creation.py 77.1 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17
import math
18
import re
19 20
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
21 22 23 24
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
25 26
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
P
Pei Yang 已提交
27
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
Z
zhiboniu 已提交
28
from ..framework import convert_np_dtype_to_dtype_, _varbase_creator, OpProtoHolder
29
# TODO: define functions to get create a tensor
30
import paddle
31
from paddle import _C_ops, _legacy_C_ops
32 33
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check
import warnings
34

35 36
__all__ = []

W
wangchaochaohu 已提交
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
58
    Return fixed number of evenly spaced values within a given interval.
59 60 61 62 63 64 65 66 67 68

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
69
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
95
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
96 97
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
98
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
99 100
    if not isinstance(num, Variable):
        with device_guard("cpu"):
101
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
102
    if in_dygraph_mode():
103 104
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, dtype,
                               _current_expected_place())
105
    if _in_legacy_dygraph():
106 107
        return _legacy_C_ops.linspace(tensor_start, tensor_stop, tensor_num,
                                      'dtype', dtype)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
129 130 131 132
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
133 134 135 136 137 138 139
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

140 141 142 143 144 145 146 147
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
148 149 150 151 152
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
    
    Notes:
        This API does not compute the gradient.
    
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
175
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
        just has the value with exponential of :attr:`start` with base :attr:`base`. 

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
215 216
        return _legacy_C_ops.logspace(tensor_start, tensor_stop, tensor_num,
                                      tensor_base, 'dtype', dtype)
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
        check_dtype(base.dtype, 'base',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(base, 'base', (int, float), 'logspace')

    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'logspace')
    if ((stop_dtype == "float64" or start_dtype == "float64"
                                 or base_dtype == "float64")
                                 and out_dtype in ["float32", "int32"]) or \
       ((stop_dtype == "int64" or start_dtype == "int64"
                               or base_dtype == "int64")
                               and out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of logspace."
            .format(start_dtype, stop_dtype, base_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

260 261 262 263 264 265 266 267 268
    helper.append_op(type='logspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num,
                         'Base': tensor_base
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
269 270 271 272 273
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


274
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
275 276

    if not isinstance(data, np.ndarray):
277

278
        def _handle_dtype(data, dtype):
279 280 281 282 283
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

284 285 286 287
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
288
            if data.dtype == np.object_:
289 290 291 292
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
293 294 295 296 297 298
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
299
            data = data._copy_to(place, False)
300
            data = _handle_dtype(data, dtype)
301
            data.stop_gradient = stop_gradient
302
            return data
303
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
304
            # should't expose it to users, just for internal use.
305 306
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
307 308 309 310
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
311 312 313 314
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
315
            return data
316 317
        else:
            raise TypeError(
318 319
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor"
                .format(type(data)))
320 321 322 323 324 325 326 327 328 329 330 331 332 333
        if not dtype:
            if data.dtype in [
                    'float16', 'float32', 'float64', 'complex64', 'complex128'
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
                    default_type = 'complex64' if default_type in [
                        'float16', 'float32'
                    ] else 'complex128'
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
334 335

    if dtype and convert_dtype(dtype) != data.dtype:
336
        data = data.astype(convert_dtype(dtype))
337

J
Jiabin Yang 已提交
338
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
339 340 341 342 343 344
        return core.eager.Tensor(value=data,
                                 place=place,
                                 persistable=False,
                                 zero_copy=False,
                                 name=None,
                                 stop_gradient=stop_gradient)
345
    else:
346 347 348 349 350
        return paddle.Tensor(value=data,
                             place=place,
                             persistable=False,
                             zero_copy=False,
                             stop_gradient=stop_gradient)
351 352


353 354 355 356 357
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
358 359 360 361 362 363 364 365 366 367 368 369 370 371

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

            if isinstance(data,
                          np.ndarray) and not dtype and data.dtype != 'object':
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

372 373
        if dtype:
            target_dtype = dtype
374
        elif hasattr(data, 'dtype') and data.dtype != 'object':
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

        if isinstance(data, np.ndarray) and len(data.shape) > 0 and any(
                isinstance(x, Variable) for x in data):
            if not all(
                [x.shape == (1, ) for x in data if isinstance(x, Variable)]):
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])        

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
464 465 466 467
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

468 469 470 471 472
    if _non_static_mode():
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
473
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
474 475 476
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
477
            return _to_tensor_static(data, dtype, stop_gradient)
478 479


480
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
481
    """
S
swtkiwi 已提交
482

483 484
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
485

P
Pei Yang 已提交
486
    Args:
487 488
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
489
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
490 491
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
492
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
493
    
P
Pei Yang 已提交
494
    Returns:
495
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
496
    
P
Pei Yang 已提交
497 498
    Examples:
        .. code-block:: python
499

P
Pei Yang 已提交
500
          import paddle
501 502
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
503
          output = paddle.full_like(input, 2.0)
504 505
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
506 507 508
    """

    if dtype is None:
509
        dtype = x.dtype
510
    else:
511 512 513
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

514
    if in_dygraph_mode():
515
        return _C_ops.full_like(x, fill_value, dtype, x.place)
516 517

    if _in_legacy_dygraph():
518 519
        return _legacy_C_ops.fill_any_like(x, 'value', fill_value, 'dtype',
                                           dtype)
P
Pei Yang 已提交
520

521
    helper = LayerHelper("full_like", **locals())
522
    check_variable_and_dtype(
523 524
        x, 'x',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
525
        'full_like')
526 527 528 529
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'full_like/zeros_like/ones_like')
530
    out = helper.create_variable_for_type_inference(dtype=dtype)
531

532 533 534 535 536 537 538
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={
                         'value': fill_value,
                         "dtype": dtype
                     },
                     outputs={'Out': [out]})
539
    out.stop_gradient = True
P
Pei Yang 已提交
540 541 542
    return out


543
def ones(shape, dtype=None, name=None):
544
    """
B
BrilliantYuKaimin 已提交
545
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
546 547

    Args:
B
BrilliantYuKaimin 已提交
548 549 550 551
        shape (tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape should be int32 or int64.
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
552
    
553
    Returns:
B
BrilliantYuKaimin 已提交
554
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
555 556 557 558

    Examples:
        .. code-block:: python

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
            import paddle 

            # default dtype for ones OP
            data1 = paddle.ones(shape=[3, 2]) 
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            data2 = paddle.ones(shape=[2, 2], dtype='int32') 
            # [[1 1]
            #  [1 1]]

            # shape is a Tensor
            shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
            data3 = paddle.ones(shape=shape, dtype='int32') 
            # [[1 1]
            #  [1 1]]
576
    """
577 578 579
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
580 581


582
def ones_like(x, dtype=None, name=None):
583
    """
C
Chen Long 已提交
584
    Returns a Tensor filled with the value 1, with the same shape and
585
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
586 587

    Args:
588 589
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
590
        dtype(str|np.dtype, optional): The data type of the
591 592 593
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
594
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
595

596
    Returns:
597 598 599
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

600 601 602
    Examples:
        .. code-block:: python

603
            import paddle
604

605
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
606 607
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
608

609 610
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
611 612


613
def zeros(shape, dtype=None, name=None):
614
    """
C
Chen Long 已提交
615
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
616 617

    Args:
618
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
619
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
620 621 622
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
623 624

    Returns:
625
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
626 627 628 629 630

    Examples:
        .. code-block:: python

          import paddle
631
          
632 633 634 635 636 637 638 639 640
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
641
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
642
          data3 = paddle.zeros(shape=shape, dtype='int32') 
643 644
          # [[0 0]
          #  [0 0]]
645
    """
646 647 648
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
649 650


651
def zeros_like(x, dtype=None, name=None):
652
    """
653
    Returns a Tensor filled with the value 0, with the same shape and
654
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
655 656

    Args:
657 658
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
659
        dtype(str|np.dtype, optional): The data type of the
660 661 662
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
663
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
664 665

    Returns:
666 667
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
668

669

670 671 672
    Examples:
        .. code-block:: python

673
            import paddle
674

Z
zhupengyang 已提交
675
            x = paddle.to_tensor([1, 2, 3])
676 677
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
678

679 680
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
681 682


683
def eye(num_rows, num_columns=None, dtype=None, name=None):
684
    """
685
    
686
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
687

688
    Args:
689 690
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
691
            If None, default: num_rows.
W
wangchaochaohu 已提交
692
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
693 694
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
695
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
696

697
    Returns:
698
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
699

700 701
    Examples:
        .. code-block:: python
702
          
703
          import paddle
704

705
          data = paddle.eye(3, dtype='int32')
706 707 708
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
709
          data = paddle.eye(2, 3, dtype='int32')
710 711
          # [[1 0 0]
          #  [0 1 0]]
712 713
    """

714 715 716 717 718 719 720 721
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

722 723
    if dtype is None:
        dtype = 'float32'
724 725 726
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
727
        _check_attr(num_columns, "num_columns")
728 729 730 731
    else:
        num_columns = num_rows

    if _non_static_mode():
732
        if in_dygraph_mode():
733 734
            out = _C_ops.eye(num_rows, num_columns, dtype,
                             _current_expected_place())
735
        elif _in_legacy_dygraph():
736 737
            out = _legacy_C_ops.eye('dtype', dtype, 'num_rows', num_rows,
                                    'num_columns', num_columns)
738 739 740 741 742 743

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        out = helper.create_variable_for_type_inference(dtype=dtype)
744 745 746 747 748 749 750 751 752
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
753 754 755

    out.stop_gradient = True
    return out
756 757


758
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
759
    """
S
swtkiwi 已提交
760

761
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
762 763
    
    Args:
764
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
765 766
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
767
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
768 769
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
770
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
771
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
772 773
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
wangchaochaohu 已提交
774
    
775
    Returns:
776
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
777

W
wangchaochaohu 已提交
778 779 780
    Examples:
        .. code-block:: python

781
            import paddle
W
wangchaochaohu 已提交
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
            data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
            #[[0]
            # [0]]

            # attr shape is a list which contains Tensor.
            positive_2 = paddle.full([1], 2, "int32")
            data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
            # [[1.5 1.5]]

            # attr shape is a Tensor.
            shape = paddle.full([2], 2, "int32")
            data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
            # [[True True] 
            #  [True True]]
            
            # attr fill_value is a Tensor.
            val = paddle.full([1], 2.0, "float32")
            data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
            # [[2.0] 
            #  [2.0]]
W
wangchaochaohu 已提交
803 804 805 806 807
    """

    if dtype is None:
        dtype = 'float32'

808
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
809 810


811
def arange(start=0, end=None, step=1, dtype=None, name=None):
812
    """
813
    Returns a 1-D Tensor with spaced values within a given interval.
814

815 816
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
817

818 819
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
820 821

    Parameters:
822 823 824 825 826 827 828 829 830 831 832 833
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
834
        dtype(str|np.dtype, optional): The data type of the
835 836
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
837
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
838

839 840
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
841 842
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
843

Z
zhupengyang 已提交
844
    Examples:
845 846
        .. code-block:: python

Z
zhupengyang 已提交
847
            import paddle
848

Z
zhupengyang 已提交
849 850
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
851

Z
zhupengyang 已提交
852 853
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
854

Z
zhupengyang 已提交
855 856 857
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
858

Z
zhupengyang 已提交
859 860 861
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
862 863 864 865 866 867 868
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
869

870 871 872 873 874
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
897
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
898 899

    if _in_legacy_dygraph():
900
        out = _legacy_C_ops.range(start, end, step)
901 902 903 904 905 906 907
        out.stop_gradient = True
        return out

    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
908 909 910 911 912 913 914
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
915
    out.stop_gradient = True
916 917
    if out_shape is not None:
        out.desc.set_shape(out_shape)
918
    return out
W
WuHaobo 已提交
919 920 921 922 923 924


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
925
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
926 927

    assert x is not None, 'x cannot be None in {}'.format(op_type)
928 929
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
W
WuHaobo 已提交
930
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
931
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
932 933 934 935 936 937 938 939
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
940 941 942
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
W
WuHaobo 已提交
943 944 945 946 947 948 949 950

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
951 952
        outputs={"Out": out},
    )
W
WuHaobo 已提交
953 954 955 956

    return out


Y
yaoxuefeng 已提交
957
def tril(x, diagonal=0, name=None):
958
    r"""
959
    Returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
960
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
961 962 963 964
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
965
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
966
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
967 968 969 970 971 972 973
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
974
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
975 976

    Returns:
Y
yaoxuefeng 已提交
977
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
978
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
979 980 981 982

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
983
            import paddle
W
WuHaobo 已提交
984

985 986 987 988 989
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
990

991 992 993 994 995
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
996 997

            # example 2, positive diagonal value
998 999 1000 1001 1002
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1003 1004

            # example 3, negative diagonal value
1005 1006 1007 1008 1009
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1010
    """
F
From00 已提交
1011
    if in_dygraph_mode():
1012
        return _C_ops.tril_triu(x, diagonal, True)
F
From00 已提交
1013 1014

    if _in_legacy_dygraph():
1015
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1016
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
1017 1018 1019 1020

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
1021
def triu(x, diagonal=0, name=None):
1022
    r"""
1023
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1024
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1025 1026 1027 1028
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1029
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1030 1031 1032 1033 1034 1035 1036 1037
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1038
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1039 1040

    Returns:
Y
yaoxuefeng 已提交
1041
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1042
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1043 1044 1045 1046 1047

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
1048
            import paddle
W
WuHaobo 已提交
1049 1050 1051 1052 1053

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
1054

W
WuHaobo 已提交
1055 1056

            # example 1, default diagonal
1057
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
1058
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
1059 1060 1061 1062 1063
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1064
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
1065 1066 1067 1068 1069
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1070
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
1071 1072 1073 1074 1075
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
F
From00 已提交
1076
    if in_dygraph_mode():
1077
        return _C_ops.tril_triu(x, diagonal, False)
F
From00 已提交
1078 1079

    if _in_legacy_dygraph():
1080
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1081
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1082 1083

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1084 1085


1086
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1087
    """
C
Chen Long 已提交
1088
    Takes a list of N tensors as input *args, each of which is 1-dimensional vector, and creates N-dimensional grids.
S
suytingwan 已提交
1089 1090
    
    Args:
Y
yaoxuefeng 已提交
1091
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
1092
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
C
Chen Long 已提交
1093
        **kwargs (optional): Currently, only accept name in **kwargs 
1094
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1095 1096 1097
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
1098
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1099 1100 1101 1102 1103 1104

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1105 1106 1107 1108
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1109

Y
yaoxuefeng 已提交
1110 1111
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1112 1113 1114 1115 1116 1117

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1118 1119
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1120
    if _in_legacy_dygraph():
1121
        num = len(args)
1122
        out = _legacy_C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1123
        return out
Y
YuanRisheng 已提交
1124
    if in_dygraph_mode():
1125
        return _C_ops.meshgrid(list(args))
S
suytingwan 已提交
1126

1127
    name = kwargs.get("name", None)
S
suytingwan 已提交
1128 1129
    helper = LayerHelper('meshgrid', **locals())

1130 1131
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1132

1133
    for id, input_ in enumerate(args):
S
suytingwan 已提交
1134 1135 1136 1137
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

1138
    num = len(args)
S
suytingwan 已提交
1139
    out = [
1140
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1141 1142
        for i in range(num)
    ]
1143 1144 1145
    helper.append_op(type='meshgrid',
                     inputs={'X': list(args)},
                     outputs={'Out': out})
S
suytingwan 已提交
1146 1147

    return out
1148 1149


L
Li Min 已提交
1150 1151
def diagflat(x, offset=0, name=None):
    """
1152
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1168
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1169 1170 1171 1172 1173 1174

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1175
            :name: code-example-1
L
Li Min 已提交
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
            print(y.numpy())
            # [[1 0 0]
            #  [0 2 0]
            #  [0 0 3]]

            y = paddle.diagflat(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0]
            #  [0 0 2 0]
            #  [0 0 0 3]
            #  [0 0 0 0]]

            y = paddle.diagflat(x, offset=-1)
            print(y.numpy())
            # [[0 0 0 0]
            #  [1 0 0 0]
            #  [0 2 0 0]
            #  [0 0 3 0]]
L
Li Min 已提交
1199 1200

        .. code-block:: python
1201
            :name: code-example-2
L
Li Min 已提交
1202

1203
            import paddle
L
Li Min 已提交
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
            print(y.numpy())
            # [[1 0 0 0]
            #  [0 2 0 0]
            #  [0 0 3 0]
            #  [0 0 0 4]]

            y = paddle.diagflat(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0 0]
            #  [0 0 2 0 0]
            #  [0 0 0 3 0]
            #  [0 0 0 0 4]
            #  [0 0 0 0 0]]

            y = paddle.diagflat(x, offset=-1)
            print(y.numpy())
            # [[0 0 0 0 0]
            #  [1 0 0 0 0]
            #  [0 2 0 0 0]
            #  [0 0 3 0 0]
            #  [0 0 0 4 0]]
L
Li Min 已提交
1228 1229
    """
    padding_value = 0
1230 1231
    if in_dygraph_mode():
        if len(x.shape) == 1:
1232
            return _C_ops.diag(x, offset, padding_value)
1233
        else:
1234 1235
            y = _C_ops.flatten(x, 0, -1)
            return _C_ops.diag(y, offset, padding_value)
1236 1237

    if _in_legacy_dygraph():
L
Li Min 已提交
1238
        if len(x.shape) == 1:
1239 1240
            return _legacy_C_ops.diag_v2(x, "offset", offset, "padding_value",
                                         padding_value)
L
Li Min 已提交
1241
        else:
1242 1243 1244 1245
            y, _ = _legacy_C_ops.flatten_contiguous_range(
                x, "start_axis", 0, "stop_axis", -1)
            return _legacy_C_ops.diag_v2(y, "offset", offset, "padding_value",
                                         padding_value)
L
Li Min 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

    check_type(x, 'x', (Variable), 'diagflat')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diagflat')
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
1258 1259 1260 1261 1262 1263 1264
        helper.append_op(type='diag_v2',
                         inputs={'X': x},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1265
    else:
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
        helper.append_op(type='flatten_contiguous_range',
                         inputs={'X': x},
                         outputs={
                             'Out': out1,
                             'XShape': out1_shape
                         },
                         attrs={
                             'start_axis': 0,
                             'stop_axis': -1
                         })
L
Li Min 已提交
1276 1277
        out1.stop_gradient = True

1278 1279 1280 1281 1282 1283 1284
        helper.append_op(type='diag_v2',
                         inputs={'X': out1},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1285 1286 1287 1288
    out2.stop_gradient = True
    return out2


1289 1290
def diag(x, offset=0, padding_value=0, name=None):
    """
1291
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1307 1308
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
        
1309 1310 1311 1312 1313
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1314
            :name: code-example-1
1315

1316
            import paddle
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
            print(y.numpy())
            # [[1 0 0]
            #  [0 2 0]
            #  [0 0 3]]

            y = paddle.diag(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0]
            #  [0 0 2 0]
            #  [0 0 0 3]
            #  [0 0 0 0]]

            y = paddle.diag(x, padding_value=6)
            print(y.numpy())
            # [[1 6 6]
            #  [6 2 6]
            #  [6 6 3]]
1338 1339

        .. code-block:: python
1340
            :name: code-example-2
1341

1342
            import paddle
1343

1344 1345 1346 1347 1348
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
            print(y.numpy())
            # [1 5]
1349

1350 1351 1352
            y = paddle.diag(x, offset=1)
            print(y.numpy())
            # [2 6]
1353

1354 1355 1356
            y = paddle.diag(x, offset=-1)
            print(y.numpy())
            # [4]
1357
    """
J
Jiabin Yang 已提交
1358
    if in_dygraph_mode():
1359
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1360 1361
    else:
        if _in_legacy_dygraph():
1362 1363
            return _legacy_C_ops.diag_v2(x, "offset", offset, "padding_value",
                                         padding_value)
J
Jiabin Yang 已提交
1364 1365 1366 1367 1368 1369 1370 1371
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
            check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                        'diag_v2')
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
1372 1373
                    "The dimension of input x must be either 1 or 2, but received {}"
                    .format(len(x.shape)))
1374

J
Jiabin Yang 已提交
1375
            helper = LayerHelper("diag_v2", **locals())
1376

J
Jiabin Yang 已提交
1377
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1378

1379 1380 1381 1382 1383 1384 1385
            helper.append_op(type='diag_v2',
                             inputs={'X': x},
                             outputs={'Out': out},
                             attrs={
                                 'offset': offset,
                                 'padding_value': padding_value
                             })
1386

J
Jiabin Yang 已提交
1387 1388
            out.stop_gradient = True
            return out
1389 1390 1391 1392


def empty(shape, dtype=None, name=None):
    """
1393
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1404
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1405 1406 1407 1408 1409 1410 1411
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1412
            import paddle
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
            paddle.set_device("cpu")  # and use cpu device

            # example 1: argument ``shape`` is a list which doesn't contain Tensor.
            data1 = paddle.empty(shape=[2, 3], dtype='float32')
            print(data1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.00000000, 0.        , 0.00000000],
            #         [0.        , 0.29652897, 0.09356152]])       # uninitialized

            # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
            shape_data = paddle.to_tensor([2, 3]).astype('int32')
            data2 = paddle.empty(shape=shape_data, dtype='float32')
            print(data2)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.50543123, -0.09872390, -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized

            # example 3: argument ``shape`` is a list which contains Tensor.
            dim2 = paddle.to_tensor([3]).astype('int32')
            data3 = paddle.empty(shape=[2, dim2], dtype='float32')
            print(data3)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.00000000,  0.        , -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized
1438 1439 1440 1441 1442 1443 1444
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1445 1446
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
1447 1448
        out = _C_ops.empty(shape, convert_np_dtype_to_dtype_(dtype),
                           _current_expected_place())
1449 1450 1451 1452
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1453
        shape = utils.convert_shape_to_list(shape)
1454 1455
        out = _legacy_C_ops.empty('shape', shape, 'dtype',
                                  convert_np_dtype_to_dtype_(dtype))
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
1471 1472 1473 1474
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty')
1475 1476 1477

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
1478 1479 1480 1481 1482
    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1483 1484
    out.stop_gradient = True
    return out
1485 1486 1487 1488


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1489
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1490 1491 1492 1493 1494 1495 1496
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
1497
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1519
    if in_dygraph_mode():
1520 1521
        out = _C_ops.empty(x.shape, convert_np_dtype_to_dtype_(dtype),
                           _current_expected_place())
1522 1523 1524 1525
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1526 1527
        out = _legacy_C_ops.empty('shape', x.shape, 'dtype',
                                  convert_np_dtype_to_dtype_(dtype))
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty_like')

    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1554 1555
    out.stop_gradient = True
    return out
1556 1557 1558 1559


def assign(x, output=None):
    """
1560

1561
    Copy value of the :attr:`x` to the :attr:`output`.
1562 1563
 
    Parameters:
1564 1565
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1566
            data limitation.
1567
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1568 1569
 
    Returns:
1570
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1571 1572 1573
 
    Examples:
        .. code-block:: python
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1585
    """
1586 1587
    input = x
    helper = LayerHelper('assign', **locals())
1588 1589
    check_type(input, 'input',
               (Variable, np.ndarray, list, tuple, float, int, bool), 'assign')
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1601
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1602
        if in_dygraph_mode():
1603
            if output is None:
1604
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1605
            else:
1606
                _C_ops.assign_out_(input, output)
Z
zyfncg 已提交
1607 1608 1609
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1610
            _legacy_C_ops.assign(input, output)
1611 1612 1613 1614 1615 1616 1617 1618
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1619 1620 1621
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
1622
    elif isinstance(input, np.ndarray):
1623
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1624
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1625
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
1626 1627 1628 1629
            if not all([
                    x.shape == (1, ) for x in input
                    if isinstance(x, (Variable, core.eager.Tensor))
            ]):
1630 1631 1632 1633 1634
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1635
                if not isinstance(x, (Variable, core.eager.Tensor)):
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
            """ may be this form [[Var], [Var], [3], [4]], we reject them.
            """
1647
            raise TypeError(
1648
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1649
            )
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1680 1681 1682
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
1683 1684
            _C_ops.assign_value_(output, list(input.shape), dtype, values,
                                 _current_expected_place())
1685 1686 1687
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1688 1689
            _legacy_C_ops.assign_value(output, 'shape', list(input.shape),
                                       'dtype', dtype, value_name, values)
1690
        else:
1691 1692 1693
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1694 1695 1696 1697 1698 1699 1700
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
1701

Z
zyfncg 已提交
1702
    if is_inplace and _in_legacy_dygraph():
1703 1704 1705
        output._bump_inplace_version()

    return output
1706 1707


1708 1709 1710 1711 1712 1713 1714 1715
def clone(x, name=None):
    """
    Returns a copy of input Tensor. It will always have a Tensor copy. 
    
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1716
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1717

1718 1719
    Returns: 
        Tensor, A Tensor copied from ``input``.
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


1738
#NOTE(zhiqiu): not public
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
1752
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
        ], 'memcpy', '(When the type of input in memcpy is Variable.)')
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
1791 1792 1793 1794
    helper.append_op(type='memcpy',
                     inputs={'X': [input]},
                     outputs={'Out': [output]},
                     attrs=attrs)
1795
    return output
F
Feiyu Chan 已提交
1796 1797 1798 1799 1800 1801 1802 1803


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
1804
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
            print(z.numpy())

            # [[0.+0.j 0.+1.j 0.+2.j]
            #  [1.+0.j 1.+1.j 1.+2.j]]
    """
1824
    if in_dygraph_mode():
1825
        return _C_ops.complex(real, imag)
1826

Z
zhiboniu 已提交
1827
    if paddle.in_dynamic_mode():
1828
        return paddle._legacy_C_ops.complex(real, imag)
F
Feiyu Chan 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(real.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904


def tril_indices(row, col, offset=0, dtype='int64'):
    """
    Return the indices of the lower triangular part of the 2-D matrix 
    whose row and col is knowed.Indices are ordered based on row and then columns. 
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
    
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and below the main diagonal are retained.  
            - If offset > 0, include just as many diagonals above the main diagonal.  
            - If offset < 0, excludes just as many diagonals below the main diagonal.  
 
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3], 
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3], 
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
1905 1906
        out = _C_ops.tril_indices(row, col, offset, dtype,
                                  _current_expected_place())
1907 1908 1909
        return out

    if _in_legacy_dygraph():
1910 1911
        out = _legacy_C_ops.tril_indices('rows', row, 'cols', col, 'offset',
                                         offset, "dtype", dtype)
1912 1913 1914 1915 1916 1917 1918
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

1919 1920 1921 1922 1923 1924 1925 1926 1927
        helper.append_op(type='tril_indices',
                         inputs={},
                         outputs={'out': [out]},
                         attrs={
                             'rows': row,
                             'cols': col,
                             'offset': offset,
                             'dtype': dtype
                         })
1928
    return out
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
1990 1991
        out = _C_ops.triu_indices(row, col, offset, dtype,
                                  _current_expected_place())
1992 1993 1994
        return out

    if _in_legacy_dygraph():
1995 1996
        out = _legacy_C_ops.triu_indices('row', row, 'col', col, 'offset',
                                         offset, "dtype", dtype)
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
        return out

    else:
        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

        helper.append_op(type='triu_indices',
                         inputs={},
                         outputs={'out': [out]},
                         attrs={
                             'row': row,
                             'col': col,
                             'offset': offset,
                             'dtype': dtype
                         })
    return out