conv_mkldnn_op.cc 49.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15 16
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
17 18
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
19
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
20
#include <unordered_map>
21 22 23 24

namespace paddle {
namespace operators {

25 26 27 28 29 30 31 32
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

33 34 35 36 37 38 39 40 41 42
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

60
  size_t GetDstMemorySize() const {
61 62
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
63 64 65 66 67
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
68

69
  size_t GetDiffWeightsMemorySize() const {
70 71 72
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

73
  size_t GetDiffSourceMemorySize() const {
74 75 76
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

77 78
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
79
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
80 81 82 83 84 85 86 87
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
88
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
104
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
105 106 107 108 109 110 111 112
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
113
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
114 115 116 117 118 119
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

X
xiaolil1 已提交
120

Z
Zhang, Guoming 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
X
xiaolil1 已提交
134
  
135 136 137 138 139 140
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

141 142 143 144 145 146 147
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
148
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
149
    auto src_pd = conv_pd_->src_primitive_desc();
150
    auto user_pd = user_memory_p->get_primitive_desc();
151 152 153 154 155 156
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
157
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
158 159 160 161
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
162 163 164 165
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
166 167
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
168 169
  }

170 171
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
172
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
173
      bool is_persistent = false,
X
xiaolil1 已提交
174 175 176
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
177 178 179
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
180 181
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
182 183
  }

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

275 276
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
277 278 279 280 281 282
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
283 284 285 286 287 288 289
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
290 291 292 293
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
294 295
};

296
template <typename T>
297
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
298 299
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
K
Krzysztof Binias 已提交
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                  "It must use CPUPlace.");

    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
332

333 334 335 336 337 338
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    int groups = ctx.Attr<int>("groups");
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const float* filter_data = filter->data<float>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
365

366 367 368 369 370
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";
371

372
    std::vector<primitive> pipeline;
373

374 375
    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
    if(!is_INT8){
376 377 378 379
      auto user_src_md = platform::MKLDNNMemDesc(
          {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<T>(),
380
          (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
381 382 383 384 385 386 387 388 389 390 391 392 393 394

      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
395 396
                               // Currently used whenever bias is != nullptr.

397 398 399 400 401
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      // create a conv primitive descriptor and save it for usage in backward
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416
      if (bias) {
        bias_tz = paddle::framework::vectorize2int(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(
            bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
        conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                       strides, paddings, mkldnn_engine,
                                       fuse_relu, fuse_residual_conn);
      } else {
        conv_pd =
            ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                 mkldnn_engine, fuse_relu, fuse_residual_conn);
      }
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);
X
xiaolil1 已提交
417

418
      ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
419

420 421 422 423
      // create mkldnn memory from input tensors (data/weights)
      auto user_src_memory_p =
          handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler.AcquireWeightsMemory(
424
          user_weights_md, to_void_cast<float>(filter_data));
425

426 427 428 429 430
      // create reorder primitive if the input format is not the preferred one
      auto src_memory_p =
          handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
      auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test);
X
xiaolil1 已提交
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
      std::shared_ptr<mkldnn::memory> dst_memory_p;

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_param_data = residual_param->data<T>();

        PADDLE_ENFORCE(
            residual_param_data != nullptr,
            "Provide data if you want MKLDNN conv+elementwise_add fusion");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");

        if (residual_param->format() != handler.GetDstFormat()) {
          auto output_data =
447
              output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler.GetDstMemorySize());
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());
          auto residual_data_type =
              paddle::framework::ToMKLDNNDataType(residual_param->type());

          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_data_type, residual_param->format());
          auto user_residual_memory_p = handler.AcquireResidualDataMemory(
              user_residual_md, to_void_cast<T>(residual_param_data));

          dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
              user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
        } else {
          output->ShareDataWith(*residual_param);
          auto output_data = output->mutable_data<T>(ctx.GetPlace());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
465
        }
466 467
      } else {
        auto output_data =
468
            output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler.GetDstMemorySize());
469 470 471
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
      }
X
xiaolil1 已提交
472

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
      // create convolution op primitive
      std::shared_ptr<mkldnn::convolution_forward> conv_p;
      if (bias) {
        const T* bias_data = bias->data<T>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
        auto user_bias_memory_p =
            handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

        auto bias_memory_p =
            handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            dst_memory_p);
      }
490

491 492 493
      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
      stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
494

495 496 497
      output->set_layout(DataLayout::kMKLDNN);
      output->set_format(GetMKLDNNFormat(*dst_memory_p));

498
    } else{
X
xiaolil1 已提交
499 500 501
      bool need_s8_to_u8 = false;
      if (fuse_residual_conn && fuse_relu) {
        need_s8_to_u8 = true;
502
      }
X
xiaolil1 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
      std::shared_ptr<mkldnn::convolution_forward> conv_p;
      std::shared_ptr<mkldnn::memory> src_memory_p;
      std::shared_ptr<mkldnn::memory> dst_memory_p;
      std::vector<primitive> pipeline;
      
      auto prim_key = key + "@conv_p";
      auto dst_key = key + "@dst_mem_p";
      auto src_key = key + "@src_mem_p";
      conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(dev_ctx.GetBlob(prim_key));
      src_memory_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      dst_memory_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      
      if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
      
      if(conv_p == nullptr){
        auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
        auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
        auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
        auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;

        bool is_multi_channel = (scale_weights->memory_size() > 1) ? true : false;

        static std::unordered_map<std::string, std::vector<float>> scale_map;

        bool scale_reuse = true;
        auto scale_in_key = key + "@scale_in";
        auto scale_weights_key = key + "@scale_weights";
        auto scale_out_key = key + "@scale_out";
        auto output_shift_scale_key = key + "@output_shift_scale";
        auto sum_scale_key = key + "@sum_scale";
        auto scale_in_eltwise_key = key + "@scale_in_eltwise";
        std::vector<float> scale_in_data;
        std::vector<float> scale_out_data;
        std::vector<float> scale_weights_data;
        std::vector<float> scale_in_eltwise_data;
        std::vector<float> output_shift_scale;
        std::vector<float> sum_scale = {1.0f};
        std::vector<float> none_scale = {0};

        if (GetScaleMap(scale_map, scale_in_key) == none_scale){
          scale_reuse = false;
X
xiaolil1 已提交
546 547
        }

X
xiaolil1 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        if(!scale_reuse){
          int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
          scale_in_data = {*(scale_in->data<float>())};
          scale_weights_data.resize(count);
          #pragma omp parallel for if (count > 1)
          for(int i=0; i<count; i++){
            scale_weights_data[i] =*(scale_weights->data<float>() + i);
          }
          scale_out_data = {*(scale_out->data<float>())};
          output_shift_scale.resize(count);
          #pragma omp parallel for if (count > 1)
          for(int i=0; i<count; i++){
            if(scale_weights_data[i] == 0.0)
              output_shift_scale[i] = scale_out_data[0];
            else 
              output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
          }
          if(fuse_residual_conn){
            scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
            sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
            SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
          }

          //scale reuse
          SetScaleMap(scale_map, scale_in_key, scale_in_data);
          SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
          SetScaleMap(scale_map, scale_out_key, scale_out_data);
          SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
          SetScaleMap(scale_map, sum_scale_key, sum_scale);
        } else{
          scale_in_data = GetScaleMap(scale_map, scale_in_key);
          scale_out_data = GetScaleMap(scale_map, scale_out_key);
          scale_weights_data = GetScaleMap(scale_map, scale_weights_key);
          if(fuse_residual_conn){
            scale_in_eltwise_data = GetScaleMap(scale_map, scale_in_eltwise_key);
          }
          output_shift_scale = GetScaleMap(scale_map, output_shift_scale_key);
          sum_scale = GetScaleMap(scale_map, sum_scale_key); 
586
        }
587

X
xiaolil1 已提交
588
        std::vector<primitive> pipeline;
589

X
xiaolil1 已提交
590 591 592 593 594
        auto user_src_md = platform::MKLDNNMemDesc(
                {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format());
        auto user_weights_md = platform::MKLDNNMemDesc(
                {weights_tz}, platform::MKLDNNGetDataType<float>(),
                (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
595
  
X
xiaolil1 已提交
596 597 598 599 600 601 602
        /* create memory descriptor for convolution without specified format
         * ('any') which lets a primitive (convolution in this case) choose
         * the memory format preferred for best performance
        */
        std::string data_format = ctx.Attr<std::string>("data_format");
        auto chosen_memory_format = 
            platform::data_format_to_memory_format(data_format);
603
  
X
xiaolil1 已提交
604
        auto bias_tz = paddle::framework::vectorize2int(bias->dims());
605

X
xiaolil1 已提交
606 607 608 609
        auto src_md = platform::MKLDNNMemDesc(
            src_tz, memory::data_type::u8, chosen_memory_format);
        auto weights_md = platform::MKLDNNMemDesc(
            weights_tz, memory::data_type::s8, chosen_memory_format);
610

X
xiaolil1 已提交
611 612 613
        auto dst_dt = fuse_relu?
            paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char)))
            : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
614

X
xiaolil1 已提交
615 616 617 618 619
        if(fuse_residual_conn){
          auto residual = ctx.Input<Tensor>("ResidualData");
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
          if(dst_dt != residual_dt)
            dst_dt = residual_dt;
620
        }
X
xiaolil1 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
        auto dst_md = platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);

        // create a conv primitive descriptor and save it for usage in backward
        std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;

        if (bias) {
          auto bias_md = platform::MKLDNNMemDesc(
              bias_tz, memory::data_type::s32, memory::format::x);
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
                                         fuse_relu, fuse_residual_conn,
                                         output_shift_scale, sum_scale[0], is_test);
        } else {
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                   mkldnn_engine, fuse_relu, fuse_residual_conn,
                                   output_shift_scale, sum_scale[0], is_test);
        }
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx.SetBlob(key_conv_pd, conv_pd);

        ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);

        // create mkldnn memory from input tensors (data/weights)
        auto user_src_memory_p =
            handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
        auto user_weights_memory_p = handler.AcquireWeightsMemory(
            user_weights_md, to_void_cast<float>(filter_data));

        // create reorder primitive if the input format is not the preferred one
        src_memory_p =
            handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
            
        std::shared_ptr<mkldnn::memory> weights_memory_p;
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
           weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
           user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);

        if(fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                "Output and elementwise parameter need to have the "
                "same dimension sizes");
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
          PADDLE_ENFORCE_EQ(residual_param->format(), handler.GetDstFormat(),
                "Conv input dimension and filter dimension should be the same.");
          output->ShareDataWith(*residual_param);
          if(residual_dt == mkldnn::memory::data_type::u8){
            uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
            dst_memory_p =
                handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
            int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
            dst_memory_p =
                handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
        } else {
          if(fuse_relu){
            uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler.GetDstMemorySize());
            dst_memory_p =
                handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
            int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler.GetDstMemorySize());
            dst_memory_p =
                handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
X
xiaolil1 已提交
687
        }
688

X
xiaolil1 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        // create convolution op primitive
        std::vector<float> scale_bias_data;
        auto scale_bias_key = key + "@scale_bias";
        if (bias) {
          const float* bias_data = bias->data<float>();
          auto user_bias_md = platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
          auto user_bias_memory_p =
              handler.AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
          std::shared_ptr<mkldnn::memory>  bias_memory_p;
          int mask_reorder = is_multi_channel? 1<<0 : 1;
          if(!scale_reuse){
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
            scale_bias_data.resize(count);
            #pragma omp parallel for if (count > 1)
            for(int i=0; i<count; i++){
              scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
            }
            SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
          } else{
            scale_bias_data = GetScaleMap(scale_map, scale_bias_key);
710
          }
X
xiaolil1 已提交
711 712 713 714 715 716 717
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
          conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                              bias_memory_p, dst_memory_p);
        } else {
          conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                              dst_memory_p);
718
        }
719

X
xiaolil1 已提交
720

X
xiaolil1 已提交
721 722 723
          // push primitive to stream and wait until it's executed
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();
724

X
xiaolil1 已提交
725 726 727
        if(need_s8_to_u8){
          output->mutable_data<uint8_t>(ctx.GetPlace());
        }
728

X
xiaolil1 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741
        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
      } else {
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();
      
        if (need_s8_to_u8) {
          output->mutable_data<uint8_t>(ctx.GetPlace());
        }
      
        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
      }
742
    }
743
  }
744

745
 private:
X
xiaolil1 已提交
746

X
xiaolil1 已提交
747 748
    void SetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
                       const std::string& name, std::vector<float> scale_data) const {
X
xiaolil1 已提交
749 750
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
751
        scale_map[name] = scale_data;  // create new blob
X
xiaolil1 已提交
752
      } else {
X
xiaolil1 已提交
753
        (*it).second = scale_data;  // set data to existing blob
X
xiaolil1 已提交
754 755 756 757
      }
      return;
    }

X
xiaolil1 已提交
758
    std::vector<float> GetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
X
xiaolil1 已提交
759 760 761 762 763
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
764
      return {0};
765 766
    }

Z
Zhang, Guoming 已提交
767
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
768
                          const std::vector<float> output_shift_scale, float sum_scale) const {
769 770
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
771
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
772 773 774 775
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
776
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
777
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
778
      if (fuse_residual_conn) {
779 780 781 782 783
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
784
        constexpr float placeholder = 1.0f; //beta
785 786 787 788 789
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
790
    }
791

X
xiaolil1 已提交
792
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
793 794 795 796

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
797
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
798 799
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
800
      if (fuse_residual_conn) {
801 802 803 804 805 806 807 808 809 810 811 812 813
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
814
    }
M
Michal Gallus 已提交
815

Z
Zhang, Guoming 已提交
816
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
817 818 819 820
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
821
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
822
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
823 824 825
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
826 827
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

828
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
829
          propagation, mkldnn::convolution_direct, src, weights,
830 831 832 833
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
834
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
835 836 837 838 839 840

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
841
    }
M
Michal Gallus 已提交
842

843
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
844 845 846 847
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
848
                         const bool fuse_residual_conn, bool is_test=false) const{
849 850
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
851
 
852
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
853
 
854
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
855
          propagation, mkldnn::convolution_direct, src, weights,
856 857 858
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
859
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
860 861 862 863 864 865 866
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
867 868

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
869 870 871 872 873
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
874
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
875
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
876 877 878
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
879 880
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

881
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
882
          propagation, mkldnn::convolution_direct, src, weights,
883 884 885 886
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
887
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
888 889 890 891 892 893 894 895 896 897 898 899 900 901

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
902
                         const bool fuse_residual_conn, bool is_test=false) const{
903 904 905
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

906
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
907

908
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
909
          propagation, mkldnn::convolution_direct, src, weights,
910 911 912
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
913
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
914 915 916 917 918 919 920

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
921 922 923
};

template <typename T>
924
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
925 926 927 928 929
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

930 931
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
932 933 934 935 936 937 938 939 940 941
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

942 943 944 945 946 947 948 949 950 951 952 953 954
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

955 956 957 958
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

959 960 961 962
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
963 964
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
965 966 967 968 969 970 971 972 973 974 975 976

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

977
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
978
    // as well as attributes of primitive to be created
979 980 981 982 983 984
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
985
    std::vector<primitive> pipeline;
986

987 988 989 990 991 992 993
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
994 995 996 997 998

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
999 1000 1001 1002
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

1003
    auto src_md = platform::MKLDNNMemDesc(
1004
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1005
    auto diff_src_md = platform::MKLDNNMemDesc(
1006
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1007
    auto weights_md = platform::MKLDNNMemDesc(
1008
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1009
    auto diff_weights_md = platform::MKLDNNMemDesc(
1010
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1011
    auto diff_dst_md = platform::MKLDNNMemDesc(
1012
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1013

1014
    // Retrieve conv_pd from device context
1015 1016 1017
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1018 1019 1020
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1047 1048
    // create backward conv primitive for weights
    if (filter_grad) {
1049 1050
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1051

1052 1053 1054 1055
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1056
      const size_t size = handler.GetDiffWeightsMemorySize();
Y
Yu Yang 已提交
1057 1058
      filter_grad_data = filter_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
1059

1060 1061 1062 1063 1064 1065 1066 1067 1068
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1069 1070

      filter_grad->set_layout(DataLayout::kMKLDNN);
1071
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1072 1073 1074
    }

    if (input_grad) {
1075 1076 1077 1078 1079 1080 1081
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1082
      const size_t size = handler.GetDiffSourceMemorySize();
Y
Yu Yang 已提交
1083 1084
      input_grad_data = input_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
1085

1086 1087 1088 1089 1090 1091 1092
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1093 1094

      input_grad->set_layout(DataLayout::kMKLDNN);
1095
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1096
    }
1097
    stream(stream::kind::eager).submit(pipeline).wait();
1098 1099 1100 1101 1102 1103 1104 1105 1106
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1107 1108
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1109 1110

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1111
                   ops::ConvMKLDNNGradOpKernel<float>);