op_param.h 69.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
74
class OpParam {
朔-望's avatar
朔-望 已提交
75
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
80 81 82 83 84
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

85 86 87 88 89 90 91 92 93
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
94 95 96 97 98
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

126 127 128 129
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
130 131 132 133 134 135

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

136 137 138 139 140
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
141 142 143 144 145
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

146 147 148 149 150
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
151 152 153 154
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
155 156 157 158 159 160 161 162 163 164 165 166
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
167 168 169 170
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
187

E
eclipsess 已提交
188 189 190 191 192 193 194 195 196 197
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
198 199 200 201
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
202

203
  template <typename T>
W
wangliu 已提交
204 205
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
206 207 208
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
253 254 255 256 257 258
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
259 260 261 262 263
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
264 265 266 267 268 269
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

270 271 272 273 274 275 276 277 278 279 280
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
281
  static const T GetAttr(const string &key, const AttributeMap &map) {
282 283 284
    return ((Attribute)map.at(key)).Get<T>();
  }

285 286 287 288
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

289
  template <typename T>
W
wangliu 已提交
290
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
291
                        const Scope &scope) {
W
wangliu 已提交
292 293
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
294 295 296 297 298 299
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
300
    }
301
  }
朔-望's avatar
朔-望 已提交
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

323
  template <typename T>
W
wangliu 已提交
324 325 326
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
327 328
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
329
    vector<T *> var_res;
330 331 332
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
333
    }
334 335
    return var_res;
  }
朔-望's avatar
朔-望 已提交
336 337
};

L
liuruilong 已提交
338
#ifdef CONV_OP
N
nhzlx 已提交
339
template <typename Dtype>
朔-望's avatar
朔-望 已提交
340
class ConvParam : OpParam {
N
nhzlx 已提交
341 342 343
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
344
 public:
345
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
346
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
347 348 349
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
W
wangliu 已提交
350 351 352
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
353 354
    groups = GetAttr<int>("groups", attrs);
  }
朔-望's avatar
朔-望 已提交
355

N
nhzlx 已提交
356
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
357

N
nhzlx 已提交
358
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
359

N
nhzlx 已提交
360
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
361

W
wangliu 已提交
362
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
363

W
wangliu 已提交
364
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
365

W
wangliu 已提交
366
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
367

368
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
369

朔-望's avatar
朔-望 已提交
370
 private:
N
nhzlx 已提交
371 372 373
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
374 375 376
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
377
  int groups;
朔-望's avatar
朔-望 已提交
378
};
N
nhzlx 已提交
379 380
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
L
liuruilong 已提交
381
#endif
朔-望's avatar
朔-望 已提交
382

N
nhzlx 已提交
383
template <typename Dtype>
朔-望's avatar
朔-望 已提交
384
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
385 386 387
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
388
 public:
389
  ElementwiseAddParam(const VariableNameMap &inputs,
390 391
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
392 393 394
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
395 396 397
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
398
  const GType *InputX() const { return input_x_; }
399

xiebaiyuan's avatar
xiebaiyuan 已提交
400
  const GType *InputY() const { return input_y_; }
401

xiebaiyuan's avatar
xiebaiyuan 已提交
402
  GType *Out() const { return out_; }
403 404 405

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
406
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
407 408 409
  GType *input_x_;
  GType *input_y_;
  GType *out_;
410
  int axis_;
Z
zhangyang 已提交
411 412 413
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
414
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
415 416

 public:
H
hanbuhe 已提交
417 418
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
419
#endif
朔-望's avatar
朔-望 已提交
420 421
};

422
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
423 424
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
425 426 427
#endif

#ifdef MUL_OP
N
nhzlx 已提交
428
template <typename Dtype>
朔-望's avatar
朔-望 已提交
429
class MulParam : OpParam {
N
nhzlx 已提交
430 431 432
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
433
 public:
434
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
435
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
436 437 438
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
439 440 441
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
442

xiebaiyuan's avatar
xiebaiyuan 已提交
443
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
444

xiebaiyuan's avatar
xiebaiyuan 已提交
445
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
446

xiebaiyuan's avatar
xiebaiyuan 已提交
447
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
448

449
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
450

451
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
452

朔-望's avatar
朔-望 已提交
453
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
454 455 456
  GType *input_x_;
  GType *input_y_;
  GType *out_;
457 458
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
459
};
L
liuruilong 已提交
460
#endif
朔-望's avatar
朔-望 已提交
461

L
liuruilong 已提交
462
#ifdef CONCAT_OP
N
nhzlx 已提交
463
template <typename Dtype>
朔-望's avatar
朔-望 已提交
464
class ConcatParam : public OpParam {
N
nhzlx 已提交
465 466 467
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
468
 public:
469
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
470
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
471 472
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
473 474
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
475

N
nhzlx 已提交
476
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
477

xiebaiyuan's avatar
xiebaiyuan 已提交
478
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
479

480
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
481

朔-望's avatar
朔-望 已提交
482
 private:
N
nhzlx 已提交
483
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
484
  GType *out_;
485
  int axis_;
朔-望's avatar
朔-望 已提交
486
};
L
liuruilong 已提交
487
#endif
朔-望's avatar
朔-望 已提交
488

L
liuruilong 已提交
489
#ifdef LRN_OP
N
nhzlx 已提交
490
template <typename Dtype>
E
eclipsess 已提交
491
class LrnParam : public OpParam {
N
nhzlx 已提交
492 493 494
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
495
 public:
496
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
497
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
498 499 500
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
501 502 503 504
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
505
    data_format_ = GetAttr<string>("data_format", attrs);
506
  }
E
eclipsess 已提交
507

N
nhzlx 已提交
508
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
509

N
nhzlx 已提交
510
  RType *Out() const { return out_; }
E
eclipsess 已提交
511

N
nhzlx 已提交
512
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
513

514
  const int &N() const { return n_; }
E
eclipsess 已提交
515

516
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
517

518
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
519

520
  const float &K() const { return k_; }
E
eclipsess 已提交
521

W
wangliu 已提交
522
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
523

朔-望's avatar
朔-望 已提交
524
 private:
N
nhzlx 已提交
525 526 527
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
528 529 530 531
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
532
  string data_format_;
E
eclipsess 已提交
533
};
L
liuruilong 已提交
534 535 536
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
537
template <typename Dtype>
E
eclipsess 已提交
538
class BatchNormParam : OpParam {
N
nhzlx 已提交
539 540 541
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
542
 public:
543
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
544
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
545 546 547 548 549 550
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
551 552
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
553
    //    is_test_ = GetAttr<bool>("is_test", attrs);
554
  }
E
eclipsess 已提交
555

N
nhzlx 已提交
556
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
557

N
nhzlx 已提交
558
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
559

N
nhzlx 已提交
560
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
561

N
nhzlx 已提交
562
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
563

N
nhzlx 已提交
564
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
565

N
nhzlx 已提交
566
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
567

568
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
569

570
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
571

572
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
573

W
wangliu 已提交
574
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
575

朔-望's avatar
朔-望 已提交
576
 private:
N
nhzlx 已提交
577 578 579 580 581 582
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
583 584 585
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
586
  string data_format_;
E
eclipsess 已提交
587
};
L
liuruilong 已提交
588 589 590
#endif

#ifdef POOL_OP
N
nhzlx 已提交
591
template <typename Dtype>
592
class PoolParam : public OpParam {
N
nhzlx 已提交
593 594 595
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
596
 public:
597
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
598
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
599
    input_ = InputXFrom<GType>(inputs, scope);
600

N
nhzlx 已提交
601
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
602 603 604 605
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
606
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
607
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
608
  }
609

N
nhzlx 已提交
610
  const RType *Input() const { return input_; }
611

N
nhzlx 已提交
612
  RType *Output() const { return output_; }
613

W
wangliu 已提交
614
  const string &PoolingType() const { return pooling_type_; }
615

W
wangliu 已提交
616
  const vector<int> &Ksize() const { return ksize_; }
617

W
wangliu 已提交
618
  const vector<int> &Strides() const { return strides_; }
619

W
wangliu 已提交
620
  const vector<int> &Paddings() const { return paddings_; }
621

622
  bool isCeilMode() const { return ceil_mode_; }
623

Z
zhangyang 已提交
624
  bool isGlobalPooling() const { return global_pooling_; }
625

朔-望's avatar
朔-望 已提交
626
 private:
N
nhzlx 已提交
627 628
  RType *input_;
  RType *output_;
W
wangliu 已提交
629 630 631 632
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
633
  bool ceil_mode_;
634
  bool global_pooling_ = false;
Z
zhangyang 已提交
635
#ifdef PADDLE_MOBILE_FPGA
636 637

 private:
H
hanbuhe 已提交
638
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
639 640

 public:
H
hanbuhe 已提交
641 642
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
643
#endif
644
};
L
liuruilong 已提交
645 646 647
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
648
template <typename Dtype>
E
eclipsess 已提交
649
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
650 651 652
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
653 654
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
655
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
656 657 658 659
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
660 661 662 663
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
E
eclipsess 已提交
664 665 666 667 668 669
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
670
  const RType *Input() const { return input_; }
E
eclipsess 已提交
671

N
nhzlx 已提交
672
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
673

N
nhzlx 已提交
674
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
675

N
nhzlx 已提交
676
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
677

W
wangliu 已提交
678
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
679

W
wangliu 已提交
680
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
681

W
wangliu 已提交
682
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
683

W
wangliu 已提交
684
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
685 686 687 688 689 690 691 692 693 694 695 696

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

 private:
N
nhzlx 已提交
697 698 699 700
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
701 702 703 704
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
705 706 707 708 709 710
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
};
L
liuruilong 已提交
711
#endif
E
eclipsess 已提交
712

L
liuruilong 已提交
713
#ifdef BOXCODER_OP
N
nhzlx 已提交
714
template <typename Dtype>
E
eclipsess 已提交
715
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
716 717 718
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
719 720
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
721
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
722 723 724 725
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
726 727
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
728
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
729

N
nhzlx 已提交
730
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
731

N
nhzlx 已提交
732
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
733

N
nhzlx 已提交
734
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
735 736 737 738

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
739 740 741 742
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
743 744
  std::string code_type_;
};
L
liuruilong 已提交
745
#endif
W
wangliu 已提交
746

L
liuruilong 已提交
747
#ifdef SOFTMAX_OP
N
nhzlx 已提交
748
template <typename Dtype>
W
wangliu 已提交
749
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
750 751 752
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
753 754
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
755
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
756 757
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
758
  }
N
nhzlx 已提交
759 760
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
761 762

 private:
N
nhzlx 已提交
763 764
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
765 766 767 768

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
769
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
770 771 772
  fpga::BypassArgs fpga_bypass_args;

 public:
N
nhzlx 已提交
773
  RType *FloatInput() {
H
hanbuhe 已提交
774 775 776 777 778 779
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
780
};
L
liuruilong 已提交
781
#endif
W
wangliu 已提交
782

L
liuruilong 已提交
783
#ifdef SIGMOID_OP
N
nhzlx 已提交
784
template <typename Dtype>
W
wangliu 已提交
785
class SigmoidParam : public OpParam {
N
nhzlx 已提交
786 787 788
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
789 790
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
791
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
792 793
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
794
  }
N
nhzlx 已提交
795 796
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
797 798

 private:
N
nhzlx 已提交
799 800
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
801
};
L
liuruilong 已提交
802 803 804
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
805
template <typename Dtype>
E
eclipsess 已提交
806
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
807 808 809
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
810 811 812 813
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
814 815 816
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
817 818 819 820 821 822 823 824
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
825
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
826

N
nhzlx 已提交
827
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
828

N
nhzlx 已提交
829
  RType *Out() const { return out_; }
E
eclipsess 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
844 845 846
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
847 848 849 850 851 852 853
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
854
#endif
W
wangliu 已提交
855

N
nhzlx 已提交
856
template <typename Dtype>
L
liuruilong 已提交
857
class FeedParam : public OpParam {
N
nhzlx 已提交
858 859 860
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
861 862
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
863
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
864 865
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
866
    auto var = scope->Var("batch_size");
W
wangliu 已提交
867
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
868
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
869 870
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
871
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
872

L
liuruilong 已提交
873
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
874 875
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
876
  int batch_size;
L
liuruilong 已提交
877 878
};

N
nhzlx 已提交
879
template <typename Dtype>
L
liuruilong 已提交
880
class FetchParam : public OpParam {
N
nhzlx 已提交
881 882 883
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
884 885
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
886
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
887 888
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
889
  }
N
nhzlx 已提交
890 891
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
892

L
liuruilong 已提交
893
 private:
N
nhzlx 已提交
894 895
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
896 897
};

L
liuruilong 已提交
898
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
899
template <typename Dtype>
E
eclipsess 已提交
900
class TransposeParam : public OpParam {
N
nhzlx 已提交
901 902 903
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
904 905 906
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
907 908
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
909 910 911
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
912
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
913

N
nhzlx 已提交
914
  RType *Out() const { return out_; }
E
eclipsess 已提交
915 916 917 918

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
919 920
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
921 922
  vector<int> axis_;
};
L
liuruilong 已提交
923
#endif
E
eclipsess 已提交
924

xiebaiyuan's avatar
xiebaiyuan 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
991
#ifdef RESHAPE_OP
N
nhzlx 已提交
992
template <typename Dtype>
E
eclipsess 已提交
993
class ReshapeParam : public OpParam {
N
nhzlx 已提交
994 995 996
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
997 998 999
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1000 1001 1002
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1003
    shape_ = GetAttr<vector<int>>("shape", attrs);
1004 1005 1006 1007 1008 1009 1010

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1011 1012
  }

N
nhzlx 已提交
1013
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1014

N
nhzlx 已提交
1015
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1016

N
nhzlx 已提交
1017
  RType *Out() const { return out_; }
E
eclipsess 已提交
1018 1019 1020 1021 1022 1023

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1024 1025 1026
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1027 1028 1029
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1030
#endif
E
eclipsess 已提交
1031

T
Tian 已提交
1032
#ifdef SCALE_OP
N
nhzlx 已提交
1033
template <typename Dtype>
I
itminner 已提交
1034
class ScaleParam : public OpParam {
N
nhzlx 已提交
1035 1036 1037
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1038 1039 1040
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1041 1042 1043
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1044 1045 1046 1047 1048 1049
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1050
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1051

N
nhzlx 已提交
1052
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1053

N
nhzlx 已提交
1054
  RType *Out() const { return out_; }
I
itminner 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1065 1066 1067
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1068 1069 1070 1071 1072
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1073 1074 1075
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1076
template <typename Dtype>
I
itminner 已提交
1077
class SliceParam : public OpParam {
N
nhzlx 已提交
1078 1079 1080
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1081 1082 1083
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1084 1085 1086
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1087 1088 1089 1090 1091
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1092
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1093

N
nhzlx 已提交
1094
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1095

N
nhzlx 已提交
1096
  RType *Out() const { return out_; }
I
itminner 已提交
1097 1098 1099 1100 1101 1102 1103 1104

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1105 1106 1107
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1108 1109 1110 1111
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1112 1113 1114
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1115
template <typename Dtype>
T
Tian 已提交
1116
class ResizeParam : public OpParam {
N
nhzlx 已提交
1117 1118 1119
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1120 1121 1122
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1123 1124 1125
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1126 1127 1128 1129 1130 1131
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1132

N
nhzlx 已提交
1133
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1134

N
nhzlx 已提交
1135
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1136

N
nhzlx 已提交
1137
  RType *Out() const { return out_; }
T
Tian 已提交
1138

I
itminner 已提交
1139
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1140

I
itminner 已提交
1141
  const int &Height() const { return height_; }
T
Tian 已提交
1142

I
itminner 已提交
1143
  const int &Width() const { return width_; }
T
Tian 已提交
1144

I
itminner 已提交
1145
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1146

I
itminner 已提交
1147
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1148

I
itminner 已提交
1149
 private:
N
nhzlx 已提交
1150 1151 1152
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1153 1154 1155 1156 1157
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1158 1159 1160
};
#endif

L
liuruilong 已提交
1161
#ifdef RELU_OP
L
liuruilong 已提交
1162 1163 1164
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1165
template <typename Dtype>
E
eclipsess 已提交
1166
class ReluParam : public OpParam {
N
nhzlx 已提交
1167 1168 1169
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1170 1171 1172
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1173 1174
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1175 1176
  }

N
nhzlx 已提交
1177
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1178

N
nhzlx 已提交
1179
  RType *Out() const { return out_; }
E
eclipsess 已提交
1180 1181

 private:
N
nhzlx 已提交
1182 1183
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1184
};
L
liuruilong 已提交
1185
#endif
E
eclipsess 已提交
1186

T
Tian 已提交
1187
#ifdef PRELU_OP
N
nhzlx 已提交
1188
template <typename Dtype>
T
Tian 已提交
1189
class PReluParam : public OpParam {
N
nhzlx 已提交
1190 1191 1192
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1193 1194 1195
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1196
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1197
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1198
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1199
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1200
    out_ = OutFrom<GType>(outputs, scope);
1201 1202
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1203
  }
N
nhzlx 已提交
1204
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1205
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1206
  RType *Out() const { return out_; }
1207
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1208

I
itminner 已提交
1209
 private:
N
nhzlx 已提交
1210 1211
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1212
  RType *alpha_;
1213
  std::string mode_;
T
Tian 已提交
1214 1215 1216
};
#endif

N
nhzlx 已提交
1217
template <typename Dtype>
L
liuruilong 已提交
1218
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1219 1220 1221
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1222
 public:
L
liuruilong 已提交
1223
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1224
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1225 1226 1227 1228
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1229 1230 1231 1232
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1233
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1234

1235
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1236
  RType *InputY() const { return input_y_; }
1237
#else
N
nhzlx 已提交
1238
  const RType *InputY() const { return input_y_; }
1239
#endif
E
eclipsess 已提交
1240

N
nhzlx 已提交
1241
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1242

xiebaiyuan's avatar
xiebaiyuan 已提交
1243
  GType *Out() const { return out_; }
E
eclipsess 已提交
1244 1245 1246 1247 1248 1249 1250 1251

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1252
  GType *input_x_;
N
nhzlx 已提交
1253 1254
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1255
  GType *out_;
E
eclipsess 已提交
1256 1257 1258
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1259 1260 1261
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1262
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1263 1264

 public:
H
hanbuhe 已提交
1265 1266
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1267
#endif
E
eclipsess 已提交
1268
};
1269 1270

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1271 1272
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1273
#endif
E
eclipsess 已提交
1274

N
nhzlx 已提交
1275
template <typename Dtype>
L
liuruilong 已提交
1276
class FusionConvAddParam : public OpParam {
N
nhzlx 已提交
1277 1278 1279
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1280
 public:
L
liuruilong 已提交
1281
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1282 1283
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1284
    bias_ = InputYFrom<GType>(inputs, scope);
W
wangliu 已提交
1285
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1286 1287 1288
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1289 1290 1291 1292 1293
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
N
nhzlx 已提交
1294
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1295 1296 1297

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1298
  const RType *Input() const { return input_; }
W
wangliu 已提交
1299

1300
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1301
  RType *Filter() const { return filter_; }
1302
#else
N
nhzlx 已提交
1303
  const RType *Filter() const { return filter_; }
1304
#endif
W
wangliu 已提交
1305

N
nhzlx 已提交
1306
  RType *Output() const { return output_; }
W
wangliu 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

L
liuruilong 已提交
1316
 protected:
N
nhzlx 已提交
1317
  RType *bias_;
W
wangliu 已提交
1318
  int axis_;
N
nhzlx 已提交
1319 1320 1321
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
1322 1323 1324 1325
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
1326 1327 1328
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1329
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1330 1331

 public:
H
hanbuhe 已提交
1332 1333
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1334
#endif
W
wangliu 已提交
1335 1336
};

N
nhzlx 已提交
1337 1338
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1339

Z
zhangyang 已提交
1340
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1341 1342
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1343
 public:
L
liuruilong 已提交
1344
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1345 1346
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1347
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1348 1349 1350
};
#endif

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
#ifdef FUSION_CONVADDPRELU_OP
template <typename DeviceType>
class FusionConvAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
    framework::DDim dims = alpha_->dims();
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
template <typename DeviceType>
class FusionConvAddAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
                             const AttributeMap &attrs, const Scope &scope) {
    bias1_ = InputYFrom1<GType>(inputs, scope);
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
    framework::DDim dims = alpha_->dims();
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    keyOutput_ = getkey("addOut", inputs, 0);
    keyX1_ = getkey("addX", inputs, 1);
    keyY1_ = getkey("Y", inputs, 1);
    if (keyX1_ == keyOutput_) {
      bias1_ = InputYFrom1<GType>(inputs, scope);
    } else if (keyY1_ == keyOutput_) {
      bias1_ = InputXFrom1<GType>(inputs, scope);
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

E
eclipsess 已提交
1508
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1509
template <typename Dtype>
E
eclipsess 已提交
1510
class FusionConvAddBNReluParam : public OpParam {
N
nhzlx 已提交
1511 1512 1513
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1514 1515 1516 1517
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1518
    bias_ = InputYFrom<GType>(inputs, scope);
E
eclipsess 已提交
1519
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1520 1521 1522
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1523 1524 1525 1526
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1527 1528 1529 1530
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1531 1532
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
1533
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1534
  }
N
nhzlx 已提交
1535
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1536 1537 1538

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1539
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1540

1541
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1542
  RType *Filter() const { return filter_; }
1543
#else
N
nhzlx 已提交
1544
  const RType *Filter() const { return filter_; }
1545
#endif
E
eclipsess 已提交
1546

N
nhzlx 已提交
1547
  RType *Output() const { return output_; }
E
eclipsess 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1557
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1558

N
nhzlx 已提交
1559
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1560

N
nhzlx 已提交
1561
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1562

N
nhzlx 已提交
1563
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1564 1565 1566 1567 1568 1569 1570

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1571
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1572

N
nhzlx 已提交
1573
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1574

N
nhzlx 已提交
1575
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1576

N
nhzlx 已提交
1577
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1578 1579

 protected:
N
nhzlx 已提交
1580
  RType *bias_;
E
eclipsess 已提交
1581
  int axis_;
N
nhzlx 已提交
1582 1583 1584
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1585 1586 1587 1588
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1589 1590 1591 1592
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1593 1594 1595
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1596 1597
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1598 1599 1600
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1601
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1602 1603

 public:
H
hanbuhe 已提交
1604
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
class FusionConvBNAddReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    keyBNY_ = getkey("BNY", inputs, 0);
    keyX_ = getkey("X", inputs, 0);
    keyY_ = getkey("Y", inputs, 0);
    if (keyX_ == keyBNY_) {
      bias_ = InputYFrom<GType>(inputs, scope);
    } else if (keyY_ == keyBNY_) {
      bias_ = InputXFrom<GType>(inputs, scope);
    }
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
H
hanbuhe 已提交
1718
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1719
#endif
E
eclipsess 已提交
1720
};
1721
#endif
E
eclipsess 已提交
1722

Z
zhangyang 已提交
1723
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1724
template <typename Dtype>
Z
zhangyang 已提交
1725
class FusionConvBNParam : public OpParam {
N
nhzlx 已提交
1726 1727 1728
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1729 1730 1731 1732
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
N
nhzlx 已提交
1733 1734 1735
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
Z
zhangyang 已提交
1736 1737 1738 1739
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1740 1741 1742 1743
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
Z
zhangyang 已提交
1744 1745 1746 1747 1748
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
1749
  const RType *Input() const { return input_; }
Z
zhangyang 已提交
1750 1751

#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1752
  RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1753
#else
N
nhzlx 已提交
1754
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1755
#endif
N
nhzlx 已提交
1756
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1766
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1767

N
nhzlx 已提交
1768
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1769

N
nhzlx 已提交
1770
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1771

N
nhzlx 已提交
1772
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1773 1774 1775 1776 1777 1778 1779

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1780
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1781

N
nhzlx 已提交
1782
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1783

N
nhzlx 已提交
1784
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1785

N
nhzlx 已提交
1786
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1787 1788

 protected:
N
nhzlx 已提交
1789 1790 1791
  RType *input_;
  RType *output_y_;
  RType *filter_;
Z
zhangyang 已提交
1792 1793 1794 1795
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1796 1797 1798 1799
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1800 1801 1802
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1803 1804
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

1817
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1818
template <typename Dtype>
1819
class FusionConvAddBNParam : public OpParam {
N
nhzlx 已提交
1820 1821 1822
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1823 1824 1825 1826
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1827
    bias_ = InputYFrom<GType>(inputs, scope);
1828
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1829 1830 1831
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
1832 1833 1834 1835
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1836 1837 1838 1839
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
1840 1841 1842 1843
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
N
nhzlx 已提交
1844
  RType *Bias() const { return bias_; }
1845 1846 1847

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1848
  const RType *Input() const { return input_; }
1849

1850
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1851
  RType *Filter() const { return filter_; }
1852
#else
N
nhzlx 已提交
1853
  const RType *Filter() const { return filter_; }
1854
#endif
N
nhzlx 已提交
1855
  RType *Output() const { return output_y_; }
1856 1857 1858 1859 1860 1861 1862 1863 1864

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1865
  const RType *InputBias() const { return input_bias_; }
1866

N
nhzlx 已提交
1867
  const RType *InputMean() const { return input_mean_; }
1868

N
nhzlx 已提交
1869
  const RType *InputScale() const { return input_scale_; }
1870

N
nhzlx 已提交
1871
  const RType *InputVariance() const { return input_variance_; }
1872 1873 1874 1875 1876 1877 1878

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1879
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1880

N
nhzlx 已提交
1881
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1882

N
nhzlx 已提交
1883
  const RType *NewScale() const { return new_scale_; }
1884

N
nhzlx 已提交
1885
  const RType *NewBias() const { return new_bias_; }
1886 1887

 protected:
N
nhzlx 已提交
1888
  RType *bias_;
1889
  int axis_;
N
nhzlx 已提交
1890 1891 1892
  RType *input_;
  RType *output_y_;
  RType *filter_;
1893 1894 1895 1896
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1897 1898 1899 1900
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1901 1902 1903
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1904 1905
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1906 1907 1908
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1909
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1910 1911

 public:
H
hanbuhe 已提交
1912 1913
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1914
#endif
1915
};
E
eclipsess 已提交
1916
#endif
Y
Yao,kun 已提交
1917

E
eclipsess 已提交
1918
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1919
template <typename Dtype>
E
eclipsess 已提交
1920
class FusionDWConvBNReluParam : public OpParam {
N
nhzlx 已提交
1921 1922 1923
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1924 1925 1926 1927
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1928 1929 1930
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1931 1932 1933 1934
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1935 1936 1937 1938
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1939 1940
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
1941
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1942 1943
  }

N
nhzlx 已提交
1944
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1945

N
nhzlx 已提交
1946
  const RType *Filter() const { return filter_; }
E
eclipsess 已提交
1947

N
nhzlx 已提交
1948
  RType *Output() const { return output_; }
E
eclipsess 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1958
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1959

N
nhzlx 已提交
1960
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1961

N
nhzlx 已提交
1962
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1963

N
nhzlx 已提交
1964
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1965 1966 1967 1968 1969 1970 1971

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1972
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1973

N
nhzlx 已提交
1974
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1975

N
nhzlx 已提交
1976
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1977

N
nhzlx 已提交
1978
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1979 1980

 protected:
N
nhzlx 已提交
1981 1982 1983
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1984 1985 1986 1987
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1988 1989 1990 1991
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1992 1993 1994
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1995 1996
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1997 1998 1999 2000
};

#endif

2001
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2002
template <typename Dtype>
2003
class FusionConvBNReluParam : public OpParam {
N
nhzlx 已提交
2004 2005 2006
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2007 2008 2009 2010
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
                        const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2011 2012 2013
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
2014 2015 2016 2017 2018

    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
2019 2020 2021 2022
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
2023 2024 2025 2026 2027
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
2028
  const RType *Input() const { return input_; }
2029

Z
zhangyang 已提交
2030
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
2031
  RType *Filter() const { return filter_; }
Z
zhangyang 已提交
2032
#else
N
nhzlx 已提交
2033
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
2034
#endif
2035

N
nhzlx 已提交
2036
  RType *Output() const { return output_; }
2037 2038 2039 2040 2041 2042 2043 2044 2045

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
2046
  const RType *InputBias() const { return input_bias_; }
2047

N
nhzlx 已提交
2048
  const RType *InputMean() const { return input_mean_; }
2049

N
nhzlx 已提交
2050
  const RType *InputScale() const { return input_scale_; }
2051

N
nhzlx 已提交
2052
  const RType *InputVariance() const { return input_variance_; }
2053 2054 2055 2056 2057 2058 2059

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2060
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2061

N
nhzlx 已提交
2062
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2063

N
nhzlx 已提交
2064
  const RType *NewScale() const { return new_scale_; }
2065

N
nhzlx 已提交
2066
  const RType *NewBias() const { return new_bias_; }
2067 2068

 protected:
N
nhzlx 已提交
2069 2070 2071
  RType *input_;
  RType *output_;
  RType *filter_;
2072 2073 2074 2075
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
2076 2077 2078 2079
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2080 2081 2082
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2083 2084
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
2094 2095 2096
};
#endif

Y
Yao,kun 已提交
2097
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2098
template <typename Dtype>
Y
Yao,kun 已提交
2099
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2100 2101 2102
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2103 2104 2105 2106
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2107 2108
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2109 2110 2111 2112 2113
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
2114
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2115

N
nhzlx 已提交
2116
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
2117 2118 2119 2120 2121 2122 2123 2124

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
2125 2126
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2127 2128 2129 2130
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2131
#endif
Y
Yao,kun 已提交
2132

2133
#ifdef DROPOUT_OP
N
nhzlx 已提交
2134
template <typename Dtype>
Y
Yao,kun 已提交
2135
class DropoutParam : public OpParam {
N
nhzlx 已提交
2136 2137 2138
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2139 2140 2141
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2142 2143
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2144 2145

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2146 2147
  }

N
nhzlx 已提交
2148
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2149

N
nhzlx 已提交
2150
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2151

Y
yangfei 已提交
2152 2153
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2154
 private:
N
nhzlx 已提交
2155 2156
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2157
  float dropout_prob_;
Y
Yao,kun 已提交
2158
};
2159
#endif
Y
Yao,kun 已提交
2160

L
liuruilong 已提交
2161
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
2162
template <typename Dtype>
L
liuruilong 已提交
2163
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2164 2165 2166
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2167 2168 2169 2170
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2171 2172 2173
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2174 2175 2176 2177 2178 2179
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2180
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2181

N
nhzlx 已提交
2182
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2183

N
nhzlx 已提交
2184
  RType *Output() const { return output_; }
L
liuruilong 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2195 2196 2197
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2198 2199 2200 2201 2202 2203 2204
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_; }
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

朔-望's avatar
朔-望 已提交
2352 2353
}  // namespace operators
}  // namespace paddle_mobile