/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "common/log.h" #include "common/type_define.h" #include "common/types.h" #include "framework/lod_tensor.h" #include "framework/scope.h" #include "framework/tensor.h" #include "framework/variable.h" #ifdef PADDLE_MOBILE_FPGA #include "fpga/api.h" #endif namespace paddle_mobile { namespace operators { using framework::Attribute; using framework::AttributeMap; using framework::LoDTensor; using framework::Scope; using framework::Tensor; using std::string; using std::vector; template struct DtypeTensorTrait { // This is the type we obtained in variable. typedef framework::LoDTensor gtype; // This type will be the parent class type // or the same type. typedef framework::Tensor rtype; }; class OpParam { protected: template static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("H0", inputs, scope); } template static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Alpha", inputs, scope); } template static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Input", inputs, scope); } template static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("X", inputs, scope); } template static T *InputOutSizeFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("OutSize", inputs, scope); } template static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("W", inputs, scope); } template static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Ids", inputs, scope); } template static T *InputEmissionFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Emission", inputs, scope); } template static T *InputTransitionFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Transition", inputs, scope); } template static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Label", inputs, scope); } template static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue1("addX", inputs, scope); } template static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Y", inputs, scope); } template static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue1("Y", inputs, scope); } template static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Z", inputs, scope); } template static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Bias", inputs, scope); } template static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Weight", inputs, scope); } template static T *InputVarianceFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Variance", inputs, scope); } template static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Mean", inputs, scope); } template static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Scale", inputs, scope); } template static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Image", inputs, scope); } template static T *InputPriorBoxFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("PriorBox", inputs, scope); } template static T *InputPriorBoxVarFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("PriorBoxVar", inputs, scope); } // LoDTensor but now use Tensor template static T *InputTargetBoxFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("TargetBox", inputs, scope); } template static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("BBoxes", inputs, scope); } template static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Scores", inputs, scope); } template static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Shape", inputs, scope); } template static vector InputMultiFrom(const VariableNameMap &inputs, const Scope &scope) { return GetMultiVarValue("X", inputs, scope); } template static T *OutputBatchGateFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("BatchGate", outputs, scope); } template static T *OutputViterbiPathFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("ViterbiPath", outputs, scope); } template static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("BatchResetHiddenPrev", outputs, scope); } template static T *OutputBatchHiddenFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("BatchHidden", outputs, scope); } template static T *OutputHiddenFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("Hidden", outputs, scope); } template static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("Output", outputs, scope); } template static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("Out", outputs, scope); } template static vector OutMultiFrom(const VariableNameMap &outputs, const Scope &scope) { return GetMultiVarValue("Out", outputs, scope); } template static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("Y", outputs, scope); } template static T *OutputBoxesFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("Boxes", outputs, scope); } template static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("OutputBox", outputs, scope); } template static T *OutputVariancesFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("Variances", outputs, scope); } template static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("MidOut", outputs, scope); } template static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Filter", inputs, scope); } template static const T GetAttr(const string &key, const AttributeMap &map) { return ((Attribute)map.at(key)).Get(); } static const bool HasAttr(const string &key, const AttributeMap &map) { return map.count(key) > 0; } template static T *GetVarValue(const string &key, const VariableNameMap &var_map, const Scope &scope) { PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0, "%s is not contained in var_map", key.c_str()) auto var_vec = var_map.at(key); if (!var_vec.empty()) { auto var = scope.FindVar(var_vec[0]); return var->GetMutable(); } else { return nullptr; } } static std::string getkey(const string &key, const VariableNameMap &var_map, int index) { auto var_vec = var_map.at(key); return var_vec[index]; } template static T *GetVarValue1(const string &key, const VariableNameMap &var_map, const Scope &scope) { PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0, "%s is not contained in var_map", key.c_str()) auto var_vec = var_map.at(key); if (!var_vec.empty()) { auto var = scope.FindVar(var_vec[1]); return var->GetMutable(); } else { return nullptr; } } template static vector GetMultiVarValue(const string &key, const VariableNameMap &var_map, const Scope &scope) { auto var_vecs = var_map.at(key); assert(var_vecs.size() > 1); vector var_res; for (auto &var_vec : var_vecs) { auto var = scope.FindVar(var_vec); var_res.push_back(var->GetMutable()); } return var_res; } }; #ifdef CONV_OP template class ConvParam : OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_ = OutputFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); } const RType *Input() const { return input_; } RType *Filter() const { return filter_; } RType *Output() const { return output_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } private: RType *input_; RType *output_; RType *filter_; vector strides_; vector paddings_; vector dilations_; int groups; }; template Print &operator<<(Print &printer, const ConvParam &conv_param); #endif template class ElementwiseAddParam : OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: ElementwiseAddParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); input_y_ = InputYFrom(inputs, scope); out_ = OutFrom(outputs, scope); axis_ = GetAttr("axis", attrs); } const GType *InputX() const { return input_x_; } const GType *InputY() const { return input_y_; } GType *Out() const { return out_; } const int &Axis() const { return axis_; } private: GType *input_x_; GType *input_y_; GType *out_; int axis_; #ifdef PADDLE_MOBILE_FPGA private: fpga::EWAddArgs fpga_EW_add_args; public: const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; } void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; } #endif }; #ifdef FUSION_ELEMENTWISEADDRELU_OP template using ElementwiseAddReluParam = ElementwiseAddParam; #endif #ifdef MUL_OP template class MulParam : OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); input_y_ = InputYFrom(inputs, scope); out_ = OutFrom(outputs, scope); x_num_col_dims_ = GetAttr("x_num_col_dims", attrs); y_num_col_dims_ = GetAttr("y_num_col_dims", attrs); } const GType *InputX() const { return input_x_; } const GType *InputY() const { return input_y_; } GType *Out() const { return out_; } const int &XNumColDims() const { return x_num_col_dims_; } const int &YNumColDims() const { return y_num_col_dims_; } private: GType *input_x_; GType *input_y_; GType *out_; int x_num_col_dims_; int y_num_col_dims_; }; #endif #ifdef CONCAT_OP template class ConcatParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { inputs_ = InputMultiFrom(inputs, scope); out_ = OutFrom(outputs, scope); axis_ = GetAttr("axis", attrs); } vector Inputs() const { return inputs_; } GType *Out() const { return out_; } const int &Axis() const { return axis_; } private: vector inputs_; GType *out_; int axis_; #ifdef PADDLE_MOBILE_FPGA private: fpga::ConcatArgs fpga_concat_args; public: const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; } void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; } #endif }; #endif #ifdef LRN_OP template class LrnParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); mid_out_ = MidOutFrom(outputs, scope); n_ = GetAttr("n", attrs); alpha_ = GetAttr("alpha", attrs); beta_ = GetAttr("beta", attrs); k_ = GetAttr("k", attrs); data_format_ = GetAttr("data_format", attrs); } const RType *InputX() const { return input_x_; } RType *Out() const { return out_; } RType *MidOut() const { return mid_out_; } const int &N() const { return n_; } const float &Alpha() const { return alpha_; } const float &Beta() const { return beta_; } const float &K() const { return k_; } const string &DataFormat() const { return data_format_; } private: RType *input_x_; RType *out_; RType *mid_out_; int n_; float alpha_; float beta_; float k_; string data_format_; }; #endif #ifdef BATCHNORM_OP template class BatchNormParam : OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); output_y_ = OutputYFrom(outputs, scope); input_bias_ = InputBiasFrom(inputs, scope); input_mean_ = InputMeanFrom(inputs, scope); input_scale_ = InputScaleFrom(inputs, scope); input_variance_ = InputVarianceFrom(inputs, scope); epsilon_ = GetAttr("epsilon", attrs); momentum_ = GetAttr("momentum", attrs); // is_test_ = GetAttr("is_test", attrs); } const RType *InputX() const { return input_x_; } RType *OutputY() const { return output_y_; } const RType *InputBias() const { return input_bias_; } const RType *InputMean() const { return input_mean_; } const RType *InputScale() const { return input_scale_; } const RType *InputVariance() const { return input_variance_; } const float &Epsilon() const { return epsilon_; } const float &Momentum() const { return momentum_; } const bool &IsTest() const { return is_test_; } const string &DataFormat() const { return data_format_; } private: RType *input_x_; RType *output_y_; RType *input_bias_; RType *input_mean_; RType *input_scale_; RType *input_variance_; float epsilon_; float momentum_; bool is_test_; string data_format_; }; #endif #ifdef POOL_OP template class PoolParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_ = InputXFrom(inputs, scope); output_ = OutFrom(outputs, scope); pooling_type_ = GetAttr("pooling_type", attrs); ksize_ = GetAttr>("ksize", attrs); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); ceil_mode_ = GetAttr("ceil_mode", attrs); global_pooling_ = GetAttr("global_pooling", attrs); } const RType *Input() const { return input_; } RType *Output() const { return output_; } const string &PoolingType() const { return pooling_type_; } const vector &Ksize() const { return ksize_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } bool isCeilMode() const { return ceil_mode_; } bool isGlobalPooling() const { return global_pooling_; } private: RType *input_; RType *output_; string pooling_type_; vector ksize_; vector strides_; vector paddings_; bool ceil_mode_; bool global_pooling_ = false; #ifdef PADDLE_MOBILE_FPGA private: fpga::PoolingArgs fpga_pool_args; public: const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; } void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; } #endif }; #endif #ifdef PRIORBOX_OP template class PriorBoxParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_ = InputFrom(inputs, scope); input_image_ = InputImageFrom(inputs, scope); output_boxes_ = OutputBoxesFrom(outputs, scope); output_variances_ = OutputVariancesFrom(outputs, scope); min_sizes_ = GetAttr>("min_sizes", attrs); max_sizes_ = GetAttr>("max_sizes", attrs); aspect_ratios_ = GetAttr>("aspect_ratios", attrs); variances_ = GetAttr>("variances", attrs); flip_ = GetAttr("flip", attrs); clip_ = GetAttr("clip", attrs); step_w_ = GetAttr("step_w", attrs); step_h_ = GetAttr("step_h", attrs); offset_ = GetAttr("offset", attrs); } const RType *Input() const { return input_; } const RType *InputImage() const { return input_image_; } RType *OutputBoxes() const { return output_boxes_; } RType *OutputVariances() const { return output_variances_; } const vector &MinSizes() const { return min_sizes_; } const vector &MaxSizes() const { return max_sizes_; } const vector &AspectRatios() const { return aspect_ratios_; } const vector &Variances() const { return variances_; } const bool &Flip() const { return flip_; } const bool &Clip() const { return clip_; } const float &StepW() const { return step_w_; } const float &StepH() const { return step_h_; } const float &Offset() const { return offset_; } private: RType *input_; RType *input_image_; RType *output_boxes_; RType *output_variances_; vector min_sizes_; vector max_sizes_; vector aspect_ratios_; vector variances_; bool flip_; bool clip_; float step_w_; float step_h_; float offset_; }; #endif #ifdef BOXCODER_OP template class BoxCoderParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_priorbox_ = InputPriorBoxFrom(inputs, scope); input_priorboxvar_ = InputPriorBoxVarFrom(inputs, scope); input_targetbox_ = InputTargetBoxFrom(inputs, scope); output_box_ = OutputBoxFrom(outputs, scope); code_type_ = GetAttr("code_type", attrs); } const RType *InputPriorBox() const { return input_priorbox_; } const RType *InputPriorBoxVar() const { return input_priorboxvar_; } const RType *InputTargetBox() const { return input_targetbox_; } RType *OutputBox() const { return output_box_; } const std::string &CodeType() const { return code_type_; } private: RType *input_priorbox_; RType *input_priorboxvar_; RType *input_targetbox_; RType *output_box_; std::string code_type_; }; #endif #ifdef SOFTMAX_OP template class SoftmaxParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); } const RType *InputX() const { return input_x_; } RType *Out() const { return out_; } private: RType *input_x_; RType *out_; #ifdef PADDLE_MOBILE_FPGA private: std::shared_ptr float_input_x_; fpga::BypassArgs fpga_bypass_args; public: RType *FloatInput() { return float_input_x_ == nullptr ? input_x_ : float_input_x_.get(); } void SetFloatInput(Tensor *input) { float_input_x_.reset(input); } const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; } void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; } #endif }; #endif #ifdef SIGMOID_OP template class SigmoidParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); } const RType *InputX() const { return input_x_; } RType *Out() const { return out_; } private: RType *input_x_; RType *out_; }; #endif #ifdef MULTICLASSNMS_OP template class MultiClassNMSParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: MultiClassNMSParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_bboxes_ = InputBBoxesFrom(inputs, scope); input_scores_ = InputScoresFrom(inputs, scope); out_ = OutFrom(outputs, scope); background_label_ = GetAttr("background_label", attrs); nms_top_k_ = GetAttr("nms_top_k", attrs); keep_top_k_ = GetAttr("keep_top_k", attrs); nms_threshold_ = GetAttr("nms_threshold", attrs); nms_eta_ = GetAttr("nms_eta", attrs); score_threshold_ = GetAttr("score_threshold", attrs); } const RType *InputBBoxes() const { return input_bboxes_; } const RType *InputScores() const { return input_scores_; } RType *Out() const { return out_; } const int &BackGroundLabel() const { return background_label_; } const int &NMSTopK() const { return nms_top_k_; } const int &KeepTopK() const { return keep_top_k_; } const float &NMSThreshold() const { return nms_threshold_; } const float &NMSEta() const { return nms_eta_; } const float &ScoreThreshold() const { return score_threshold_; } private: RType *input_bboxes_; RType *input_scores_; RType *out_; int background_label_; int nms_top_k_; int keep_top_k_; float nms_threshold_; float nms_eta_; float score_threshold_; }; #endif template class FeedParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, Scope *scope) { input_x_ = InputXFrom(inputs, *scope); out_ = OutFrom(outputs, *scope); auto var = scope->Var("batch_size"); batch_size = var->GetValue(); } const GType *InputX() const { return input_x_; } GType *Out() const { return out_; } const int BatchSize() const { return batch_size; } private: GType *input_x_; GType *out_; int batch_size; }; template class FetchParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); } const RType *InputX() const { return input_x_; } RType *Out() const { return out_; } private: RType *input_x_; RType *out_; }; #ifdef TRANSPOSE_OP template class TransposeParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); axis_ = GetAttr>("axis", attrs); } const RType *InputX() const { return input_x_; } RType *Out() const { return out_; } const vector &Axis() const { return axis_; } private: RType *input_x_; RType *out_; vector axis_; }; #endif #ifdef LOOKUP_OP template class LookupParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_w_ = InputWFrom(inputs, scope); input_ids_ = InputIdsFrom(inputs, scope); out_ = OutFrom(outputs, scope); padding_idx_ = GetAttr("padding_idx", attrs); } const GType *InputW() const { return input_w_; } const GType *InputIds() const { return input_ids_; } GType *Out() const { return out_; } int64_t PaddingIdx() const { return padding_idx_; } private: GType *input_w_; GType *input_ids_; GType *out_; int64_t padding_idx_; }; #endif #ifdef CRF_OP template class CrfParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: // {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}}, CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { // todo crf params input_emission_ = InputEmissionFrom(inputs, scope); input_transition_ = InputTransitionFrom(inputs, scope); input_label_ = InputLabelFrom(inputs, scope); output_viterbipath_ = OutputViterbiPathFrom(outputs, scope); // padding_idx_ = GetAttr("padding_idx", attrs); } const GType *InputEmission() const { return input_emission_; } const GType *InputTransition() const { return input_transition_; } const GType *InputLabel() const { return input_label_; } GType *outputVBP() const { return output_viterbipath_; } // const RType *InputIds() const { return input_ids_; } // RType *Out() const { return out_; } // int64_t PaddingIdx() const { return padding_idx_; } private: GType *input_emission_; GType *input_transition_; GType *input_label_; GType *output_viterbipath_; // RType *input_ids_; // RType *out_; // int64_t padding_idx_; }; #endif #ifdef RESHAPE_OP template class ReshapeParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); input_shape_ = InputShapeFrom(inputs, scope); out_ = OutFrom(outputs, scope); shape_ = GetAttr>("shape", attrs); if (HasAttr("inplace", attrs)) { inplace_ = GetAttr("inplace", attrs); } else { inplace_ = false; DLOG << "ReshapeParam lost inplace params. maybe fluid updated"; } } const RType *InputX() const { return input_x_; } const RType *InputShape() const { return input_shape_; } RType *Out() const { return out_; } const vector &Shape() const { return shape_; } const bool &Inplace() const { return inplace_; } private: RType *input_x_; RType *input_shape_; RType *out_; vector shape_; bool inplace_; }; #endif #ifdef SCALE_OP template class ScaleParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); input_bias_ = InputBiasFrom(inputs, scope); out_ = OutFrom(outputs, scope); inplace_ = GetAttr("inplace", attrs); has_bias_ = GetAttr("has_bias", attrs); scales_ = GetAttr>("scales", attrs); biases_ = GetAttr>("biases", attrs); } const RType *InputX() const { return input_x_; } const RType *InputBias() const { return input_bias_; } RType *Out() const { return out_; } const bool &Inplace() const { return inplace_; } const bool &HasBias() const { return has_bias_; } const vector &Scales() const { return scales_; } const vector &Biases() const { return biases_; } private: RType *input_x_; RType *input_bias_; RType *out_; bool inplace_; bool has_bias_; vector scales_; vector biases_; }; #endif #ifdef SLICE_OP template class SliceParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); input_shape_ = InputShapeFrom(inputs, scope); out_ = OutFrom(outputs, scope); axis_ = GetAttr("axis", attrs); slice_points_ = GetAttr>("slice_points", attrs); inplace_ = GetAttr("inplace", attrs); } const RType *InputX() const { return input_x_; } const RType *InputShape() const { return input_shape_; } RType *Out() const { return out_; } const int &Axis() const { return axis_; } const vector &SlicePoints() const { return slice_points_; } const bool &Inplace() const { return inplace_; } private: RType *input_x_; RType *input_shape_; RType *out_; int axis_; vector slice_points_; bool inplace_; }; #endif #ifdef RESIZE_OP template class ResizeParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); input_shape_ = InputShapeFrom(inputs, scope); out_ = OutFrom(outputs, scope); is_pyramid_test_ = GetAttr("is_pyramid_test", attrs); height_ = GetAttr("height", attrs); width_ = GetAttr("width", attrs); out_height_scale_ = GetAttr("out_height_scale", attrs); out_width_scale_ = GetAttr("out_width_scale", attrs); } const RType *InputX() const { return input_x_; } const RType *InputShape() const { return input_shape_; } RType *Out() const { return out_; } const bool &IsPyramidTest() const { return is_pyramid_test_; } const int &Height() const { return height_; } const int &Width() const { return width_; } const float &OutHeightScale() const { return out_height_scale_; } const float &OutWidthScale() const { return out_width_scale_; } private: RType *input_x_; RType *input_shape_; RType *out_; bool is_pyramid_test_; int height_; int width_; float out_height_scale_; float out_width_scale_; }; #endif #ifdef RELU_OP /* * @b op 层实例化好这个 param 传递给 kernel 层使用 * */ template class ReluParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); } const RType *InputX() const { return input_x_; } RType *Out() const { return out_; } private: RType *input_x_; RType *out_; }; #endif #ifdef PRELU_OP template class PReluParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { DLOG << "PReluParam inputs before"; input_x_ = InputXFrom(inputs, scope); alpha_ = InputAlphaFrom(inputs, scope); framework::DDim dims = alpha_->dims(); out_ = OutFrom(outputs, scope); mode_ = GetAttr("mode", attrs); DLOG << "PReluParam mode after" << mode_; } const RType *InputX() const { return input_x_; } const RType *InputAlpha() const { return alpha_; } RType *Out() const { return out_; } const std::string &Mode() const { return mode_; } private: RType *input_x_; RType *out_; RType *alpha_; std::string mode_; }; #endif template class FusionFcParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); input_y_ = InputYFrom(inputs, scope); input_z_ = InputZFrom(inputs, scope); out_ = OutFrom(outputs, scope); x_num_col_dims_ = GetAttr("x_num_col_dims", attrs); y_num_col_dims_ = GetAttr("y_num_col_dims", attrs); axis_ = GetAttr("axis", attrs); } const GType *InputX() const { return input_x_; } const RType *InputY() const { return input_y_; } const RType *InputZ() const { return input_z_; } GType *Out() const { return out_; } const int &XNumColDims() const { return x_num_col_dims_; } const int &YNumColDims() const { return y_num_col_dims_; } const int &Axis() const { return axis_; } private: GType *input_x_; RType *input_y_; RType *input_z_; GType *out_; int x_num_col_dims_; int y_num_col_dims_; int axis_; #ifdef PADDLE_MOBILE_FPGA private: fpga::WrapperConvArgs fpga_conv_args; public: const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; } void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; } #endif }; #ifdef FUSION_FCRELU_OP template using FusionFcReluParam = FusionFcParam; #endif template class FusionConvAddParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FusionConvAddParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { bias_ = InputYFrom(inputs, scope); axis_ = GetAttr("axis", attrs); filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_ = OutFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); } RType *Bias() const { return bias_; } const int &Axis() const { return axis_; } const RType *Input() const { return input_; } const RType *Filter() const { return filter_; } RType *Output() const { return output_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } protected: RType *bias_; int axis_; RType *input_; RType *output_; RType *filter_; vector strides_; vector paddings_; vector dilations_; int groups; #ifdef PADDLE_MOBILE_FPGA private: fpga::WrapperConvArgs fpga_conv_args; public: const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; } void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; } #endif }; template Print &operator<<(Print &printer, const FusionConvAddParam &conv_param); #ifdef FUSION_CONVADDRELU_OP template class FusionConvAddReluParam : public FusionConvAddParam { public: FusionConvAddReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) : FusionConvAddParam(inputs, outputs, attrs, scope) {} }; #endif #ifdef FUSION_CONVADDPRELU_OP template class FusionConvAddPReluParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FusionConvAddPReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { alpha_ = InputAlphaFrom(inputs, scope); mode_ = GetAttr("mode", attrs); framework::DDim dims = alpha_->dims(); bias_ = InputYFrom(inputs, scope); axis_ = GetAttr("axis", attrs); filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_ = OutFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); } const RType *InputAlpha() const { return alpha_; } const std::string &Mode() const { return mode_; } RType *Bias() const { return bias_; } const int &Axis() const { return axis_; } const RType *Input() const { return input_; } const RType *Filter() const { return filter_; } RType *Output() const { return output_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } protected: RType *bias_; int axis_; RType *input_; RType *output_; RType *filter_; vector strides_; vector paddings_; vector dilations_; int groups; RType *alpha_; std::string mode_; #ifdef PADDLE_MOBILE_FPGA private: fpga::WrapperConvArgs fpga_conv_args; public: const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; } void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; } #endif }; #endif #ifdef FUSION_CONVADDADDPRELU_OP template class FusionConvAddAddPReluParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FusionConvAddAddPReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { bias1_ = InputYFrom1(inputs, scope); alpha_ = InputAlphaFrom(inputs, scope); mode_ = GetAttr("mode", attrs); framework::DDim dims = alpha_->dims(); bias_ = InputYFrom(inputs, scope); axis_ = GetAttr("axis", attrs); filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_ = OutFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); keyOutput_ = getkey("addOut", inputs, 0); keyX1_ = getkey("addX", inputs, 1); keyY1_ = getkey("Y", inputs, 1); if (keyX1_ == keyOutput_) { bias1_ = InputYFrom1(inputs, scope); } else if (keyY1_ == keyOutput_) { bias1_ = InputXFrom1(inputs, scope); } } const RType *InputAlpha() const { return alpha_; } const std::string &Mode() const { return mode_; } const RType *Bias1() const { return bias1_; } RType *Bias() const { return bias_; } const int &Axis() const { return axis_; } const RType *Input() const { return input_; } const RType *Filter() const { return filter_; } RType *Output() const { return output_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } protected: RType *bias_; int axis_; RType *input_; RType *output_; RType *filter_; vector strides_; vector paddings_; vector dilations_; int groups; RType *alpha_; std::string mode_; RType *bias1_; std::string keyOutput_; std::string keyX1_; std::string keyY1_; #ifdef PADDLE_MOBILE_FPGA private: fpga::WrapperConvArgs fpga_conv_args; public: const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; } void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; } #endif }; #endif #ifdef FUSION_CONVADDBNRELU_OP template class FusionConvAddBNReluParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FusionConvAddBNReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { bias_ = InputYFrom(inputs, scope); axis_ = GetAttr("axis", attrs); filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_ = OutFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); input_bias_ = InputBiasFrom(inputs, scope); input_mean_ = InputMeanFrom(inputs, scope); input_scale_ = InputScaleFrom(inputs, scope); input_variance_ = InputVarianceFrom(inputs, scope); epsilon_ = GetAttr("epsilon", attrs); momentum_ = GetAttr("momentum", attrs); // is_test_ = GetAttr("is_test", attrs); } RType *Bias() const { return bias_; } const int &Axis() const { return axis_; } const RType *Input() const { return input_; } const RType *Filter() const { return filter_; } RType *Output() const { return output_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } const RType *InputBias() const { return input_bias_; } const RType *InputMean() const { return input_mean_; } const RType *InputScale() const { return input_scale_; } const RType *InputVariance() const { return input_variance_; } const float &Epsilon() const { return epsilon_; } const float &Momentum() const { return momentum_; } const bool &IsTest() const { return is_test_; } void SetNewScale(RType *new_scale) { new_scale_ = new_scale; } void SetNewBias(RType *new_bias) { new_bias_ = new_bias; } const RType *NewScale() const { return new_scale_; } const RType *NewBias() const { return new_bias_; } protected: RType *bias_; int axis_; RType *input_; RType *output_; RType *filter_; vector strides_; vector paddings_; vector dilations_; int groups; RType *input_bias_; RType *input_mean_; RType *input_scale_; RType *input_variance_; float epsilon_; float momentum_; bool is_test_; RType *new_bias_; RType *new_scale_; #ifdef PADDLE_MOBILE_FPGA private: fpga::WrapperConvArgs fpga_conv_args; public: const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; } void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; } #endif }; #endif #ifdef FUSION_CONVBNADDRELU_OP template class FusionConvBNAddReluParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FusionConvBNAddReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { bias_ = InputYFrom(inputs, scope); axis_ = GetAttr("axis", attrs); filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_ = OutFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); input_bias_ = InputBiasFrom(inputs, scope); input_mean_ = InputMeanFrom(inputs, scope); input_scale_ = InputScaleFrom(inputs, scope); input_variance_ = InputVarianceFrom(inputs, scope); epsilon_ = GetAttr("epsilon", attrs); momentum_ = GetAttr("momentum", attrs); keyBNY_ = getkey("BNY", inputs, 0); keyX_ = getkey("X", inputs, 0); keyY_ = getkey("Y", inputs, 0); if (keyX_ == keyBNY_) { bias_ = InputYFrom(inputs, scope); } else if (keyY_ == keyBNY_) { bias_ = InputXFrom(inputs, scope); } // is_test_ = GetAttr("is_test", attrs); } RType *Bias() const { return bias_; } const int &Axis() const { return axis_; } const RType *Input() const { return input_; } const RType *Filter() const { return filter_; } RType *Output() const { return output_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } const RType *InputBias() const { return input_bias_; } const RType *InputMean() const { return input_mean_; } const RType *InputScale() const { return input_scale_; } const RType *InputVariance() const { return input_variance_; } const float &Epsilon() const { return epsilon_; } const float &Momentum() const { return momentum_; } const bool &IsTest() const { return is_test_; } void SetNewScale(RType *new_scale) { new_scale_ = new_scale; } void SetNewBias(RType *new_bias) { new_bias_ = new_bias; } const RType *NewScale() const { return new_scale_; } const RType *NewBias() const { return new_bias_; } protected: RType *bias_; int axis_; RType *input_; RType *output_; RType *filter_; vector strides_; vector paddings_; vector dilations_; int groups; RType *input_bias_; RType *input_mean_; RType *input_scale_; RType *input_variance_; float epsilon_; float momentum_; bool is_test_; RType *new_bias_; RType *new_scale_; std::string keyBNY_; std::string keyX_; std::string keyY_; #ifdef PADDLE_MOBILE_FPGA private: fpga::WrapperConvArgs fpga_conv_args; public: const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; } void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; } #endif }; #endif #ifdef FUSION_CONVBN_OP template class FusionConvBNParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FusionConvBNParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_y_ = OutputYFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); input_bias_ = InputBiasFrom(inputs, scope); input_mean_ = InputMeanFrom(inputs, scope); input_scale_ = InputScaleFrom(inputs, scope); input_variance_ = InputVarianceFrom(inputs, scope); epsilon_ = GetAttr("epsilon", attrs); momentum_ = GetAttr("momentum", attrs); // is_test_ = GetAttr("is_test", attrs); } const RType *Input() const { return input_; } const RType *Filter() const { return filter_; } RType *Output() const { return output_y_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } const RType *InputBias() const { return input_bias_; } const RType *InputMean() const { return input_mean_; } const RType *InputScale() const { return input_scale_; } const RType *InputVariance() const { return input_variance_; } const float &Epsilon() const { return epsilon_; } const float &Momentum() const { return momentum_; } const bool &IsTest() const { return is_test_; } void SetNewScale(RType *new_scale) { new_scale_ = new_scale; } void SetNewBias(RType *new_bias) { new_bias_ = new_bias; } const RType *NewScale() const { return new_scale_; } const RType *NewBias() const { return new_bias_; } protected: RType *input_; RType *output_y_; RType *filter_; vector strides_; vector paddings_; vector dilations_; int groups; RType *input_bias_; RType *input_mean_; RType *input_scale_; RType *input_variance_; float epsilon_; float momentum_; bool is_test_; RType *new_bias_; RType *new_scale_; #ifdef PADDLE_MOBILE_FPGA private: fpga::WrapperConvArgs fpga_conv_args; public: const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; } void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; } #endif }; #endif #ifdef FUSION_CONVADDBN_OP template class FusionConvAddBNParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FusionConvAddBNParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { bias_ = InputYFrom(inputs, scope); axis_ = GetAttr("axis", attrs); filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_y_ = OutputYFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); input_bias_ = InputBiasFrom(inputs, scope); input_mean_ = InputMeanFrom(inputs, scope); input_scale_ = InputScaleFrom(inputs, scope); input_variance_ = InputVarianceFrom(inputs, scope); epsilon_ = GetAttr("epsilon", attrs); momentum_ = GetAttr("momentum", attrs); // is_test_ = GetAttr("is_test", attrs); } RType *Bias() const { return bias_; } const int &Axis() const { return axis_; } const RType *Input() const { return input_; } const RType *Filter() const { return filter_; } RType *Output() const { return output_y_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } const RType *InputBias() const { return input_bias_; } const RType *InputMean() const { return input_mean_; } const RType *InputScale() const { return input_scale_; } const RType *InputVariance() const { return input_variance_; } const float &Epsilon() const { return epsilon_; } const float &Momentum() const { return momentum_; } const bool &IsTest() const { return is_test_; } void SetNewScale(RType *new_scale) { new_scale_ = new_scale; } void SetNewBias(RType *new_bias) { new_bias_ = new_bias; } const RType *NewScale() const { return new_scale_; } const RType *NewBias() const { return new_bias_; } protected: RType *bias_; int axis_; RType *input_; RType *output_y_; RType *filter_; vector strides_; vector paddings_; vector dilations_; int groups; RType *input_bias_; RType *input_mean_; RType *input_scale_; RType *input_variance_; float epsilon_; float momentum_; bool is_test_; RType *new_bias_; RType *new_scale_; #ifdef PADDLE_MOBILE_FPGA private: fpga::WrapperConvArgs fpga_conv_args; public: const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; } void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; } #endif }; #endif #ifdef FUSION_DWCONVBNRELU_OP template class FusionDWConvBNReluParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FusionDWConvBNReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_ = OutFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); input_bias_ = InputBiasFrom(inputs, scope); input_mean_ = InputMeanFrom(inputs, scope); input_scale_ = InputScaleFrom(inputs, scope); input_variance_ = InputVarianceFrom(inputs, scope); epsilon_ = GetAttr("epsilon", attrs); momentum_ = GetAttr("momentum", attrs); // is_test_ = GetAttr("is_test", attrs); } const RType *Input() const { return input_; } const RType *Filter() const { return filter_; } RType *Output() const { return output_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } const RType *InputBias() const { return input_bias_; } const RType *InputMean() const { return input_mean_; } const RType *InputScale() const { return input_scale_; } const RType *InputVariance() const { return input_variance_; } const float &Epsilon() const { return epsilon_; } const float &Momentum() const { return momentum_; } const bool &IsTest() const { return is_test_; } void SetNewScale(RType *new_scale) { new_scale_ = new_scale; } void SetNewBias(RType *new_bias) { new_bias_ = new_bias; } const RType *NewScale() const { return new_scale_; } const RType *NewBias() const { return new_bias_; } protected: RType *input_; RType *output_; RType *filter_; vector strides_; vector paddings_; vector dilations_; int groups; RType *input_bias_; RType *input_mean_; RType *input_scale_; RType *input_variance_; float epsilon_; float momentum_; bool is_test_; RType *new_bias_; RType *new_scale_; }; #endif #ifdef FUSION_CONVBNRELU_OP template class FusionConvBNReluParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FusionConvBNReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_ = OutFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); input_bias_ = InputBiasFrom(inputs, scope); input_mean_ = InputMeanFrom(inputs, scope); input_scale_ = InputScaleFrom(inputs, scope); input_variance_ = InputVarianceFrom(inputs, scope); epsilon_ = GetAttr("epsilon", attrs); momentum_ = GetAttr("momentum", attrs); // is_test_ = GetAttr("is_test", attrs); } const RType *Input() const { return input_; } const RType *Filter() const { return filter_; } RType *Output() const { return output_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } const RType *InputBias() const { return input_bias_; } const RType *InputMean() const { return input_mean_; } const RType *InputScale() const { return input_scale_; } const RType *InputVariance() const { return input_variance_; } const float &Epsilon() const { return epsilon_; } const float &Momentum() const { return momentum_; } const bool &IsTest() const { return is_test_; } void SetNewScale(RType *new_scale) { new_scale_ = new_scale; } void SetNewBias(RType *new_bias) { new_bias_ = new_bias; } const RType *NewScale() const { return new_scale_; } const RType *NewBias() const { return new_bias_; } protected: RType *input_; RType *output_; RType *filter_; vector strides_; vector paddings_; vector dilations_; int groups; RType *input_bias_; RType *input_mean_; RType *input_scale_; RType *input_variance_; float epsilon_; float momentum_; bool is_test_; RType *new_bias_; RType *new_scale_; #ifdef PADDLE_MOBILE_FPGA private: fpga::WrapperConvArgs fpga_conv_args; public: const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; } void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; } #endif }; #endif #ifdef IM2SEQUENCE_OP template class Im2SequenceParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: Im2SequenceParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); kernels_ = GetAttr>("kernels", attrs); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); } const RType *Input() const { return input_x_; } RType *Output() const { return out_; } const vector &Kernels() const { return kernels_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } private: RType *input_x_; RType *out_; vector kernels_; vector strides_; vector paddings_; }; #endif #ifdef DROPOUT_OP template class DropoutParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); dropout_prob_ = GetAttr("dropout_prob", attrs); } const RType *InputX() const { return input_x_; } RType *Out() const { return out_; } float DropoutProb() const { return dropout_prob_; } private: RType *input_x_; RType *out_; float dropout_prob_; }; #endif #ifdef CONV_TRANSPOSE template class ConvTransposeParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: ConvTransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_ = OutputFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); } const RType *Input() const { return input_; } const RType *Filter() const { return filter_; } RType *Output() const { return output_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } private: RType *input_; RType *output_; RType *filter_; vector strides_; vector paddings_; vector dilations_; int groups; }; #endif #ifdef GRU_OP template class GruParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; public: /** * * @param inputs * @param outputs * @param attrs * @param scope * */ GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_input_ = InputFrom(inputs, scope); input_h0_ = InputH0From(inputs, scope); input_bias_ = InputBiasFrom(inputs, scope); input_weight_ = InputWeightFrom(inputs, scope); output_batch_gate_ = OutputBatchGateFrom(outputs, scope); output_batch_reset_hidden_prev_ = OutputBatchResetHiddenPrevFrom(outputs, scope); output_batch_hidden_ = OutputBatchHiddenFrom(outputs, scope); output_hidden_ = OutputHiddenFrom(outputs, scope); activation_ = GetAttr("activation", attrs); gate_activation_ = GetAttr("gate_activation", attrs); is_reverse_ = GetAttr("is_reverse", attrs); } const GType *InputInput() const { return input_input_; } const GType *InputWeight() const { return input_weight_; } const GType *InputH0() const { return input_h0_; } const GType *InputBias() const { return input_bias_; } const std::string &Activation() const { return activation_; } const std::string &GateActivation() const { return gate_activation_; } const bool &IsReverse() const { return is_reverse_; } GType *OutBatchGate() const { return output_batch_gate_; } GType *OutBatchResetHiddenPrev() const { return output_batch_reset_hidden_prev_; } GType *OutBatchHidden() const { return output_batch_hidden_; } GType *OutHidden() const { return output_hidden_; } private: GType *input_input_; GType *input_h0_; GType *input_bias_; GType *input_weight_; GType *output_batch_gate_; GType *output_batch_reset_hidden_prev_; GType *output_batch_hidden_; GType *output_hidden_; std::string activation_; std::string gate_activation_; bool is_reverse_; }; #endif #ifdef FLATTEN_OP template class FlattenParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); axis = GetAttr("axis", attrs); } const RType *InputX() const { return input_x_; } RType *Out() const { return out_; } const int &Axis() const { return axis; } private: RType *input_x_; RType *out_; int axis; }; #endif #ifdef SPLIT_OP template class SplitParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); outs_ = OutMultiFrom(outputs, scope); axis = GetAttr("axis", attrs); num = GetAttr("num", attrs); sections = GetAttr>("sections", attrs); // for (int i = 0; i < outs_.size(); ++i) { // out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable()); // } } const RType *InputX() const { return input_x_; } std::vector Outs() const { return outs_; } int Axis() const { return axis; } int Num() const { return num; } std::vector Sections() const { return sections; } // std::vector OutTs() const { return out_ts_; } private: RType *input_x_; std::vector outs_; int axis; int num; std::vector sections; // std::vector out_ts_; }; #endif #ifdef BILINEAR_INTERP_OP template class BilinearInterpParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: BilinearInterpParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_x_ = InputXFrom(inputs, scope); input_outsize_ = InputOutSizeFrom(inputs, scope); out_ = OutFrom(outputs, scope); out_h_ = GetAttr("out_h", attrs); out_w_ = GetAttr("out_w", attrs); } const RType *InputX() const { return input_x_; } const RType *InputOutPutSize() const { return input_outsize_; } RType *Out() const { return out_; } int OutH() const { return out_h_; } int OutW() const { return out_w_; } private: RType *input_x_; RType *input_outsize_; RType *out_; int out_h_; int out_w_; }; #endif #ifdef SHAPE_OP template class ShapeParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_ = InputFrom(inputs, scope); out_ = OutFrom(outputs, scope); } const RType *Input() const { return input_; } RType *Out() const { return out_; } private: RType *input_; RType *out_; }; #endif template class QuantizeParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); if (HasAttr("is_static", attrs)) { is_static_ = GetAttr("is_static", attrs); } // online // scale = max(abs(x)) online_scale_ = GetVarValue("OutScale", outputs, scope); if (HasAttr("is_signed", attrs)) { is_signed_ = GetAttr("signed", attrs); } if (HasAttr("mantissa", attrs)) { mantissa_bits_ = GetAttr("mantissa", attrs); } // offline if (HasAttr("static_scale", attrs)) { static_scale_ = GetAttr("static_scale", attrs); } // x = round(scale * x) if (HasAttr("round_type", attrs)) { round_type_ = GetAttr("round_type", attrs); } } public: // op input RType *input_; // op output RType *out_; // RType *online_scale_; // signed quantize or unsigned quantize bool is_signed_ = true; // mantissa bit width // for int8, mantissa bits is 7 int mantissa_bits_ = 7; // if static scale or not bool is_static_ = false; // quantize scale float static_scale_ = 1.0f; // round method type // nearest_zero and nearest_even is valid currently RoundType round_type_ = ROUND_NEAREST_TO_EVEN; }; template class DequantizeParam : public OpParam { typedef typename DtypeTensorTrait::gtype GType; typedef typename DtypeTensorTrait::rtype RType; public: DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs, const Scope &scope) { input_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); activation_scale_ = GetVarValue("Scale", inputs, scope); // dequantization is performed as x = x / static_scale / online_scale if (HasAttr("weight_scale", attrs)) { weight_scale_ = GetAttr("weight_scale", attrs); } else { weight_scale_ = GetAttr("max_range", attrs); } } public: // op input RType *input_; // op output RType *out_; RType *activation_scale_; float weight_scale_; }; } // namespace operators } // namespace paddle_mobile