self.bias, axis=1)
            else:
                pre_act = pre_bias
            return dygraph_utils._append_activation_in_dygraph(
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )

        if _non_static_mode() and (
            self._l_type == 'conv2d' or self._l_type == 'depthwise_conv2d'
        ):
            attrs = (
                'strides',
                self._stride,
                'paddings',
                self._padding,
                'dilations',
                self._dilation,
                'groups',
                self._groups if self._groups else 1,
                'use_cudnn',
                self._use_cudnn,
                'use_mkldnn',
                self._use_mkldnn,
            )
321
            out = _legacy_C_ops.conv2d(input, self.weight, *attrs)
322 323
            pre_bias = out

324
            pre_act = dygraph_utils._append_bias_in_dygraph(
325 326
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn
            )
327
            return dygraph_utils._append_activation_in_dygraph(
328 329
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )
330 331
        inputs = {
            'Input': [input],
332
            'Filter': [self.weight],
333 334 335 336 337 338 339
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
340
            'use_mkldnn': self._use_mkldnn,
341
        }
342

343 344 345
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'Conv2D'
        )
M
minqiyang 已提交
346
        pre_bias = self._helper.create_variable_for_type_inference(
347 348
            dtype=self._dtype
        )
M
minqiyang 已提交
349

350 351 352 353 354 355 356 357 358
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self.weight,
            },
            outputs={"Output": pre_bias},
            attrs=attrs,
        )
M
minqiyang 已提交
359

360
        if self.bias is not None:
361
            pre_act = self._helper.create_variable_for_type_inference(
362 363 364 365 366 367 368 369
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1, 'use_mkldnn': self._use_mkldnn},
            )
370 371
        else:
            pre_act = pre_bias
M
minqiyang 已提交
372

L
lujun 已提交
373
        # Currently, we don't support inplace in dygraph mode
374
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
375 376


L
lujun 已提交
377
class Conv3D(layers.Layer):
378
    r"""
379 380 381 382
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
383
    Output(Output) are multidimensional tensors with a shape of
D
DuYao 已提交
384
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
385 386 387 388 389 390 391 392 393 394 395 396 397 398
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
399
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

425
    Parameters:
426
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
427
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
428
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
429
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
430 431 432
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
433
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
434 435
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
436
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
437 438
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
439
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
440
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
441
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
442 443 444
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
445 446
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
447 448 449
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
450 451
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
452 453 454
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
455 456 457 458 459
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
460
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
461

D
DuYao 已提交
462 463 464 465
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
466

467
    Returns:
D
DuYao 已提交
468
        None.
469 470 471 472 473 474 475 476

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

477 478 479 480 481 482
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
483
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
484 485
              ret = conv3d(fluid.dygraph.base.to_variable(data))

486 487
    """

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
L
lujun 已提交
503
        assert param_attr is not False, "param_attr should not be False here."
504
        super().__init__()
505
        self._num_channels = num_channels
L
lujun 已提交
506 507 508
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
509
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
510 511
        self._act = act
        self._use_cudnn = use_cudnn
512 513 514 515
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
516
        self._dtype = dtype
517 518

        if self._groups is None:
519
            num_filter_channels = self._num_channels
L
lujun 已提交
520
        else:
521
            if self._num_channels % self._groups != 0:
L
lujun 已提交
522
                raise ValueError("num_channels must be divisible by groups.")
523
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
524

525 526
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
527 528

        def _get_default_param_initializer():
529 530 531 532 533 534 535
            filter_elem_num = (
                filter_size[0]
                * filter_size[1]
                * filter_size[2]
                * self._num_channels
            )
            std = (2.0 / filter_elem_num) ** 0.5
L
lujun 已提交
536 537
            return Normal(0.0, std, 0)

538
        self.weight = self.create_parameter(
539
            attr=self._param_attr,
L
lujun 已提交
540 541
            shape=filter_shape,
            dtype=self._dtype,
542 543
            default_initializer=_get_default_param_initializer(),
        )
L
lujun 已提交
544

545 546 547 548 549 550
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
551 552 553

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
            dtype=self._dtype
        )

        self._helper.append_op(
            type='conv3d',
            inputs={
                'Input': input,
                'Filter': self.weight,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            },
        )
L
lujun 已提交
573

574
        if self.bias is not None:
575
            pre_act = self._helper.create_variable_for_type_inference(
576 577 578 579 580 581 582 583
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
584 585
        else:
            pre_act = pre_bias
L
lujun 已提交
586 587 588 589 590

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
591
    r"""
L
lujun 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
637 638 639 640 641 642 643 644
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

645 646
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
D
DuYao 已提交
647 648
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
649 650 651 652 653
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
D
DuYao 已提交
654 655
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
656

657
    Parameters:
658
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
659 660
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
661
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
662
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
663
            Otherwise, the filter will be a square.
D
DuYao 已提交
664 665 666 667 668 669 670 671 672 673
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
674 675 676
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
D
DuYao 已提交
677 678
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
679
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
680
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
681
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
682 683 684 685
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
686 687
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
688 689
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
690 691
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
692 693 694
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
695 696 697 698 699
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
700
        name(str, optional): The default value is None. Normally there is no need for user
D
DuYao 已提交
701
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
702

D
DuYao 已提交
703 704 705 706
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
707

L
lujun 已提交
708
    Returns:
D
DuYao 已提交
709
        None.
L
lujun 已提交
710 711 712 713 714 715 716 717

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

718 719 720 721 722 723
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
724
                    num_channels=3,
725 726 727 728 729
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
730 731
    """

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
747
        super().__init__()
L
lujun 已提交
748 749
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
750 751 752
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv3d_transpose."
L
lujun 已提交
753 754 755 756
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
757
        self._num_channels = num_channels
L
lujun 已提交
758 759 760 761 762 763
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
764
        self._dtype = dtype
L
lujun 已提交
765

766
        self._filter_size = utils.convert_to_list(
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
            self._filter_size, 3, 'conv3d_transpose.filter_size'
        )

        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
783 784 785

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
786 787 788 789 790 791 792 793 794 795 796 797 798 799
            dtype=self._dtype
        )
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input], 'Filter': [self.weight]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
            },
        )
L
lujun 已提交
800 801 802

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
803 804 805 806 807 808 809 810
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
L
lujun 已提交
811 812 813 814 815 816 817
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
818
class Pool2D(layers.Layer):
819
    r"""
820

821 822 823 824 825
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
826 827
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
828

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

873
    Parameters:
874
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
875
            it must contain two integers, (pool_size_Height, pool_size_Width).
876
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
877
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling.
878 879
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
880
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
881
            the pool stride size will be a square of an int. Default: 1.
882
        pool_padding (int or list or tuple, optional): The padding size for pooling operation.
883
            If ``pool_padding`` is a tuple,
884
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
885 886 887 888 889 890 891
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
892 893
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
894
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is
895
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
896 897

    Returns:
898
        None
899 900

    Raises:
901 902 903 904
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
905 906 907 908 909

    Examples:

        .. code-block:: python

L
lujun 已提交
910
          import paddle.fluid as fluid
911 912
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
913 914

          with fluid.dygraph.guard():
915
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
916
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
917 918 919
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
920
             pool2d_res = pool2d(to_variable(data))
921 922 923

    """

924 925 926 927 928 929 930 931 932 933 934 935
    def __init__(
        self,
        pool_size=-1,
        pool_type="max",
        pool_stride=1,
        pool_padding=0,
        global_pooling=False,
        use_cudnn=True,
        ceil_mode=False,
        exclusive=True,
        data_format="NCHW",
    ):
936 937
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
938 939 940
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
941 942
                str(pool_type),
            )
M
minqiyang 已提交
943 944 945 946

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
947 948
                "and be a valid value. Received pool_size: " + str(pool_size)
            )
M
minqiyang 已提交
949 950 951 952

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

953
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
954

955 956 957
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
958 959
                "Attr(data_format): %s." % str(data_format)
            )
960

961
        super().__init__()
M
minqiyang 已提交
962 963 964

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
965 966 967
        self._pool_padding = utils.convert_to_list(
            pool_padding, 2, 'pool_padding'
        )
M
minqiyang 已提交
968 969 970 971 972
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
973
        self._data_format = data_format
M
minqiyang 已提交
974 975 976
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
977
        if _non_static_mode():
978
            if not self._use_mkldnn and in_dygraph_mode():
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
                return _C_ops.pool2d(
                    input,
                    self._pool_size,
                    self._pool_stride,
                    self._pool_padding,
                    self._ceil_mode,
                    self._exclusive,
                    self._data_format,
                    self._pool_type,
                    self._global_pooling,
                    False,
                    "EXPLICIT",
                    self._use_cudnn,
                )

            attrs = (
                'pooling_type',
                self._pool_type,
                'ksize',
                self._pool_size,
                'global_pooling',
                self._global_pooling,
                'strides',
                self._pool_stride,
                'paddings',
                self._pool_padding,
                'use_cudnn',
                self._use_cudnn,
                'ceil_mode',
                self._ceil_mode,
                'use_mkldnn',
                self._use_mkldnn,
                'exclusive',
                self._exclusive,
                'data_format',
                self._data_format,
            )
1016
            return _legacy_C_ops.pool2d(input, *attrs)
1017

1018
        check_variable_and_dtype(
1019 1020 1021 1022 1023
            input,
            'input',
            ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D',
        )
1024

1025 1026 1027 1028 1029 1030 1031 1032
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
1033
            "use_mkldnn": self._use_mkldnn,
1034
            "exclusive": self._exclusive,
1035
            "data_format": self._data_format,
1036 1037 1038
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
1039 1040
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

1041 1042 1043 1044 1045 1046
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
            outputs={"Out": pool_out},
            attrs=attrs,
        )
M
minqiyang 已提交
1047
        return pool_out
M
minqiyang 已提交
1048 1049


S
songyouwei 已提交
1050 1051
class Linear(layers.Layer):
    """
1052

S
songyouwei 已提交
1053 1054 1055 1056 1057 1058 1059 1060
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

1061
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

1102 1103 1104 1105 1106 1107 1108 1109 1110
    def __init__(
        self,
        input_dim,
        output_dim,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype="float32",
    ):
1111
        super().__init__()
S
songyouwei 已提交
1112 1113
        self._act = act
        self._dtype = dtype
1114 1115 1116 1117 1118 1119 1120 1121 1122
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True
        )
S
songyouwei 已提交
1123

1124
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
1125

S
songyouwei 已提交
1126
    def forward(self, input):
J
Jiabin Yang 已提交
1127
        if _non_static_mode():
1128
            pre_bias = _varbase_creator(dtype=input.dtype)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
            _legacy_C_ops.matmul(
                input,
                self.weight,
                pre_bias,
                'transpose_X',
                False,
                'transpose_Y',
                False,
                "alpha",
                1,
                "use_mkldnn",
                self._use_mkldnn,
            )
1142
            pre_act = dygraph_utils._append_bias_in_dygraph(
1143 1144 1145
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
1146 1147
                use_mkldnn=self._use_mkldnn,
            )
1148

1149
            return dygraph_utils._append_activation_in_dygraph(
1150 1151
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )
1152

1153 1154 1155
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Linear"
        )
1156

1157
        attrs = {
S
songyouwei 已提交
1158 1159 1160
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
1161
            "use_mkldnn": self._use_mkldnn,
1162 1163
        }
        inputs = {"X": [input], "Y": [self.weight]}
1164

S
songyouwei 已提交
1165
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
1166 1167 1168
        self._helper.append_op(
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs
        )
1169
        if self.bias is not None:
S
songyouwei 已提交
1170
            pre_activation = self._helper.create_variable_for_type_inference(
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn,
                },
            )
S
songyouwei 已提交
1182 1183 1184 1185 1186
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1187
class InstanceNorm(layers.Layer):
1188
    r"""
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1219
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1220 1221
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
1222
	     If the Initializer of the param_attr is not set, the parameter is initialized
C
ceci3 已提交
1223 1224
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1225
             If it is set to None or one attribute of ParamAttr, instance_norm
1226 1227
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
C
ceci3 已提交
1228
             If it is set to False, will not create bias_attr. Default: None.
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

1244
          # x's shape is [1, 3, 1, 2]
1245 1246 1247 1248 1249
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
1250
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995]
1251 1252 1253 1254
              print(ret)

    """

1255 1256 1257 1258 1259 1260 1261 1262
    def __init__(
        self,
        num_channels,
        epsilon=1e-5,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
    ):
1263
        super().__init__()
1264

C
ceci3 已提交
1265
        if param_attr == False or bias_attr == False:
1266 1267
            assert (
                bias_attr == param_attr
1268
            ), "param_attr and bias_attr must be set to False at the same time in InstanceNorm"
1269 1270 1271 1272 1273
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1274 1275 1276 1277 1278 1279
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
1280 1281 1282 1283 1284 1285 1286 1287 1288
                is_bias=False,
            )
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
C
ceci3 已提交
1289 1290 1291
        else:
            self.scale = None
            self.bias = None
1292 1293

    def forward(self, input):
1294
        if in_dygraph_mode():
1295 1296 1297
            out = _C_ops.instance_norm(
                input, self.scale, self.bias, self._epsilon
            )
1298 1299
            return out
        if _in_legacy_dygraph():
1300 1301 1302
            out, _, _ = _legacy_C_ops.instance_norm(
                input, self.scale, self.bias, 'epsilon', self._epsilon
            )
1303 1304
            return out

1305 1306 1307
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "InstanceNorm"
        )
1308 1309 1310

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1311 1312 1313 1314
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1315 1316

        saved_mean = self._helper.create_variable_for_type_inference(
1317 1318
            dtype=self._dtype, stop_gradient=True
        )
1319
        saved_variance = self._helper.create_variable_for_type_inference(
1320 1321
            dtype=self._dtype, stop_gradient=True
        )
1322
        instance_norm_out = self._helper.create_variable_for_type_inference(
1323 1324
            self._dtype
        )
1325 1326 1327 1328

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
1329
            "SavedVariance": [saved_variance],
1330 1331
        }

1332 1333 1334
        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
1335 1336 1337
        return instance_norm_out


M
minqiyang 已提交
1338
class BatchNorm(layers.Layer):
1339
    r"""
1340

1341 1342
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
1343
    It implements the function of the Batch Normalization Layer and can be used
1344 1345
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1346 1347 1348 1349
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1350
    When use_global_stats = False, the :math:`\mu_{\beta}`
1351
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
1352
    Calculated as follows:
1353 1354 1355

    ..  math::

1356 1357 1358 1359
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
1360

1361 1362
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1363 1364 1365

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1366 1367 1368 1369 1370 1371
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1372

1373
    The normalization function formula is as follows:
1374

1375 1376
    ..  math::

1377 1378 1379 1380
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

1381

1382 1383 1384
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
1385

1386
    Parameters:
1387
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1388
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1389 1390 1391
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1392 1393 1394
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1395 1396 1397
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1398
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1399 1400 1401
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1402 1403 1404 1405 1406 1407
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1408 1409
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1410
        use_global_stats(bool, optional): Whether to use global mean and
1411 1412 1413
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1414 1415 1416 1417
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1418 1419

    Returns:
1420
        None
1421 1422 1423

    Examples:
        .. code-block:: python
L
lujun 已提交
1424 1425

          import paddle.fluid as fluid
1426 1427
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1428

1429
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1430
          with fluid.dygraph.guard():
1431
              x = to_variable(x)
1432
              batch_norm = fluid.BatchNorm(10)
1433
              hidden1 = batch_norm(x)
1434 1435
    """

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
    def __init__(
        self,
        num_channels,
        act=None,
        is_test=False,
        momentum=0.9,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
        data_layout='NCHW',
        in_place=False,
        moving_mean_name=None,
        moving_variance_name=None,
        do_model_average_for_mean_and_var=True,
        use_global_stats=False,
        trainable_statistics=False,
    ):
1454
        super().__init__()
1455
        self._param_attr = param_attr
1456
        self._bias_attr = bias_attr
1457
        self._act = act
1458
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1459

1460 1461 1462
        assert (
            bias_attr is not False
        ), "bias_attr should not be False in batch_norm."
M
minqiyang 已提交
1463

1464 1465
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1466 1467 1468 1469 1470 1471
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
        self.weight.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
        self.bias.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self._mean = self.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1502
        self._mean.stop_gradient = True
M
minqiyang 已提交
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        self._variance = self.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1514
        self._variance.stop_gradient = True
M
minqiyang 已提交
1515 1516

        self._in_place = in_place
1517
        self._data_layout = data_layout
M
minqiyang 已提交
1518 1519 1520
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1521
        self._fuse_with_relu = False
M
minqiyang 已提交
1522
        self._use_global_stats = use_global_stats
1523
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1524 1525 1526 1527 1528 1529 1530

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1531

J
Jiabin Yang 已提交
1532
        if _non_static_mode():
H
hong 已提交
1533
            if in_dygraph_mode():
1534
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
1535 1536 1537
                    input,
                    self._mean,
                    self._variance,
1538 1539 1540
                    self.weight,
                    self.bias,
                    not self.training,
1541 1542 1543 1544 1545 1546
                    self._momentum,
                    self._epsilon,
                    self._data_layout,
                    self._use_global_stats,
                    self._trainable_statistics,
                )
1547
                return dygraph_utils._append_activation_in_dygraph(
1548 1549
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
                )
1550 1551

            elif _in_legacy_dygraph():
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
                attrs = (
                    "momentum",
                    self._momentum,
                    "epsilon",
                    self._epsilon,
                    "is_test",
                    not self.training,
                    "data_layout",
                    self._data_layout,
                    "use_mkldnn",
                    self._use_mkldnn,
                    "fuse_with_relu",
                    self._fuse_with_relu,
                    "use_global_stats",
                    self._use_global_stats,
                    'trainable_statistics',
                    self._trainable_statistics,
                )
1570
                batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
                    input,
                    self.weight,
                    self.bias,
                    self._mean,
                    self._variance,
                    None,
                    mean_out,
                    variance_out,
                    *attrs
                )
1581

1582
            return dygraph_utils._append_activation_in_dygraph(
1583 1584
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
            )
1585

1586 1587 1588
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
        )
1589

1590 1591 1592 1593 1594 1595 1596
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1597 1598
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1599
        }
M
minqiyang 已提交
1600

1601 1602 1603 1604 1605
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1606
            "Variance": [self._variance],
1607 1608
        }

1609
        saved_mean = self._helper.create_variable_for_type_inference(
1610 1611
            dtype=self._dtype, stop_gradient=True
        )
1612
        saved_variance = self._helper.create_variable_for_type_inference(
1613 1614
            dtype=self._dtype, stop_gradient=True
        )
1615
        reserve_space = self._helper.create_variable_for_type_inference(
1616 1617
            dtype=self._helper.input_dtype(input), stop_gradient=True
        )
1618

1619 1620 1621 1622 1623
        batch_norm_out = (
            input
            if self._in_place
            else self._helper.create_variable_for_type_inference(self._dtype)
        )
1624 1625 1626 1627 1628 1629

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1630
            "SavedVariance": [saved_variance],
1631
        }
1632
        if reserve_space is not None:
1633
            outputs["ReserveSpace"] = [reserve_space]
1634

1635 1636 1637
        self._helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
M
minqiyang 已提交
1638

L
lujun 已提交
1639
        # Currently, we don't support inplace in dygraph mode
1640
        return self._helper.append_activation(batch_norm_out, self._act)
1641 1642


1643 1644
class Dropout(layers.Layer):
    """
1645 1646
    This interface is used to construct a callable object of the ``Dropout`` class.
    For more details, refer to code examples.
1647

1648 1649 1650 1651 1652
    Drop or keep each element of input independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly sets (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.
1653

1654
    Dropout layer can be removed for efficiency concern.
1655

1656 1657 1658 1659 1660 1661 1662
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
        seed (int, optional): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training. Default: None.
        dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']
1663

1664
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
1665

1666 1667
                                           - train: out = input * mask
                                           - inference: out = input * (1.0 - p)
1668

1669 1670 1671
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
1672

1673 1674
                                           - train: out = input * mask / ( 1.0 - p )
                                           - inference: out = input
1675

1676 1677 1678 1679 1680
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is p)
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                    This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                    Default: False.
1681

1682 1683
    Returns:
        None
1684

1685
    Examples:
1686

1687
        .. code-block:: python
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
            import paddle.fluid as fluid
            from paddle.fluid.dygraph.base import to_variable
            import numpy as np

            x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
            with fluid.dygraph.guard():
                x = to_variable(x)
                m = fluid.dygraph.Dropout(p=0.5)
                droped_train = m(x)
                # switch to eval mode
                m.eval()
                droped_eval = m(x)
    """

    def __init__(
        self,
        p=0.5,
        seed=None,
        dropout_implementation="downgrade_in_infer",
        is_test=False,
    ):
1710
        super().__init__()
1711 1712 1713 1714
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
1715 1716
            seed, int
        ), "seed argument should be None or a integer"
1717 1718
        self._seed = seed
        assert dropout_implementation in (
1719 1720
            'downgrade_in_infer',
            'upscale_in_train',
1721 1722 1723 1724 1725
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1726 1727 1728
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1729 1730 1731 1732 1733
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
1734 1735 1736
            'is_test': not self.training
            if _non_static_mode()
            else self._is_test,
1737 1738 1739 1740 1741
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

J
Jiabin Yang 已提交
1742
        if _non_static_mode():
1743
            attrs = sum(attrs.items(), ())
1744
            out, mask = _legacy_C_ops.dropout(input, *attrs)
1745 1746 1747 1748
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
1749 1750 1751 1752 1753 1754 1755 1756 1757
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
        )

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out], 'Mask': [mask]},
            attrs=attrs,
        )
1758 1759 1760
        return out


1761
class Embedding(layers.Layer):
1762
    r"""
1763
    :alias_main: paddle.nn.Embedding
1764 1765
        :alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
        :old_api: paddle.fluid.dygraph.Embedding
1766

1767 1768
    **Embedding Layer**

Z
zhongpu 已提交
1769 1770 1771 1772 1773 1774
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1775 1776
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1777

1778
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1779 1780 1781 1782 1783 1784 1785
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1786 1787
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1788 1789 1790 1791 1792 1793 1794 1795
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
1796

Z
zhongpu 已提交
1797 1798 1799 1800
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1801

1802
    Parameters:
L
lujun 已提交
1803 1804
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1805
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
1806
            affects the performance of the backwards gradient update. It is recommended to set
Z
zhongpu 已提交
1807
            True because sparse update is faster. But some optimizer does not support sparse update,
1808
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
Z
zhongpu 已提交
1809 1810 1811 1812 1813
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
1814
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
Z
zhongpu 已提交
1815 1816 1817 1818 1819 1820
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
1821
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
Z
zhongpu 已提交
1822
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1823
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1824 1825 1826
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1827

Z
zhongpu 已提交
1828 1829
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1830

1831
    Returns:
Z
zhongpu 已提交
1832
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1833 1834

    Examples:
1835

1836 1837
        .. code-block:: python

L
lujun 已提交
1838 1839 1840 1841
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1842
          # example 1
1843 1844
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1845 1846
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1847
              emb = fluid.dygraph.Embedding(
1848 1849 1850
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1851
              static_rlt3 = emb(base.to_variable(inp_word))
1852
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
1866
              static_rlt3 = emb(base.to_variable(inp_word))
1867 1868
    """

1869 1870 1871 1872 1873 1874 1875 1876 1877
    def __init__(
        self,
        size,
        is_sparse=False,
        is_distributed=False,
        padding_idx=None,
        param_attr=None,
        dtype='float32',
    ):
1878
        super().__init__()
1879 1880 1881
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
1882 1883 1884 1885 1886 1887 1888
        self._padding_idx = (
            -1
            if padding_idx is None
            else padding_idx
            if padding_idx >= 0
            else (size[0] + padding_idx)
        )
1889 1890 1891

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1892
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1893 1894 1895
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1896 1897 1898 1899 1900 1901
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False,
        )
1902 1903

    def forward(self, input):
J
Jiabin Yang 已提交
1904
        if _non_static_mode():
1905
            return _legacy_C_ops.lookup_table_v2(
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
                self.weight,
                input,
                'is_sparse',
                self._is_sparse,
                'is_distributed',
                self._is_distributed,
                'remote_prefetch',
                self._remote_prefetch,
                'padding_idx',
                self._padding_idx,
            )
1917

1918 1919 1920 1921 1922 1923
        check_variable_and_dtype(
            input,
            'input',
            ['uint8', 'int8', 'int16', 'int32', 'int64'],
            'Embedding',
        )
1924 1925 1926 1927
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
1928
            'padding_idx': self._padding_idx,
1929
        }
1930

1931
        out = self._helper.create_variable_for_type_inference(self._dtype)
1932 1933 1934 1935 1936 1937
        self._helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': input, 'W': self.weight},
            outputs={'Out': out},
            attrs=attrs,
        )
1938 1939

        return out
M
minqiyang 已提交
1940 1941


1942
class LayerNorm(layers.Layer):
1943
    r"""
1944
    :alias_main: paddle.nn.LayerNorm
1945 1946
        :alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
        :old_api: paddle.fluid.dygraph.LayerNorm
1947

1948 1949 1950
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1951
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1952

1953
    The formula is as follows:
1954

1955
    ..  math::
1956

1957
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1958

1959
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1960

1961
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1962

1963 1964 1965 1966 1967
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1968

1969
    Parameters:
1970 1971 1972 1973
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1974
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1975
            normalization. Default: True.
1976
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1977
            normalization. Default: True.
1978
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1979
            division by zero. Default: 1e-05.
1980
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1981 1982 1983
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1984
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1985
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1986 1987 1988
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1989
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1990
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1991
                  Default: None.
1992 1993
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1994
    Returns:
1995
        None
1996

1997
    Examples:
1998

1999 2000 2001
        .. code-block:: python

          import paddle.fluid as fluid
2002
          from paddle.fluid.dygraph.base import to_variable
2003 2004
          import numpy

2005
          x = numpy.random.random((3, 32, 32)).astype('float32')
2006
          with fluid.dygraph.guard():
2007
              x = to_variable(x)
2008
              layerNorm = fluid.LayerNorm([32, 32])
2009
              ret = layerNorm(x)
2010

2011
    """
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
    def __init__(
        self,
        normalized_shape,
        scale=True,
        shift=True,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype='float32',
    ):
2024
        super().__init__()
2025 2026
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
2027

2028
        self._normalized_shape = list(normalized_shape)
2029 2030 2031 2032 2033 2034
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
2035 2036
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
2037
        if self._scale:
2038
            self.weight = self.create_parameter(
2039 2040 2041
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
2042 2043
                default_initializer=Constant(1.0),
            )
2044 2045
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
2046
                logging.warn("param_attr are only available with scale is True")
2047
            self.weight = None
2048

2049 2050
        if self._shift:
            assert self._bias_attr is not False
2051 2052 2053 2054 2055 2056
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
2057 2058
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
2059
                logging.warn("bias_attr are only available with shift is True")
2060
            self.bias = None
2061 2062

    def forward(self, input):
2063 2064 2065 2066
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
2067 2068 2069 2070
        if (
            input_ndim < normalized_ndim
            or input_shape[self._begin_norm_axis :] != self._normalized_shape
        ):
2071
            str_normalized_shape = str(self._normalized_shape)
2072 2073 2074 2075 2076 2077 2078 2079
            raise ValueError(
                'Given normalized_shape is '
                + str_normalized_shape
                + ', expected input with shape [*, '
                + str_normalized_shape[1:]
                + ', but got input shape '
                + str(input_shape)
            )
2080

J
Jiabin Yang 已提交
2081
        if _non_static_mode():
H
hong 已提交
2082
            if in_dygraph_mode():
2083 2084 2085 2086 2087 2088 2089 2090
                pre_act, _, _, = _C_ops.layer_norm(
                    input,
                    self.weight,
                    self.bias,
                    self._epsilon,
                    self._begin_norm_axis,
                    False,
                )
H
hong 已提交
2091
                return dygraph_utils._append_activation_in_dygraph(
2092 2093
                    pre_act, act=self._act
                )
H
hong 已提交
2094
            else:
2095
                pre_act, _, _ = _legacy_C_ops.layer_norm(
2096 2097 2098 2099 2100 2101 2102 2103
                    input,
                    self.weight,
                    self.bias,
                    'epsilon',
                    self._epsilon,
                    'begin_norm_axis',
                    self._begin_norm_axis,
                )
H
hong 已提交
2104
                return dygraph_utils._append_activation_in_dygraph(
2105 2106
                    pre_act, act=self._act
                )
2107

2108 2109 2110
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'LayerNorm'
        )
2111

2112
        inputs = dict()
2113
        inputs['X'] = [input]
2114
        if self._scale:
2115
            inputs['Scale'] = [self.weight]
2116
        if self._shift:
2117 2118 2119
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
2120
            "begin_norm_axis": self._begin_norm_axis,
2121 2122
        }

2123 2124
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
2125 2126
            dtype=self._dtype, stop_gradient=True
        )
2127
        variance_out = self._helper.create_variable_for_type_inference(
2128 2129
            dtype=self._dtype, stop_gradient=True
        )
2130
        layer_norm_out = self._helper.create_variable_for_type_inference(
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
            self._dtype
        )

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis,
            },
        )
2147

2148
        return self._helper.append_activation(layer_norm_out, act=self._act)
2149 2150


M
minqiyang 已提交
2151 2152 2153
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
2154

D
DuYao 已提交
2155 2156
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
2157
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
D
DuYao 已提交
2158
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
2169
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

2195
    Parameters:
L
lujun 已提交
2196
        size (int): The input dimension value.
D
DuYao 已提交
2197
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
2198 2199
            hidden-hidden weight matrix.

D
DuYao 已提交
2200
            **Note**:
2201

D
DuYao 已提交
2202
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
2203 2204
                2. All elements in the weight matrix can be divided into two parts. The first
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`,
D
DuYao 已提交
2205
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
2206 2207 2208 2209


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
2210
            is not set, the parameter is initialized with Xavier. The default
D
DuYao 已提交
2211 2212 2213
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
2214 2215 2216 2217 2218
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
2219
            is initialized zero. The default value is None.
L
lujun 已提交
2220
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
2221
                             The default value is 'tanh'.
L
lujun 已提交
2222
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
2223 2224 2225
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
2226

D
DuYao 已提交
2227 2228 2229 2230
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2231

M
minqiyang 已提交
2232
    Returns:
D
DuYao 已提交
2233 2234
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
2235
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with
D
DuYao 已提交
2236
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
2250
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
2251 2252 2253
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
2254
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
2255 2256 2257
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
2258 2259
    """

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
    def __init__(
        self,
        size,
        param_attr=None,
        bias_attr=None,
        activation='tanh',
        gate_activation='sigmoid',
        origin_mode=False,
        dtype='float32',
    ):
2270
        super().__init__()
2271
        self._bias_attr = bias_attr
M
minqiyang 已提交
2272 2273 2274 2275
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
2276 2277
            relu=3,
        )
H
Hongyu Liu 已提交
2278 2279
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
2280

M
minqiyang 已提交
2281
        self._dtype = dtype
M
minqiyang 已提交
2282 2283
        size = size // 3
        # create weight
2284 2285 2286
        self.weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype
        )
M
minqiyang 已提交
2287 2288

        # create bias
M
minqiyang 已提交
2289
        bias_size = [1, 3 * size]
2290
        self._bias_size = bias_size
2291 2292 2293
        self.bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
M
minqiyang 已提交
2294

M
minqiyang 已提交
2295
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
2296
        if _non_static_mode():
2297
            gate, reset_hidden_pre, updated_hidden = _legacy_C_ops.gru_unit(
2298 2299 2300 2301 2302 2303 2304 2305 2306
                input,
                hidden,
                self.weight,
                self.bias,
                'activation',
                self.activation,
                'gate_activation',
                self.gate_activation,
            )
2307 2308
            return updated_hidden, reset_hidden_pre, gate

2309 2310 2311 2312 2313 2314
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'GRUUnit'
        )
        check_variable_and_dtype(
            hidden, 'hidden', ['float32', 'float64'], 'GRUUnit'
        )
2315 2316 2317
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
2318
            'Weight': [self.weight],
2319
        }
2320
        if self.bias is not None:
2321
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2322 2323
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
2324 2325
            self._dtype
        )
M
minqiyang 已提交
2326
        updated_hidden = self._helper.create_variable_for_type_inference(
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
            self._dtype
        )
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
                'activation': self.activation,
                'gate_activation': self.gate_activation,
            },
        )
M
minqiyang 已提交
2342 2343

        return updated_hidden, reset_hidden_pre, gate
2344 2345 2346 2347


class NCE(layers.Layer):
    """
2348 2349 2350 2351 2352
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2353
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2354

2355
    Parameters:
2356 2357
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2358
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2359 2360 2361
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2362
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2363 2364 2365 2366
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2367
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2368
        sampler (str, optional): The sampler used to sample class from negative classes.
2369 2370
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2371
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2372
                       It is used when sampler is set to 'custom_dist'.
2373
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2374
                       Default: None.
2375 2376
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2377
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2378

2379 2380
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2381

2382
        **bias** (Parameter or None): the learnable bias of this layer.
2383

2384
    Returns:
2385
        None
2386 2387 2388 2389

    Examples:
        .. code-block:: python

2390 2391 2392
            import numpy as np
            import paddle.fluid as fluid

2393
            window_size = 5
2394 2395
            dict_size = 20
            label_word = int(window_size // 2) + 1
2396
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2418
                nce = fluid.NCE(
2419
                             num_total_classes=dict_size,
2420
                             dim=embs3.shape[1],
2421 2422 2423 2424 2425 2426 2427
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2428 2429
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2430 2431 2432

    """

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
    def __init__(
        self,
        num_total_classes,
        dim,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None,
        sampler="uniform",
        custom_dist=None,
        seed=0,
        is_sparse=False,
        dtype='float32',
    ):
2447
        super().__init__()
2448 2449 2450
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2451
        self._dtype = dtype
2452
        self._inputs = dict()
2453 2454 2455
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
2511 2512
                    default_initializer=NumpyArrayInitializer(numpy_array),
                )
2513 2514 2515 2516
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
2517 2518
                np.array(custom_dist).astype('float32')
            )
2519
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
2520 2521
                np.array(alias_).astype('int32')
            )
2522
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
2523 2524
                np.array(alias_probs_).astype('float32')
            )
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
2544
            'remote_prefetch': remote_prefetch,
2545 2546
        }

2547
        self.weight = self.create_parameter(
2548 2549 2550
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2551 2552
            dtype=self._dtype,
        )
2553
        if self._bias_attr:
2554
            self.bias = self.create_parameter(
2555 2556 2557
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2558 2559
                dtype=self._dtype,
            )
2560 2561
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2562

2563
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
2564
        if _non_static_mode():
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
            attrs = (
                'num_total_classes',
                self._attrs['num_total_classes'],
                'num_neg_samples',
                self._attrs['num_neg_samples'],
                'seed',
                self._attrs['seed'],
                'sampler',
                self._attrs['sampler'],
                'is_sparse',
                self._attrs['is_sparse'],
                'remote_prefetch',
                self._attrs['remote_prefetch'],
            )
            cost, _, _ = _legacy_C_ops.nce(
                input,
                label,
                self.weight,
                self.bias,
                self._inputs['SampleWeight'],
                self._inputs['CustomDistProbs'],
                self._inputs['CustomDistAlias'],
                self._inputs['CustomDistAliasProbs'],
                *attrs
            )
W
Weilong Wu 已提交
2590 2591
            return cost / (self._num_neg_samples + 1)

2592 2593
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
2594 2595 2596
        check_type(
            sample_weight, 'sample_weight', (Variable, type(None)), 'NCE'
        )
2597 2598 2599 2600 2601
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
2602 2603 2604
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
2605 2606

        cost = self._helper.create_variable_for_type_inference(
2607 2608
            dtype=input.dtype
        )
2609
        sample_logits = self._helper.create_variable_for_type_inference(
2610 2611
            dtype=input.dtype
        )
2612
        sample_labels = self._helper.create_variable_for_type_inference(
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
            dtype=label.dtype
        )

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels,
            },
            attrs=self._attrs,
        )
2626 2627 2628 2629
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2630
    r"""
2631 2632 2633 2634
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2635 2636 2637 2638 2639
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2640
    Parameters:
L
lujun 已提交
2641
        mode (str): The mode for weight sharing. It supports all, channel
2642 2643 2644
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2645 2646 2647
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2648
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2649 2650
          This argument is required when mode is "element".
          Default: None.
2651 2652
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2653
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2654

2655 2656
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2657

2658
    Returns:
2659
        None
2660 2661 2662 2663 2664

    Examples:

        .. code-block:: python

L
lujun 已提交
2665
          import paddle.fluid as fluid
2666
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2667 2668 2669 2670
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2671
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2683
                 input_shape=inp_np.shape,
L
lujun 已提交
2684
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2685
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2686

2687 2688
    """

2689 2690 2691 2692 2693 2694 2695 2696
    def __init__(
        self,
        mode,
        channel=None,
        input_shape=None,
        param_attr=None,
        dtype='float32',
    ):
2697
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
2698
        super().__init__(name_scope='prelu')
2699 2700
        self._mode = mode
        self._param_attr = param_attr
2701
        self._dtype = dtype
S
songyouwei 已提交
2702 2703 2704 2705
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
2706 2707 2708
                channel, int
            ), "channel argument is required when mode is 'channel'."
            # NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
2709
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation.
2710
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2711
            # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
2712
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2713
        elif mode == 'element':
2714
            assert isinstance(
2715 2716
                input_shape, (list, tuple)
            ), "input_shape argument is required when mode is 'element'."
S
songyouwei 已提交
2717 2718 2719
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2720 2721 2722 2723 2724 2725 2726
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0),
        )
2727 2728

    def forward(self, input):
2729 2730 2731
        if in_dygraph_mode():
            return _C_ops.prelu(input, self.weight, "NCHW", self._mode)

2732
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2733
        out = self._helper.create_variable_for_type_inference(self._dtype)
2734 2735 2736 2737 2738 2739
        self._helper.append_op(
            type="prelu",
            inputs={"X": input, 'Alpha': self.weight},
            attrs={"mode": self._mode},
            outputs={"Out": out},
        )
2740 2741 2742 2743
        return out


class BilinearTensorProduct(layers.Layer):
2744
    r"""
2745

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2759
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2760

2761
    Parameters:
2762 2763 2764 2765 2766
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2767
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
2768
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
D
DuYao 已提交
2769 2770
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2771
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2772
           If it is set to None, the bias is initialized zero. The default value is None.
2773
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2774

D
DuYao 已提交
2775 2776 2777 2778
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2779

2780
    Returns:
W
wanghuancoder 已提交
2781
       Tensor: A 2-D Tensor of shape [batch_size, size].
2782 2783 2784 2785

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2795

2796 2797
    """

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
    def __init__(
        self,
        input1_dim,
        input2_dim,
        output_dim,
        name=None,
        act=None,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
    ):
2809
        super().__init__()
2810 2811 2812 2813
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2814 2815 2816
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2817
        self._inputs = dict()
2818
        self._dtype = dtype
2819

2820
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2821 2822 2823 2824 2825 2826
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False,
        )
2827
        bias_size = [1, self._output_dim]
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True,
        )

    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.",
    )
2840
    def forward(self, x, y):
2841 2842 2843 2844 2845 2846
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'BilinearTensorProduct'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'BilinearTensorProduct'
        )
2847
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2848
        if self.bias is not None:
2849
            self._inputs["Bias"] = self.bias
2850
        if self._name is not None:
2851 2852 2853 2854 2855
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False,
            )
2856
        else:
2857 2858 2859 2860 2861 2862 2863 2864
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False
            )
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out},
        )
2865 2866

        # add activation
2867
        return self._helper.append_activation(out, act=self._act)
2868 2869 2870


class Conv2DTranspose(layers.Layer):
2871
    r"""
2872 2873
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2874
    The convolution2D transpose layer calculates the output based on the input,
2875 2876 2877
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2878 2879
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2880 2881
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2882 2883 2884
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2885 2886
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2887 2888 2889 2890 2891 2892 2893 2894 2895

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2896 2897
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2898
    * :math:`\\ast`: Convolution operation.
2899
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2924
    Parameters:
2925
        num_channels(int): The number of channels in the input image.
2926
        num_filters(int): The number of the filter. It is as same as the output
2927
            feature map.
2928 2929 2930
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2931
        output_size(int or tuple, optional): The output image size. If output size is a
2932 2933 2934
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2935
            should follow the formula above. Default: None.
2936
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2937
            contain two integers, (padding_H, padding_W). Otherwise, the
2938 2939
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2940
            contain two integers, (stride_H, stride_W). Otherwise, the
2941 2942
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2943
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2944
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2945
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2946 2947 2948 2949
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2950 2951
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2952 2953 2954
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2955
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2956 2957 2958 2959
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2960
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2961
            library is installed. Default: True.
2962
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2963
            Default: None.
2964
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2965

2966 2967
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2968

2969
        **bias** (Parameter or None): the learnable bias of this layer.
2970

2971 2972
    Returns:
        None
2973 2974 2975 2976

    Examples:
       .. code-block:: python

2977
          import paddle.fluid as fluid
2978
          import numpy as np
2979 2980

          with fluid.dygraph.guard():
2981
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2982
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2983
                    num_channels=32, num_filters=2, filter_size=3)
2984 2985
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2986 2987
    """

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        output_size=None,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
3004
        super().__init__()
3005 3006 3007
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv2d_transpose."
3008 3009
        self._param_attr = param_attr
        self._bias_attr = bias_attr
3010
        self._act = act
3011
        self._groups = groups
3012
        self._num_channels = num_channels
3013 3014 3015 3016 3017 3018 3019
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
3020
        self._dtype = dtype
3021

3022 3023 3024 3025 3026
        if (
            self._num_channels == self._groups
            and self._num_filters == self._num_channels
            and not self._use_cudnn
        ):
3027
            self._op_type = 'depthwise_conv2d_transpose'
3028 3029
        else:
            self._op_type = 'conv2d_transpose'
3030 3031 3032 3033 3034

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

3035
        self._filter_size = utils.convert_to_list(
3036 3037
            self._filter_size, 2, 'conv2d_transpose.filter_size'
        )
3038 3039 3040

        if self._output_size is None:
            self._output_size = []
3041 3042 3043
        elif isinstance(self._output_size, list):
            if utils._contain_var(self._output_size):
                self._output_size = utils._convert_to_tensor_list(
3044 3045
                    self._output_size
                )
3046 3047
            else:
                self._output_size = utils.convert_to_list(
3048 3049
                    self._output_size, 2, 'output_size'
                )
3050
        elif isinstance(self._output_size, int):
3051 3052 3053
            self._output_size = utils.convert_to_list(
                self._output_size, 2, 'output_size'
            )
3054
        elif isinstance(self._output_size, Variable):
3055 3056 3057 3058 3059 3060
            check_dtype(
                self._output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'Conv2DTranspose',
            )
3061
            if len(self._output_size.shape) == 1 and (
3062 3063 3064
                self._output_size.shape[0] == 1
                or self._output_size.shape[0] == 2
            ):
3065 3066 3067 3068
                if self._output_size.shape[0] == 1:
                    self._output_size = [self._output_size, self._output_size]
            else:
                raise ValueError(
3069 3070
                    "output_size must contain one or two integers."
                )
3071
        else:
3072
            raise ValueError("output_size should be list or int or Tensor")
3073 3074
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
3075 3076 3077 3078
        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
3079

3080 3081 3082
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
3083

3084 3085 3086 3087 3088 3089
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
3090

3091
    def forward(self, input):
J
Jiabin Yang 已提交
3092
        if _non_static_mode():
3093
            op = getattr(_legacy_C_ops, self._op_type)
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
            out = op(
                input,
                self.weight,
                'output_size',
                self._output_size,
                'strides',
                self._stride,
                'paddings',
                self._padding,
                'dilations',
                self._dilation,
                'groups',
                self._groups,
                'use_cudnn',
                self._use_cudnn,
            )
3110
            pre_bias = out
3111
            pre_act = dygraph_utils._append_bias_in_dygraph(
3112 3113 3114 3115 3116
                pre_bias, self.bias, 1
            )
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act
            )
3117

3118 3119 3120
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Conv2DTranspose"
        )
3121

3122 3123 3124 3125 3126 3127 3128
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
3129
            'use_cudnn': self._use_cudnn,
3130 3131
        }

3132
        pre_bias = self._helper.create_variable_for_type_inference(
3133 3134 3135 3136 3137 3138 3139 3140
            dtype=input.dtype
        )
        self._helper.append_op(
            type=self._op_type,
            inputs=inputs,
            outputs={'Output': pre_bias},
            attrs=attrs,
        )
3141

3142
        if self.bias is not None:
3143
            pre_act = self._helper.create_variable_for_type_inference(
3144 3145 3146 3147 3148 3149 3150 3151
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
3152 3153 3154 3155
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
3156 3157 3158 3159 3160 3161 3162 3163 3164
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

3165
    Parameters:
L
lujun 已提交
3166
        name_scope(str): The name of this class.
3167
        num_filters (int): number of filters.
L
lujun 已提交
3168 3169 3170
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

3183 3184 3185 3186
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

3187 3188 3189 3190
    Returns:
        Variable: output of sequence_conv
    """

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
    def __init__(
        self,
        name_scope,
        num_filters,
        filter_size=3,
        filter_stride=1,
        padding=None,
        bias_attr=None,
        param_attr=None,
        act=None,
    ):
        assert (
            not _non_static_mode()
3204
        ), "SequenceConv is not supported by dynamic graph mode yet!"
3205
        super().__init__(name_scope)
3206 3207 3208 3209 3210 3211
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3212
        self._act = act
3213

3214
    def _build_once(self, input):
3215 3216
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
3217 3218 3219
        self.weight = self.create_parameter(
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype
        )
3220

3221 3222 3223 3224 3225 3226
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
3227

3228 3229
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self.weight],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size,
            },
        )
3243

3244
        if self.bias is not None:
3245
            pre_act = self._helper.create_variable_for_type_inference(
3246 3247 3248 3249 3250 3251 3252 3253
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
3254 3255 3256 3257
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
3258 3259 3260


class RowConv(layers.Layer):
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

3279
    Parameters:
L
lujun 已提交
3280
        name_scope(str): The name of this class.
3281 3282 3283
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
3284 3285
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
3286

3287 3288 3289
    Attributes:
        weight (Parameter): the learnable weights of this layer.

3290
    Returns:
L
lujun 已提交
3291 3292
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

3308 3309 3310 3311 3312
    def __init__(
        self, name_scope, future_context_size, param_attr=None, act=None
    ):
        assert (
            not _non_static_mode()
3313
        ), "RowConv is not supported by dynamic graph mode yet!"
3314
        super().__init__(name_scope)
L
lujun 已提交
3315 3316 3317 3318
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

3319
    def _build_once(self, input):
L
lujun 已提交
3320 3321
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
3322 3323 3324 3325 3326 3327
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
3328 3329 3330

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
3331 3332 3333 3334 3335
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input], 'Filter': [self.weight]},
            outputs={'Out': [out]},
        )
L
lujun 已提交
3336 3337 3338 3339 3340
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
3341
    :alias_main: paddle.nn.GroupNorm
3342 3343
        :alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
        :old_api: paddle.fluid.dygraph.GroupNorm
3344

3345 3346 3347 3348 3349 3350
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
3351
        channels(int): The number of channels of input.
3352 3353 3354 3355 3356 3357 3358 3359 3360
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
3361
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
3375
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
3376
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
3377 3378 3379

    """

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
    def __init__(
        self,
        channels,
        groups,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        data_layout='NCHW',
        dtype='float32',
    ):
3391
        super().__init__()
L
lujun 已提交
3392 3393 3394
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
3395
        self._channels = channels
L
lujun 已提交
3396 3397
        self._groups = groups
        self._act = act
3398
        self._dtype = dtype
L
lujun 已提交
3399 3400 3401
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

3402
        param_shape = [self._channels]
L
lujun 已提交
3403

3404 3405 3406 3407 3408 3409
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
3410

3411 3412 3413 3414 3415 3416
        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
3417 3418

    def forward(self, input):
3419
        mean_out = self._helper.create_variable_for_type_inference(
3420 3421
            dtype=self._dtype, stop_gradient=True
        )
3422
        variance_out = self._helper.create_variable_for_type_inference(
3423 3424
            dtype=self._dtype, stop_gradient=True
        )
3425
        if in_dygraph_mode():
3426 3427 3428 3429 3430 3431 3432 3433
            out = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._groups,
                "NCHW",
            )
3434

3435 3436 3437
            return dygraph_utils._append_activation_in_dygraph(out, self._act)

        elif _in_legacy_dygraph():
3438
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
3439 3440 3441
            out, _, _ = _legacy_C_ops.group_norm(
                input, self.weight, self.bias, mean_out, variance_out, *attrs
            )
3442 3443

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            group_norm_out = self._helper.create_variable_for_type_inference(
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
                dtype=self._dtype
            )

            self._helper.append_op(
                type="group_norm",
                inputs=inputs,
                outputs={
                    "Y": group_norm_out,
                    "Mean": mean_out,
                    "Variance": variance_out,
                },
                attrs={"epsilon": self._epsilon, "groups": self._groups},
            )
J
Jiabin Yang 已提交
3466 3467

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
3468 3469 3470


class SpectralNorm(layers.Layer):
3471
    r"""
3472 3473
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3484
    :attr:`power_iters` should be a positive integer, do following
3485 3486 3487 3488
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3489
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3490

3491
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3492 3493 3494 3495 3496 3497 3498 3499

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3500
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3501 3502 3503 3504


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3505
    Parameters:
3506
        weight_shape(list or tuple): The shape of weight parameter.
3507 3508 3509 3510
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3511
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3512 3513

    Returns:
3514
        None
3515 3516 3517 3518

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3519 3520
            import paddle
            x = paddle.rand((2,8,32,32))
3521

C
Chen Long 已提交
3522 3523 3524 3525
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3526 3527 3528

    """

3529 3530 3531
    def __init__(
        self, weight_shape, dim=0, power_iters=1, eps=1e-12, dtype='float32'
    ):
3532
        super().__init__()
L
lujun 已提交
3533 3534 3535
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3536
        self._dtype = dtype
L
lujun 已提交
3537

3538
        self._weight_shape = list(weight_shape)
3539 3540 3541 3542 3543
        assert (
            np.prod(self._weight_shape) > 0
        ), "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), (
            "The input `dim` should be less than the "
3544
            "length of `weight_shape`, but received dim="
3545 3546
            "{}".format(dim)
        )
3547 3548
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3549

3550 3551 3552 3553 3554 3555
        self.weight_u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
3556
        self.weight_u.stop_gradient = True
L
lujun 已提交
3557

3558 3559 3560 3561 3562 3563
        self.weight_v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
3564
        self.weight_v.stop_gradient = True
L
lujun 已提交
3565 3566

    def forward(self, weight):
3567
        if in_dygraph_mode():
3568 3569 3570 3571 3572 3573 3574 3575
            return _C_ops.spectral_norm(
                weight,
                self.weight_u,
                self.weight_v,
                self._dim,
                self._power_iters,
                self._eps,
            )
3576

3577 3578 3579
        check_variable_and_dtype(
            weight, "weight", ['float32', 'float64'], 'SpectralNorm'
        )
3580
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3581
        out = self._helper.create_variable_for_type_inference(self._dtype)
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={
                "Out": out,
            },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            },
        )
L
lujun 已提交
3594 3595 3596 3597 3598

        return out


class TreeConv(layers.Layer):
3599
    """
3600 3601 3602 3603 3604 3605 3606 3607
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
3608

3609
    Parameters:
3610
        feature_size(int): last dimension of nodes_vector.
3611 3612 3613 3614 3615 3616 3617
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3618
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3619

3620 3621
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3622

3623
        **bias** (Parameter or None): the learnable bias of this layer.
3624

3625 3626
    Returns:
        None
L
lujun 已提交
3627

3628
    Examples:
L
lujun 已提交
3629

3630
        .. code-block:: python
3631

3632 3633
          import paddle.fluid as fluid
          import numpy
3634

3635 3636 3637 3638
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3639
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3640
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3641 3642
    """

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
    def __init__(
        self,
        feature_size,
        output_size,
        num_filters=1,
        max_depth=2,
        act='tanh',
        param_attr=None,
        bias_attr=None,
        name=None,
        dtype='float32',
    ):
3655
        super().__init__()
L
lujun 已提交
3656
        self._name = name
3657
        self._feature_size = feature_size
L
lujun 已提交
3658 3659 3660 3661 3662 3663
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3664 3665
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3666
        if self._bias_attr:
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True,
            )
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
3679 3680

    def forward(self, nodes_vector, edge_set):
3681 3682
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3683
        if self._name:
3684 3685 3686
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False
            )
L
lujun 已提交
3687 3688
        else:
            out = self._helper.create_variable_for_type_inference(
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
                dtype=self._dtype
            )
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.weight,
            },
            outputs={
                'Out': out,
            },
            attrs={'max_depth': self._max_depth},
        )
L
lujun 已提交
3703 3704
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
3705 3706 3707 3708 3709 3710 3711 3712
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1},
            )
L
lujun 已提交
3713 3714 3715
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
3727

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3739
          inp_np = paddle.to_tensor(inp_np)
3740 3741 3742 3743 3744 3745
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
3746
        super().__init__()
3747 3748 3749 3750
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3751 3752 3753
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis
        )
3754
        return out