conv_mkldnn_op.cc 47.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
18
#include <unordered_map>
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

31 32 33 34 35 36 37 38 39 40
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

58
  size_t GetDstMemorySize() const {
59 60
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
61 62 63 64 65
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
66

67
  size_t GetDiffWeightsMemorySize() const {
68 69 70
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

71
  size_t GetDiffSourceMemorySize() const {
72 73 74
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

75 76
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
77
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
78 79 80 81 82 83 84 85
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
86
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
102
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
103 104 105 106 107 108 109 110
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
111
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
112 113 114 115 116 117
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

X
xiaolil1 已提交
118

Z
Zhang, Guoming 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
X
xiaolil1 已提交
132
  
133 134 135 136 137 138
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

139 140 141 142 143 144 145
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
146
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
147
    auto src_pd = conv_pd_->src_primitive_desc();
148
    auto user_pd = user_memory_p->get_primitive_desc();
149 150 151 152 153 154
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
155
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
156 157 158 159
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
160 161 162 163
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
164 165
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
166 167
  }

168 169
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
170
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
171
      bool is_persistent = false,
X
xiaolil1 已提交
172 173 174
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
175 176 177
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
178 179
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
180 181
  }

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

273 274
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
275 276 277 278 279 280
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
281 282 283 284 285 286 287
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
288 289 290 291
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
292 293
};

294
template <typename T>
295
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
296 297
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
K
Krzysztof Binias 已提交
298

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                  "It must use CPUPlace.");

    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
330

331 332 333 334 335 336
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    int groups = ctx.Attr<int>("groups");
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const float* filter_data = filter->data<float>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
363

364 365 366 367 368
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";
369

370
    std::vector<primitive> pipeline;
371

372 373
    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
    if(!is_INT8){
374 375 376 377
      auto user_src_md = platform::MKLDNNMemDesc(
          {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<T>(),
378
          (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
379 380 381 382 383 384 385 386 387 388 389 390 391 392

      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
393 394
                               // Currently used whenever bias is != nullptr.

395 396 397 398 399
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      // create a conv primitive descriptor and save it for usage in backward
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
400

401 402 403 404 405 406 407 408 409 410 411 412 413 414
      if (bias) {
        bias_tz = paddle::framework::vectorize2int(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(
            bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
        conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                       strides, paddings, mkldnn_engine,
                                       fuse_relu, fuse_residual_conn);
      } else {
        conv_pd =
            ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                 mkldnn_engine, fuse_relu, fuse_residual_conn);
      }
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);
X
xiaolil1 已提交
415

416
      ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
417

418 419 420 421
      // create mkldnn memory from input tensors (data/weights)
      auto user_src_memory_p =
          handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler.AcquireWeightsMemory(
422
          user_weights_md, to_void_cast<float>(filter_data));
423

424 425 426 427 428
      // create reorder primitive if the input format is not the preferred one
      auto src_memory_p =
          handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
      auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test);
X
xiaolil1 已提交
429

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
      std::shared_ptr<mkldnn::memory> dst_memory_p;

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_param_data = residual_param->data<T>();

        PADDLE_ENFORCE(
            residual_param_data != nullptr,
            "Provide data if you want MKLDNN conv+elementwise_add fusion");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");

        if (residual_param->format() != handler.GetDstFormat()) {
          auto output_data =
              output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());
          auto residual_data_type =
              paddle::framework::ToMKLDNNDataType(residual_param->type());

          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_data_type, residual_param->format());
          auto user_residual_memory_p = handler.AcquireResidualDataMemory(
              user_residual_md, to_void_cast<T>(residual_param_data));

          dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
              user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
        } else {
          output->ShareDataWith(*residual_param);
          auto output_data = output->mutable_data<T>(ctx.GetPlace());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
463
        }
464 465 466 467 468 469
      } else {
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
      }
X
xiaolil1 已提交
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
      // create convolution op primitive
      std::shared_ptr<mkldnn::convolution_forward> conv_p;
      if (bias) {
        const T* bias_data = bias->data<T>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
        auto user_bias_memory_p =
            handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

        auto bias_memory_p =
            handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            dst_memory_p);
      }
488

489 490 491
      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
      stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
492

493 494 495
      output->set_layout(DataLayout::kMKLDNN);
      output->set_format(GetMKLDNNFormat(*dst_memory_p));

496
    } else{
497 498 499 500 501 502 503 504 505
      auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
      auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
      auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
      auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;

      bool is_multi_channel = (scale_weights->memory_size() > 1) ? true : false;

      static std::unordered_map<std::string, std::vector<float>> scale_map;

506
      bool scale_reuse = true;
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
      auto scale_in_key = key + "@scale_in";
      auto scale_weights_key = key + "@scale_weights";
      auto scale_out_key = key + "@scale_out";
      auto output_shift_scale_key = key + "@output_shift_scale";
      auto sum_scale_key = key + "@sum_scale";
      auto scale_in_eltwise_key = key + "@scale_in_eltwise";
      std::vector<float> scale_in_data;
      std::vector<float> scale_out_data;
      std::vector<float> scale_weights_data;
      std::vector<float> scale_in_eltwise_data;
      std::vector<float> output_shift_scale;
      std::vector<float> sum_scale = {1.0f};
      std::vector<float> none_scale = {0};

      if (GetScaleMap(scale_map, scale_in_key) == none_scale){
522
        scale_reuse = false;
523
      }
524 525

      if(!scale_reuse){
526 527 528 529 530
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
        scale_in_data = {*(scale_in->data<float>())};
        scale_weights_data.resize(count);
        #pragma omp parallel for if (count > 1)
        for(int i=0; i<count; i++){
531
          scale_weights_data[i] =*(scale_weights->data<float>() + i);
X
xiaolil1 已提交
532
        }
533 534 535 536
        scale_out_data = {*(scale_out->data<float>())};
        output_shift_scale.resize(count);
        #pragma omp parallel for if (count > 1)
        for(int i=0; i<count; i++){
537 538 539 540
          if(scale_weights_data[i] == 0.0)
            output_shift_scale[i] = scale_out_data[0];
          else 
            output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
X
xiaolil1 已提交
541
        }
542
        if(fuse_residual_conn){
543 544 545
          scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
          sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
          SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
X
xiaolil1 已提交
546 547
        }

548 549 550 551 552 553 554
        //scale reuse
        SetScaleMap(scale_map, scale_in_key, scale_in_data);
        SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
        SetScaleMap(scale_map, scale_out_key, scale_out_data);
        SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
        SetScaleMap(scale_map, sum_scale_key, sum_scale);
      } else{
555 556 557 558 559 560 561 562
        scale_in_data = GetScaleMap(scale_map, scale_in_key);
        scale_out_data = GetScaleMap(scale_map, scale_out_key);
        scale_weights_data = GetScaleMap(scale_map, scale_weights_key);
        if(fuse_residual_conn){
          scale_in_eltwise_data = GetScaleMap(scale_map, scale_in_eltwise_key);
        }
        output_shift_scale = GetScaleMap(scale_map, output_shift_scale_key);
        sum_scale = GetScaleMap(scale_map, sum_scale_key); 
563 564 565
      }

      std::vector<primitive> pipeline;
566

567 568 569 570 571
      auto user_src_md = platform::MKLDNNMemDesc(
              {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
              {weights_tz}, platform::MKLDNNGetDataType<float>(),
              (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
572
  
573 574 575
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
576
      */
577 578 579
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format = 
          platform::data_format_to_memory_format(data_format);
580
  
581 582 583 584 585
      auto bias_tz = paddle::framework::vectorize2int(bias->dims());

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, memory::data_type::u8, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
586 587 588 589 590 591
          weights_tz, memory::data_type::s8, chosen_memory_format);

      auto dst_dt = fuse_relu?
          paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char)))
          : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));

592
      if(fuse_residual_conn){
593 594 595 596
        auto residual = ctx.Input<Tensor>("ResidualData");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
        if(dst_dt != residual_dt)
          dst_dt = residual_dt;
597 598 599 600
      }
      auto dst_md = platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);

      // create a conv primitive descriptor and save it for usage in backward
601 602
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;

603
      if (bias) {
604 605 606 607 608 609
        auto bias_md = platform::MKLDNNMemDesc(
            bias_tz, memory::data_type::s32, memory::format::x);
        conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                       strides, paddings, mkldnn_engine,
                                       fuse_relu, fuse_residual_conn,
                                       output_shift_scale, sum_scale[0], is_test);
610
      } else {
611 612 613 614
        conv_pd =
            ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                 mkldnn_engine, fuse_relu, fuse_residual_conn,
                                 output_shift_scale, sum_scale[0], is_test);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
      }
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);

      ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);

      // create mkldnn memory from input tensors (data/weights)
      auto user_src_memory_p =
          handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler.AcquireWeightsMemory(
          user_weights_md, to_void_cast<float>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      auto src_memory_p =
          handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
          
      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
633 634
         weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
         user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
635 636 637 638

      std::shared_ptr<mkldnn::memory> dst_memory_p;
      bool need_s8_to_u8 = false;
      if(fuse_residual_conn) {
639 640 641 642 643
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
              "Output and elementwise parameter need to have the "
              "same dimension sizes");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
644 645 646 647 648 649 650 651 652 653 654 655 656
        PADDLE_ENFORCE_EQ(residual_param->format(), handler.GetDstFormat(),
              "Conv input dimension and filter dimension should be the same.");
        output->ShareDataWith(*residual_param);
        if(residual_dt == mkldnn::memory::data_type::u8){
          uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
        } else{
          int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          if(fuse_relu)
            need_s8_to_u8 = true;
657 658 659 660 661 662
        }
      } else {
        if(fuse_relu){
          uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
663
        } else{
664 665 666
          int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
          dst_memory_p =
              handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
X
xiaolil1 已提交
667
        }
668
      }
669

670 671 672 673 674 675 676 677 678 679 680 681
      // create convolution op primitive
      std::shared_ptr<mkldnn::convolution_forward> conv_p;
      std::vector<float> scale_bias_data;
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
        const float* bias_data = bias->data<float>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
        auto user_bias_memory_p =
            handler.AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
        std::shared_ptr<mkldnn::memory>  bias_memory_p;
        int mask_reorder = is_multi_channel? 1<<0 : 1;
682 683 684 685 686 687 688 689
        if(!scale_reuse){
          int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
          scale_bias_data.resize(count);
          #pragma omp parallel for if (count > 1)
          for(int i=0; i<count; i++){
            scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
          }
          SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
690
        } else{
691
          scale_bias_data = GetScaleMap(scale_map, scale_bias_key);
692 693 694 695 696 697 698 699 700
        }
        bias_memory_p =
            handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                            dst_memory_p);
      }
701

X
xiaolil1 已提交
702

703 704 705
        // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
      stream(stream::kind::eager).submit(pipeline).wait();
706

707
      if(need_s8_to_u8){
708
        output->mutable_data<uint8_t>(ctx.GetPlace());
709
      }
710

711 712 713
      output->set_layout(DataLayout::kMKLDNN);
      output->set_format(GetMKLDNNFormat(*dst_memory_p));
    }
714
  }
715

716
 private:
X
xiaolil1 已提交
717

X
xiaolil1 已提交
718 719
    void SetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
                       const std::string& name, std::vector<float> scale_data) const {
X
xiaolil1 已提交
720 721
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
722
        scale_map[name] = scale_data;  // create new blob
X
xiaolil1 已提交
723
      } else {
X
xiaolil1 已提交
724
        (*it).second = scale_data;  // set data to existing blob
X
xiaolil1 已提交
725 726 727 728
      }
      return;
    }

X
xiaolil1 已提交
729
    std::vector<float> GetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
X
xiaolil1 已提交
730 731 732 733 734
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
735
      return {0};
736 737
    }

Z
Zhang, Guoming 已提交
738
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
739
                          const std::vector<float> output_shift_scale, float sum_scale) const {
740 741
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
742
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
743 744 745 746
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
747
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
748
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
749
      if (fuse_residual_conn) {
750 751 752 753 754
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
755
        constexpr float placeholder = 1.0f; //beta
756 757 758 759 760
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
761
    }
762

X
xiaolil1 已提交
763
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
764 765 766 767

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
768
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
769 770
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
771
      if (fuse_residual_conn) {
772 773 774 775 776 777 778 779 780 781 782 783 784
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
785
    }
M
Michal Gallus 已提交
786

Z
Zhang, Guoming 已提交
787
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
788 789 790 791
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
792
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
793
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
794 795 796
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
797 798
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

799
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
800
          propagation, mkldnn::convolution_direct, src, weights,
801 802 803 804
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
805
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
806 807 808 809 810 811

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
812
    }
M
Michal Gallus 已提交
813

814
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
815 816 817 818
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
819
                         const bool fuse_residual_conn, bool is_test=false) const{
820 821
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
822
 
823
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
824
 
825
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
826
          propagation, mkldnn::convolution_direct, src, weights,
827 828 829
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
830
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
831 832 833 834 835 836 837
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
838 839

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
840 841 842 843 844
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
845
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
846
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
847 848 849
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
850 851
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

852
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
853
          propagation, mkldnn::convolution_direct, src, weights,
854 855 856 857
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
858
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
859 860 861 862 863 864 865 866 867 868 869 870 871 872

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
873
                         const bool fuse_residual_conn, bool is_test=false) const{
874 875 876
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

877
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
878

879
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
880
          propagation, mkldnn::convolution_direct, src, weights,
881 882 883
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
884
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
885 886 887 888 889 890 891 892

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

893 894 895
};

template <typename T>
896
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
897 898 899 900 901
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

902 903
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
904 905 906 907 908 909 910 911 912 913
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

914 915 916 917 918 919 920 921 922 923 924 925 926
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

927 928 929 930
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
931 932
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
933 934 935 936 937 938 939 940 941 942 943 944

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

945
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
946
    // as well as attributes of primitive to be created
947 948 949 950 951 952
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
953
    std::vector<primitive> pipeline;
954

955 956 957 958 959 960 961
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
962 963 964 965 966

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
967 968 969 970
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

971
    auto src_md = platform::MKLDNNMemDesc(
972
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
973
    auto diff_src_md = platform::MKLDNNMemDesc(
974
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
975
    auto weights_md = platform::MKLDNNMemDesc(
976
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
977
    auto diff_weights_md = platform::MKLDNNMemDesc(
978
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
979
    auto diff_dst_md = platform::MKLDNNMemDesc(
980
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
981

982
    // Retrieve conv_pd from device context
983 984 985
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
986 987 988
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1015 1016
    // create backward conv primitive for weights
    if (filter_grad) {
1017 1018
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1019

1020 1021 1022 1023
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1024
      const size_t size = handler.GetDiffWeightsMemorySize();
1025 1026
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

1027 1028 1029 1030 1031 1032 1033 1034 1035
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1036 1037

      filter_grad->set_layout(DataLayout::kMKLDNN);
1038
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1039 1040 1041
    }

    if (input_grad) {
1042 1043 1044 1045 1046 1047 1048
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1049
      const size_t size = handler.GetDiffSourceMemorySize();
1050 1051
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

1052 1053 1054 1055 1056 1057 1058
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1059 1060

      input_grad->set_layout(DataLayout::kMKLDNN);
1061
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1062
    }
1063
    stream(stream::kind::eager).submit(pipeline).wait();
1064 1065 1066 1067 1068 1069 1070 1071 1072
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1073 1074
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1075 1076

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1077
                   ops::ConvMKLDNNGradOpKernel<float>);