op_param.h 71.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
50
class OpParam {
朔-望's avatar
朔-望 已提交
51
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
52 53 54 55
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
56 57 58 59 60
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

61 62 63 64 65 66 67 68 69
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
70 71 72 73 74
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

102 103 104 105
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
106 107 108 109 110 111

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

112 113 114 115 116
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
117 118 119 120 121
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

122 123 124 125 126
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
127 128 129 130
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
131 132 133 134 135 136 137 138 139 140 141 142
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
143 144 145 146
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
163

E
eclipsess 已提交
164 165 166 167 168 169 170 171 172 173
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
174 175 176 177
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
178

179
  template <typename T>
W
wangliu 已提交
180 181
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
182 183 184
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

214 215 216 217 218 219 220 221 222 223
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
224 225 226 227 228 229
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
235 236 237 238 239 240
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
241 242 243 244 245
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

252 253 254 255 256 257 258 259 260 261 262
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
263
  static const T GetAttr(const string &key, const AttributeMap &map) {
264 265 266
    return ((Attribute)map.at(key)).Get<T>();
  }

267 268 269 270
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

271
  template <typename T>
W
wangliu 已提交
272
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
273
                        const Scope &scope) {
W
wangliu 已提交
274 275
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
276 277 278 279 280 281
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
282
    }
283
  }
朔-望's avatar
朔-望 已提交
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

305
  template <typename T>
W
wangliu 已提交
306 307 308
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
309 310
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
311
    vector<T *> var_res;
312 313 314
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
315
    }
316 317
    return var_res;
  }
朔-望's avatar
朔-望 已提交
318 319
};

320
#ifdef CONV_OP
N
nhzlx 已提交
321
template <typename Dtype>
322
class ConvParam : OpParam {
N
nhzlx 已提交
323 324 325
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
326
 public:
327
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
328
            const AttributeMap &attrs, const Scope &scope) {
329 330 331 332 333 334 335
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
336
  }
朔-望's avatar
朔-望 已提交
337

N
nhzlx 已提交
338
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
339

N
nhzlx 已提交
340
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
341

N
nhzlx 已提交
342
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
343

W
wangliu 已提交
344
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
345

W
wangliu 已提交
346
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
347

W
wangliu 已提交
348
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
349

350
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
351

朔-望's avatar
朔-望 已提交
352
 private:
N
nhzlx 已提交
353 354 355
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
356 357 358
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
359
  int groups;
朔-望's avatar
朔-望 已提交
360
};
N
nhzlx 已提交
361 362
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
363
#endif
朔-望's avatar
朔-望 已提交
364

N
nhzlx 已提交
365
template <typename Dtype>
朔-望's avatar
朔-望 已提交
366
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
367 368 369
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
370
 public:
371
  ElementwiseAddParam(const VariableNameMap &inputs,
372 373
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
374 375 376
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
377 378 379
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
380
  const GType *InputX() const { return input_x_; }
381

xiebaiyuan's avatar
xiebaiyuan 已提交
382
  const GType *InputY() const { return input_y_; }
383

xiebaiyuan's avatar
xiebaiyuan 已提交
384
  GType *Out() const { return out_; }
385 386 387

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
388
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
389 390 391
  GType *input_x_;
  GType *input_y_;
  GType *out_;
392
  int axis_;
Z
zhangyang 已提交
393 394 395
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
396
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
397 398

 public:
H
hanbuhe 已提交
399 400
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
401
#endif
朔-望's avatar
朔-望 已提交
402 403
};

404
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
405 406
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
407 408 409
#endif

#ifdef MUL_OP
N
nhzlx 已提交
410
template <typename Dtype>
朔-望's avatar
朔-望 已提交
411
class MulParam : OpParam {
N
nhzlx 已提交
412 413 414
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
415
 public:
416
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
417
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
418 419 420
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
421 422 423
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
424

xiebaiyuan's avatar
xiebaiyuan 已提交
425
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
426

xiebaiyuan's avatar
xiebaiyuan 已提交
427
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
428

xiebaiyuan's avatar
xiebaiyuan 已提交
429
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
430

431
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
432

433
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
434

朔-望's avatar
朔-望 已提交
435
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
436 437 438
  GType *input_x_;
  GType *input_y_;
  GType *out_;
439 440
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
441
};
L
liuruilong 已提交
442
#endif
朔-望's avatar
朔-望 已提交
443

L
liuruilong 已提交
444
#ifdef CONCAT_OP
N
nhzlx 已提交
445
template <typename Dtype>
朔-望's avatar
朔-望 已提交
446
class ConcatParam : public OpParam {
N
nhzlx 已提交
447 448 449
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
450
 public:
451
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
452
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
453 454
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
455 456
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
457

N
nhzlx 已提交
458
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
459

xiebaiyuan's avatar
xiebaiyuan 已提交
460
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
461

462
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
463

朔-望's avatar
朔-望 已提交
464
 private:
N
nhzlx 已提交
465
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
466
  GType *out_;
467
  int axis_;
Z
zhangyang 已提交
468 469 470 471 472 473 474 475 476
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
477
};
L
liuruilong 已提交
478
#endif
朔-望's avatar
朔-望 已提交
479

L
liuruilong 已提交
480
#ifdef LRN_OP
N
nhzlx 已提交
481
template <typename Dtype>
E
eclipsess 已提交
482
class LrnParam : public OpParam {
N
nhzlx 已提交
483 484 485
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
486
 public:
487
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
488
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
489 490 491
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
492 493 494 495
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
496
    data_format_ = GetAttr<string>("data_format", attrs);
497
  }
E
eclipsess 已提交
498

N
nhzlx 已提交
499
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
500

N
nhzlx 已提交
501
  RType *Out() const { return out_; }
E
eclipsess 已提交
502

N
nhzlx 已提交
503
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
504

505
  const int &N() const { return n_; }
E
eclipsess 已提交
506

507
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
508

509
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
510

511
  const float &K() const { return k_; }
E
eclipsess 已提交
512

W
wangliu 已提交
513
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
514

朔-望's avatar
朔-望 已提交
515
 private:
N
nhzlx 已提交
516 517 518
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
519 520 521 522
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
523
  string data_format_;
E
eclipsess 已提交
524
};
L
liuruilong 已提交
525 526 527
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
528
template <typename Dtype>
E
eclipsess 已提交
529
class BatchNormParam : OpParam {
N
nhzlx 已提交
530 531 532
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
533
 public:
534
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
535
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
536 537 538 539 540 541
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
542 543
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
544
    //    is_test_ = GetAttr<bool>("is_test", attrs);
545
  }
E
eclipsess 已提交
546

N
nhzlx 已提交
547
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
548

N
nhzlx 已提交
549
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
550

N
nhzlx 已提交
551
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
552

N
nhzlx 已提交
553
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
554

N
nhzlx 已提交
555
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
556

N
nhzlx 已提交
557
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
558

559
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
560

561
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
562

563
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
564

W
wangliu 已提交
565
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
566

朔-望's avatar
朔-望 已提交
567
 private:
N
nhzlx 已提交
568 569 570 571 572 573
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
574 575 576
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
577
  string data_format_;
E
eclipsess 已提交
578
};
L
liuruilong 已提交
579 580 581
#endif

#ifdef POOL_OP
N
nhzlx 已提交
582
template <typename Dtype>
583
class PoolParam : public OpParam {
N
nhzlx 已提交
584 585 586
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
587
 public:
588
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
589
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
590
    input_ = InputXFrom<GType>(inputs, scope);
591

N
nhzlx 已提交
592
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
593 594 595 596
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
597
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
598
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
599
  }
600

N
nhzlx 已提交
601
  const RType *Input() const { return input_; }
602

N
nhzlx 已提交
603
  RType *Output() const { return output_; }
604

W
wangliu 已提交
605
  const string &PoolingType() const { return pooling_type_; }
606

W
wangliu 已提交
607
  const vector<int> &Ksize() const { return ksize_; }
608

W
wangliu 已提交
609
  const vector<int> &Strides() const { return strides_; }
610

W
wangliu 已提交
611
  const vector<int> &Paddings() const { return paddings_; }
612

613
  bool isCeilMode() const { return ceil_mode_; }
614

Z
zhangyang 已提交
615
  bool isGlobalPooling() const { return global_pooling_; }
616

朔-望's avatar
朔-望 已提交
617
 private:
N
nhzlx 已提交
618 619
  RType *input_;
  RType *output_;
W
wangliu 已提交
620 621 622 623
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
624
  bool ceil_mode_;
625
  bool global_pooling_ = false;
Z
zhangyang 已提交
626
#ifdef PADDLE_MOBILE_FPGA
627 628

 private:
H
hanbuhe 已提交
629
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
630 631

 public:
H
hanbuhe 已提交
632 633
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
634
#endif
635
};
L
liuruilong 已提交
636 637 638
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
639
template <typename Dtype>
E
eclipsess 已提交
640
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
641 642 643
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
644 645
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
646
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
647 648 649 650
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
651 652 653 654
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
E
eclipsess 已提交
655 656 657 658 659 660
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
661
  const RType *Input() const { return input_; }
E
eclipsess 已提交
662

N
nhzlx 已提交
663
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
664

N
nhzlx 已提交
665
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
666

N
nhzlx 已提交
667
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
668

W
wangliu 已提交
669
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
670

W
wangliu 已提交
671
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
672

W
wangliu 已提交
673
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
674

W
wangliu 已提交
675
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
676 677 678 679 680 681 682 683 684 685 686 687

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

 private:
N
nhzlx 已提交
688 689 690 691
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
692 693 694 695
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
696 697 698 699 700 701
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
};
L
liuruilong 已提交
702
#endif
E
eclipsess 已提交
703

L
liuruilong 已提交
704
#ifdef BOXCODER_OP
N
nhzlx 已提交
705
template <typename Dtype>
E
eclipsess 已提交
706
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
707 708 709
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
710 711
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
712
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
713 714 715 716
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
717 718
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
719
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
720

N
nhzlx 已提交
721
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
722

N
nhzlx 已提交
723
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
724

N
nhzlx 已提交
725
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
726 727 728 729

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
730 731 732 733
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
734 735
  std::string code_type_;
};
L
liuruilong 已提交
736
#endif
W
wangliu 已提交
737

L
liuruilong 已提交
738
#ifdef SOFTMAX_OP
N
nhzlx 已提交
739
template <typename Dtype>
W
wangliu 已提交
740
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
741 742 743
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
744 745
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
746
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
747 748
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
749
  }
N
nhzlx 已提交
750 751
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
752 753

 private:
N
nhzlx 已提交
754 755
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
756 757 758 759

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
760
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
761 762 763
  fpga::BypassArgs fpga_bypass_args;

 public:
764
  RType *FloatInput() {
H
hanbuhe 已提交
765 766 767 768 769 770
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
771
};
L
liuruilong 已提交
772
#endif
W
wangliu 已提交
773

L
liuruilong 已提交
774
#ifdef SIGMOID_OP
N
nhzlx 已提交
775
template <typename Dtype>
W
wangliu 已提交
776
class SigmoidParam : public OpParam {
N
nhzlx 已提交
777 778 779
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
780 781
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
782
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
783 784
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
785
  }
N
nhzlx 已提交
786 787
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
788 789

 private:
N
nhzlx 已提交
790 791
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
792
};
L
liuruilong 已提交
793 794 795
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
796
template <typename Dtype>
E
eclipsess 已提交
797
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
798 799 800
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
801 802 803 804
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
805 806 807
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
808 809 810 811 812 813 814 815
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
816
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
817

N
nhzlx 已提交
818
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
819

N
nhzlx 已提交
820
  RType *Out() const { return out_; }
E
eclipsess 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
835 836 837
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
838 839 840 841 842 843 844
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
845
#endif
W
wangliu 已提交
846

N
nhzlx 已提交
847
template <typename Dtype>
L
liuruilong 已提交
848
class FeedParam : public OpParam {
N
nhzlx 已提交
849 850 851
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
852 853
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
854
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
855 856
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
857
    auto var = scope->Var("batch_size");
W
wangliu 已提交
858
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
859
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
860 861
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
862
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
863

L
liuruilong 已提交
864
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
865 866
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
867
  int batch_size;
L
liuruilong 已提交
868 869
};

N
nhzlx 已提交
870
template <typename Dtype>
L
liuruilong 已提交
871
class FetchParam : public OpParam {
N
nhzlx 已提交
872 873 874
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
875 876
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
877
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
878 879
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
880
  }
N
nhzlx 已提交
881 882
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
883

L
liuruilong 已提交
884
 private:
N
nhzlx 已提交
885 886
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
887 888
};

L
liuruilong 已提交
889
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
890
template <typename Dtype>
E
eclipsess 已提交
891
class TransposeParam : public OpParam {
N
nhzlx 已提交
892 893 894
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
895 896 897
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
898 899
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
900 901 902
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
903
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
904

N
nhzlx 已提交
905
  RType *Out() const { return out_; }
E
eclipsess 已提交
906 907 908 909

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
910 911
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
912 913
  vector<int> axis_;
};
L
liuruilong 已提交
914
#endif
E
eclipsess 已提交
915

xiebaiyuan's avatar
xiebaiyuan 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
982
#ifdef RESHAPE_OP
N
nhzlx 已提交
983
template <typename Dtype>
E
eclipsess 已提交
984
class ReshapeParam : public OpParam {
N
nhzlx 已提交
985 986 987
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
988 989 990
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
991 992 993
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
994
    shape_ = GetAttr<vector<int>>("shape", attrs);
995 996 997 998 999 1000 1001

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1002 1003
  }

N
nhzlx 已提交
1004
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1005

N
nhzlx 已提交
1006
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1007

N
nhzlx 已提交
1008
  RType *Out() const { return out_; }
E
eclipsess 已提交
1009 1010 1011 1012 1013 1014

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1015 1016 1017
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1018 1019 1020
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1021
#endif
E
eclipsess 已提交
1022

T
Tian 已提交
1023
#ifdef SCALE_OP
N
nhzlx 已提交
1024
template <typename Dtype>
I
itminner 已提交
1025
class ScaleParam : public OpParam {
N
nhzlx 已提交
1026 1027 1028
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1029 1030 1031
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1032 1033 1034
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1035 1036 1037 1038 1039 1040
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1041
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1042

N
nhzlx 已提交
1043
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1044

N
nhzlx 已提交
1045
  RType *Out() const { return out_; }
I
itminner 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1056 1057 1058
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1059 1060 1061 1062 1063
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1064 1065 1066
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1067
template <typename Dtype>
I
itminner 已提交
1068
class SliceParam : public OpParam {
N
nhzlx 已提交
1069 1070 1071
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1072 1073 1074
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1075 1076 1077
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1078 1079 1080 1081 1082
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1083
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1084

N
nhzlx 已提交
1085
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1086

N
nhzlx 已提交
1087
  RType *Out() const { return out_; }
I
itminner 已提交
1088 1089 1090 1091 1092 1093 1094 1095

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1096 1097 1098
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1099 1100 1101 1102
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1103 1104 1105
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1106
template <typename Dtype>
T
Tian 已提交
1107
class ResizeParam : public OpParam {
N
nhzlx 已提交
1108 1109 1110
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1111 1112 1113
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1114 1115 1116
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1117 1118 1119 1120 1121 1122
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1123

N
nhzlx 已提交
1124
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1125

N
nhzlx 已提交
1126
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1127

N
nhzlx 已提交
1128
  RType *Out() const { return out_; }
T
Tian 已提交
1129

I
itminner 已提交
1130
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1131

I
itminner 已提交
1132
  const int &Height() const { return height_; }
T
Tian 已提交
1133

I
itminner 已提交
1134
  const int &Width() const { return width_; }
T
Tian 已提交
1135

I
itminner 已提交
1136
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1137

I
itminner 已提交
1138
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1139

I
itminner 已提交
1140
 private:
N
nhzlx 已提交
1141 1142 1143
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1144 1145 1146 1147 1148
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1149 1150 1151
};
#endif

L
liuruilong 已提交
1152
#ifdef RELU_OP
L
liuruilong 已提交
1153 1154 1155
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1156
template <typename Dtype>
E
eclipsess 已提交
1157
class ReluParam : public OpParam {
N
nhzlx 已提交
1158 1159 1160
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1161 1162 1163
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1164 1165
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1166 1167
  }

N
nhzlx 已提交
1168
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1169

N
nhzlx 已提交
1170
  RType *Out() const { return out_; }
E
eclipsess 已提交
1171 1172

 private:
N
nhzlx 已提交
1173 1174
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1175
};
L
liuruilong 已提交
1176
#endif
E
eclipsess 已提交
1177

T
Tian 已提交
1178
#ifdef PRELU_OP
N
nhzlx 已提交
1179
template <typename Dtype>
T
Tian 已提交
1180
class PReluParam : public OpParam {
N
nhzlx 已提交
1181 1182 1183
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1184 1185 1186
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1187
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1188
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1189
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1190
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1191
    out_ = OutFrom<GType>(outputs, scope);
1192 1193
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1194
  }
N
nhzlx 已提交
1195
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1196
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1197
  RType *Out() const { return out_; }
1198
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1199

I
itminner 已提交
1200
 private:
N
nhzlx 已提交
1201 1202
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1203
  RType *alpha_;
1204
  std::string mode_;
T
Tian 已提交
1205 1206 1207
};
#endif

N
nhzlx 已提交
1208
template <typename Dtype>
L
liuruilong 已提交
1209
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1210 1211 1212
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1213
 public:
L
liuruilong 已提交
1214
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1215
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1216 1217 1218 1219
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1220 1221 1222 1223
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1224
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1225

N
nhzlx 已提交
1226
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1227

N
nhzlx 已提交
1228
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1229

xiebaiyuan's avatar
xiebaiyuan 已提交
1230
  GType *Out() const { return out_; }
E
eclipsess 已提交
1231 1232 1233 1234 1235 1236 1237 1238

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1239
  GType *input_x_;
N
nhzlx 已提交
1240 1241
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1242
  GType *out_;
E
eclipsess 已提交
1243 1244 1245
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1246 1247 1248
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1249
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1250 1251

 public:
Z
zhangyang 已提交
1252 1253
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1254
#endif
E
eclipsess 已提交
1255
};
1256 1257

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1258 1259
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1260
#endif
E
eclipsess 已提交
1261

N
nhzlx 已提交
1262
template <typename Dtype>
1263
class FusionConvAddParam : public OpParam {
N
nhzlx 已提交
1264 1265 1266
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1267
 public:
L
liuruilong 已提交
1268
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1269
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
                     const Scope &scope) {
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
W
wangliu 已提交
1280
  }
N
nhzlx 已提交
1281
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1282 1283 1284

  const int &Axis() const { return axis_; }

1285 1286 1287 1288
  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

N
nhzlx 已提交
1289
  RType *Output() const { return output_; }
W
wangliu 已提交
1290

1291 1292 1293 1294 1295 1296 1297 1298
  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

L
liuruilong 已提交
1299
 protected:
N
nhzlx 已提交
1300
  RType *bias_;
W
wangliu 已提交
1301
  int axis_;
1302
  RType *input_;
N
nhzlx 已提交
1303
  RType *output_;
1304 1305 1306 1307 1308
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
1309 1310 1311
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1312
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1313 1314

 public:
Z
zhangyang 已提交
1315 1316
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1317
#endif
W
wangliu 已提交
1318 1319
};

N
nhzlx 已提交
1320 1321
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1322

Z
zhangyang 已提交
1323
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1324 1325
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1326
 public:
L
liuruilong 已提交
1327
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1328 1329
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1330
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1331 1332 1333
};
#endif

1334
#ifdef FUSION_CONVADDPRELU_OP
1335 1336 1337 1338
template <typename DeviceType>
class FusionConvAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;
1339 1340 1341 1342

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1343 1344 1345
                          const AttributeMap &attrs, const Scope &scope) {
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
1346
    framework::DDim dims = alpha_->dims();
1347 1348 1349 1350 1351 1352 1353 1354 1355
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
1356 1357 1358 1359
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
1360

1361
  const int &Axis() const { return axis_; }
1362 1363 1364 1365 1366

  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

1367 1368
  RType *Output() const { return output_; }

1369 1370 1371 1372 1373 1374 1375 1376
  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

1377 1378 1379
 protected:
  RType *bias_;
  int axis_;
1380
  RType *input_;
1381
  RType *output_;
1382 1383 1384 1385 1386
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
1387 1388 1389 1390 1391
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1392
  fpga::WrapperConvArgs fpga_conv_args;
1393 1394

 public:
Z
zhangyang 已提交
1395 1396
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1397 1398 1399 1400 1401
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1402 1403 1404 1405
template <typename DeviceType>
class FusionConvAddAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;
1406 1407 1408 1409

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1410 1411 1412 1413
                             const AttributeMap &attrs, const Scope &scope) {
    bias1_ = InputYFrom1<GType>(inputs, scope);
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
1414
    framework::DDim dims = alpha_->dims();
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    keyOutput_ = getkey("addOut", inputs, 0);
    keyX1_ = getkey("addX", inputs, 1);
    keyY1_ = getkey("Y", inputs, 1);
1427
    if (keyX1_ == keyOutput_) {
1428
      bias1_ = InputYFrom1<GType>(inputs, scope);
1429
    } else if (keyY1_ == keyOutput_) {
1430
      bias1_ = InputXFrom1<GType>(inputs, scope);
1431 1432 1433 1434 1435 1436 1437 1438 1439
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
1440 1441 1442 1443 1444

  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

1445 1446
  RType *Output() const { return output_; }

1447 1448 1449 1450 1451 1452 1453 1454
  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

1455 1456 1457
 protected:
  RType *bias_;
  int axis_;
1458
  RType *input_;
1459
  RType *output_;
1460 1461 1462 1463 1464
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
1465 1466 1467 1468 1469 1470 1471 1472 1473
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1474
  fpga::WrapperConvArgs fpga_conv_args;
1475 1476

 public:
Z
zhangyang 已提交
1477 1478
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1479 1480 1481 1482
#endif
};
#endif

E
eclipsess 已提交
1483
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1484
template <typename Dtype>
1485
class FusionConvAddBNReluParam : public OpParam {
N
nhzlx 已提交
1486 1487 1488
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1489 1490 1491
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
                           const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1509
  }
N
nhzlx 已提交
1510
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1511 1512 1513

  const int &Axis() const { return axis_; }

1514 1515 1516 1517
  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

N
nhzlx 已提交
1518
  RType *Output() const { return output_; }
E
eclipsess 已提交
1519

1520 1521 1522 1523 1524 1525 1526 1527
  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1528
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1529

N
nhzlx 已提交
1530
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1531

N
nhzlx 已提交
1532
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1533

N
nhzlx 已提交
1534
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1535 1536 1537 1538 1539 1540 1541

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1542
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1543

N
nhzlx 已提交
1544
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1545

N
nhzlx 已提交
1546
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1547

N
nhzlx 已提交
1548
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1549 1550

 protected:
N
nhzlx 已提交
1551
  RType *bias_;
E
eclipsess 已提交
1552
  int axis_;
1553
  RType *input_;
N
nhzlx 已提交
1554
  RType *output_;
1555 1556 1557 1558 1559
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1560 1561 1562 1563
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1564 1565 1566
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1567 1568
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1569 1570 1571
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1572
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1573 1574

 public:
Z
zhangyang 已提交
1575 1576
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1577 1578 1579 1580 1581 1582
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1583
class FusionConvBNAddReluParam : public OpParam {
1584 1585 1586 1587 1588 1589
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
                           const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    keyBNY_ = getkey("BNY", inputs, 0);
    keyX_ = getkey("X", inputs, 0);
    keyY_ = getkey("Y", inputs, 0);
1609
    if (keyX_ == keyBNY_) {
1610
      bias_ = InputYFrom<GType>(inputs, scope);
1611
    } else if (keyY_ == keyBNY_) {
1612
      bias_ = InputXFrom<GType>(inputs, scope);
1613
    }
1614
    //    is_test_ = GetAttr<bool>("is_test", attrs);
1615 1616 1617 1618 1619
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

1620 1621 1622 1623
  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

1624 1625
  RType *Output() const { return output_; }

1626 1627 1628 1629 1630 1631 1632 1633
  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
1659
  RType *input_;
1660
  RType *output_;
1661 1662 1663 1664 1665
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1681
  fpga::WrapperConvArgs fpga_conv_args;
1682 1683

 public:
Z
zhangyang 已提交
1684 1685
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1686
#endif
E
eclipsess 已提交
1687
};
1688
#endif
E
eclipsess 已提交
1689

Z
zhangyang 已提交
1690
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1691
template <typename Dtype>
1692
class FusionConvBNParam : public OpParam {
N
nhzlx 已提交
1693 1694 1695
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1696 1697 1698
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
                    const Scope &scope) {
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1714
  }
1715 1716 1717 1718 1719

  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

N
nhzlx 已提交
1720
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1721

1722 1723 1724 1725 1726 1727 1728 1729
  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1730
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1731

N
nhzlx 已提交
1732
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1733

N
nhzlx 已提交
1734
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1735

N
nhzlx 已提交
1736
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1737 1738 1739 1740 1741 1742 1743

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1744
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1745

N
nhzlx 已提交
1746
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1747

N
nhzlx 已提交
1748
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1749

N
nhzlx 已提交
1750
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1751 1752

 protected:
1753
  RType *input_;
N
nhzlx 已提交
1754
  RType *output_y_;
1755 1756 1757 1758 1759
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1760 1761 1762 1763
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1764 1765 1766
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1767 1768
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1769 1770 1771
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1772
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1773 1774

 public:
Z
zhangyang 已提交
1775 1776
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1777 1778 1779 1780
#endif
};
#endif

1781
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1782
template <typename Dtype>
1783
class FusionConvAddBNParam : public OpParam {
N
nhzlx 已提交
1784 1785 1786
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1787 1788 1789
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
                       const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
1807
  }
N
nhzlx 已提交
1808
  RType *Bias() const { return bias_; }
1809 1810 1811

  const int &Axis() const { return axis_; }

1812 1813 1814 1815
  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

N
nhzlx 已提交
1816
  RType *Output() const { return output_y_; }
1817

1818 1819 1820 1821 1822 1823 1824 1825
  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1826
  const RType *InputBias() const { return input_bias_; }
1827

N
nhzlx 已提交
1828
  const RType *InputMean() const { return input_mean_; }
1829

N
nhzlx 已提交
1830
  const RType *InputScale() const { return input_scale_; }
1831

N
nhzlx 已提交
1832
  const RType *InputVariance() const { return input_variance_; }
1833 1834 1835 1836 1837 1838 1839

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1840
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1841

N
nhzlx 已提交
1842
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1843

N
nhzlx 已提交
1844
  const RType *NewScale() const { return new_scale_; }
1845

N
nhzlx 已提交
1846
  const RType *NewBias() const { return new_bias_; }
1847 1848

 protected:
N
nhzlx 已提交
1849
  RType *bias_;
1850
  int axis_;
1851
  RType *input_;
N
nhzlx 已提交
1852
  RType *output_y_;
1853 1854 1855 1856 1857
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1858 1859 1860 1861
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1862 1863 1864
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1865 1866
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1867 1868 1869
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1870
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1871 1872

 public:
Z
zhangyang 已提交
1873 1874
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1875
#endif
1876
};
E
eclipsess 已提交
1877
#endif
Y
Yao,kun 已提交
1878

E
eclipsess 已提交
1879
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1880
template <typename Dtype>
1881
class FusionDWConvBNReluParam : public OpParam {
N
nhzlx 已提交
1882 1883 1884
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1885 1886 1887
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
                          const AttributeMap &attrs, const Scope &scope) {
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1903
  }
1904 1905 1906 1907 1908

  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

N
nhzlx 已提交
1909
  RType *Output() const { return output_; }
E
eclipsess 已提交
1910

1911 1912 1913 1914 1915 1916 1917 1918
  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1919
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1920

N
nhzlx 已提交
1921
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1922

N
nhzlx 已提交
1923
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1924

N
nhzlx 已提交
1925
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1926 1927 1928 1929 1930 1931 1932

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1933
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1934

N
nhzlx 已提交
1935
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1936

N
nhzlx 已提交
1937
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1938

N
nhzlx 已提交
1939
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1940 1941

 protected:
1942
  RType *input_;
N
nhzlx 已提交
1943
  RType *output_;
1944 1945 1946 1947 1948
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1949 1950 1951 1952
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1953 1954 1955
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1956 1957
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1958 1959 1960 1961
};

#endif

1962
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1963
template <typename Dtype>
1964
class FusionConvBNReluParam : public OpParam {
N
nhzlx 已提交
1965 1966 1967
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1968 1969 1970
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
                        const AttributeMap &attrs, const Scope &scope) {
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);

    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
1987
  }
1988 1989 1990 1991 1992

  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

N
nhzlx 已提交
1993
  RType *Output() const { return output_; }
1994

1995 1996 1997 1998 1999 2000 2001 2002
  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
2003
  const RType *InputBias() const { return input_bias_; }
2004

N
nhzlx 已提交
2005
  const RType *InputMean() const { return input_mean_; }
2006

N
nhzlx 已提交
2007
  const RType *InputScale() const { return input_scale_; }
2008

N
nhzlx 已提交
2009
  const RType *InputVariance() const { return input_variance_; }
2010 2011 2012 2013 2014 2015 2016

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2017
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2018

N
nhzlx 已提交
2019
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2020

N
nhzlx 已提交
2021
  const RType *NewScale() const { return new_scale_; }
2022

N
nhzlx 已提交
2023
  const RType *NewBias() const { return new_bias_; }
2024 2025

 protected:
2026
  RType *input_;
N
nhzlx 已提交
2027
  RType *output_;
2028 2029 2030 2031 2032
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
2033 2034 2035 2036
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2037 2038 2039
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2040 2041
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2042 2043 2044
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
2045
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
2046 2047

 public:
Z
zhangyang 已提交
2048 2049
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2050
#endif
2051 2052 2053
};
#endif

Y
Yao,kun 已提交
2054
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2055
template <typename Dtype>
Y
Yao,kun 已提交
2056
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2057 2058 2059
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2060 2061 2062 2063
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2064 2065
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2066 2067 2068 2069 2070
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
2071
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2072

N
nhzlx 已提交
2073
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
2074 2075 2076 2077 2078 2079 2080 2081

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
2082 2083
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2084 2085 2086 2087
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2088
#endif
Y
Yao,kun 已提交
2089

2090
#ifdef DROPOUT_OP
N
nhzlx 已提交
2091
template <typename Dtype>
Y
Yao,kun 已提交
2092
class DropoutParam : public OpParam {
N
nhzlx 已提交
2093 2094 2095
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2096 2097 2098
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2099 2100
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2101 2102

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2103 2104
  }

N
nhzlx 已提交
2105
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2106

N
nhzlx 已提交
2107
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2108

Y
yangfei 已提交
2109 2110
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2111
 private:
N
nhzlx 已提交
2112 2113
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2114
  float dropout_prob_;
Y
Yao,kun 已提交
2115
};
2116
#endif
Y
Yao,kun 已提交
2117

L
liuruilong 已提交
2118
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
2119
template <typename Dtype>
L
liuruilong 已提交
2120
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2121 2122 2123
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2124 2125 2126 2127
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2128 2129 2130
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2131 2132 2133 2134 2135 2136
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2137
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2138

N
nhzlx 已提交
2139
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2140

N
nhzlx 已提交
2141
  RType *Output() const { return output_; }
L
liuruilong 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2152 2153 2154
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2155 2156 2157 2158 2159 2160 2161
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2233
    axis = GetAttr<int>("axis", attrs);
2234 2235 2236
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2237
  const int &Axis() const { return axis; }
2238 2239 2240 2241

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2242
  int axis;
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2256
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2257
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2258 2259 2260 2261 2262 2263
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2264 2265
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2266 2267 2268 2269 2270
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2271 2272 2273

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2274
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2275
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2276 2277 2278
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2295 2296
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2297 2298
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2299
  const RType *InputOutPutSize() const { return input_outsize_; }
2300
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2301 2302
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2303 2304 2305 2306 2307

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2308 2309
  int out_h_;
  int out_w_;
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2325
  const RType *Input() const { return input_; }
2326 2327 2328 2329 2330 2331 2332 2333
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
template<typename Dtype>
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  QuantizeParam(const VariableNameMap &inputs,
                const VariableNameMap &outputs,
                const AttributeMap &attrs,
                const Scope &scope) {
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    if (HasAttr("is_static", attrs)) {
      is_static_ = GetAttr<bool>("is_static", attrs);
    }
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    if (HasAttr("is_signed", attrs)) {
      is_signed_ = GetAttr<bool>("signed", attrs);
    }
    if (HasAttr("mantissa", attrs)) {
      mantissa_bits_ = GetAttr<bool>("mantissa", attrs);
    }
    // offline
    if (HasAttr("static_scale", attrs)) {
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // signed quantize or unsigned quantize
  bool is_signed_ = true;
  // mantissa bit width
  // for int8, mantissa bits is 7
  int mantissa_bits_ = 7;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
  RoundType round_type_ = ROUND_NEAREST_TO_EVEN;
};

template<typename Dtype>
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  DequantizeParam(const VariableNameMap &inputs,
                const VariableNameMap &outputs,
                const AttributeMap &attrs,
                const Scope &scope) {
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};

朔-望's avatar
朔-望 已提交
2419 2420
}  // namespace operators
}  // namespace paddle_mobile