op_param.h 74.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
38
using framework::Variable;
W
wangliu 已提交
39 40
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
41

N
nhzlx 已提交
42 43 44 45 46 47 48 49 50
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
51
class OpParam {
朔-望's avatar
朔-望 已提交
52
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
53 54 55 56
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
57 58 59 60 61
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

62 63 64 65 66 67 68 69 70
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
71 72 73 74 75
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

103 104 105 106
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
107 108 109 110 111 112

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

113 114 115 116 117
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
118 119 120 121 122
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

123 124 125 126 127
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
128 129 130 131
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
132 133 134 135 136 137 138 139 140 141 142 143
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
144 145 146 147
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
164

E
eclipsess 已提交
165 166 167 168 169 170 171 172 173 174
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
175 176 177 178
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
179

180
  template <typename T>
W
wangliu 已提交
181 182
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
183 184 185
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
186 187 188 189 190
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

220 221 222 223 224
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
225 226 227 228 229
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
235 236 237 238 239 240
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

241 242 243 244 245
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
252 253 254 255 256 257
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
258 259 260 261 262
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
263 264 265 266 267 268
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

269 270 271 272 273 274 275 276 277 278 279
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
280
  static const T GetAttr(const string &key, const AttributeMap &map) {
281 282
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
283 284
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
285 286
    return ((Attribute)map.at(key)).GetString();
  }
287

288 289 290 291
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

292
  template <typename T>
W
wangliu 已提交
293
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
294
                        const Scope &scope) {
W
wangliu 已提交
295 296
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
297 298 299 300 301 302
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
303
    }
304
  }
朔-望's avatar
朔-望 已提交
305

E
eclipsess 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

339
  template <typename T>
W
wangliu 已提交
340 341 342
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
343 344
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
345
    vector<T *> var_res;
346 347 348
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
349
    }
350 351
    return var_res;
  }
E
eclipsess 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
365 366
};

N
nhzlx 已提交
367
template <typename Dtype>
368
class ConvParam : public OpParam {
N
nhzlx 已提交
369 370 371
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
372
 public:
373
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
374
            const AttributeMap &attrs, const Scope &scope) {
375 376 377 378 379 380 381 382 383
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
384
  }
朔-望's avatar
朔-望 已提交
385

N
nhzlx 已提交
386
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
387

N
nhzlx 已提交
388
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
389

N
nhzlx 已提交
390
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
391

W
wangliu 已提交
392
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
393

W
wangliu 已提交
394
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
395

W
wangliu 已提交
396
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
397

398
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
399

朔-望's avatar
朔-望 已提交
400
 private:
N
nhzlx 已提交
401 402 403
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
404 405 406
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
407
  int groups;
朔-望's avatar
朔-望 已提交
408
};
N
nhzlx 已提交
409 410
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
411

N
nhzlx 已提交
412
template <typename Dtype>
朔-望's avatar
朔-望 已提交
413
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
414 415 416
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
417
 public:
418
  ElementwiseAddParam(const VariableNameMap &inputs,
419 420
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
421 422 423
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
424 425 426
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
427
  const GType *InputX() const { return input_x_; }
428

xiebaiyuan's avatar
xiebaiyuan 已提交
429
  const GType *InputY() const { return input_y_; }
430

xiebaiyuan's avatar
xiebaiyuan 已提交
431
  GType *Out() const { return out_; }
432 433 434

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
435
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
436 437 438
  GType *input_x_;
  GType *input_y_;
  GType *out_;
439
  int axis_;
Z
zhangyang 已提交
440 441 442
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
443
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
444 445

 public:
H
hanbuhe 已提交
446 447
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
448
#endif
朔-望's avatar
朔-望 已提交
449 450
};

E
eclipsess 已提交
451
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
481
#endif
E
eclipsess 已提交
482

483
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
484 485
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
486 487
#endif

488
#ifdef ELEMENTWISESUB_OP
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
518
#endif
519

L
liuruilong 已提交
520
#ifdef MUL_OP
N
nhzlx 已提交
521
template <typename Dtype>
朔-望's avatar
朔-望 已提交
522
class MulParam : OpParam {
N
nhzlx 已提交
523 524 525
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
526
 public:
527
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
528
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
529 530 531
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
532 533 534
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
535

xiebaiyuan's avatar
xiebaiyuan 已提交
536
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
537

xiebaiyuan's avatar
xiebaiyuan 已提交
538
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
539

xiebaiyuan's avatar
xiebaiyuan 已提交
540
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
541

542
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
543

544
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
545

朔-望's avatar
朔-望 已提交
546
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
547 548 549
  GType *input_x_;
  GType *input_y_;
  GType *out_;
550 551
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
552 553 554
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
555
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
556 557

 public:
Z
zhangyang 已提交
558 559
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
560
#endif
朔-望's avatar
朔-望 已提交
561
};
L
liuruilong 已提交
562
#endif
朔-望's avatar
朔-望 已提交
563

L
liuruilong 已提交
564
#ifdef CONCAT_OP
N
nhzlx 已提交
565
template <typename Dtype>
朔-望's avatar
朔-望 已提交
566
class ConcatParam : public OpParam {
N
nhzlx 已提交
567 568 569
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
570
 public:
571
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
572
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
573 574
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
575 576
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
577

N
nhzlx 已提交
578
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
579

xiebaiyuan's avatar
xiebaiyuan 已提交
580
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
581

582
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
583

朔-望's avatar
朔-望 已提交
584
 private:
N
nhzlx 已提交
585
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
586
  GType *out_;
587
  int axis_;
Z
zhangyang 已提交
588 589 590 591 592 593 594 595 596
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
597
};
L
liuruilong 已提交
598
#endif
朔-望's avatar
朔-望 已提交
599

E
eclipsess 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
631
#ifdef LRN_OP
N
nhzlx 已提交
632
template <typename Dtype>
E
eclipsess 已提交
633
class LrnParam : public OpParam {
N
nhzlx 已提交
634 635 636
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
637
 public:
638
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
639
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
640 641 642
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
643 644 645 646
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
647
    data_format_ = GetStringAttr("data_format", attrs);
648
  }
E
eclipsess 已提交
649

N
nhzlx 已提交
650
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
651

N
nhzlx 已提交
652
  RType *Out() const { return out_; }
E
eclipsess 已提交
653

N
nhzlx 已提交
654
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
655

656
  const int &N() const { return n_; }
E
eclipsess 已提交
657

658
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
659

660
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
661

662
  const float &K() const { return k_; }
E
eclipsess 已提交
663

W
wangliu 已提交
664
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
665

朔-望's avatar
朔-望 已提交
666
 private:
N
nhzlx 已提交
667 668 669
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
670 671 672 673
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
674
  string data_format_;
E
eclipsess 已提交
675
};
L
liuruilong 已提交
676 677 678
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
679
template <typename Dtype>
E
eclipsess 已提交
680
class BatchNormParam : OpParam {
N
nhzlx 已提交
681 682 683
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
684
 public:
685
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
686
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
687 688 689 690 691 692
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
693 694
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
695
    //    is_test_ = GetAttr<bool>("is_test", attrs);
696
  }
E
eclipsess 已提交
697

N
nhzlx 已提交
698
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
699

N
nhzlx 已提交
700
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
701

N
nhzlx 已提交
702
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
703

N
nhzlx 已提交
704
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
705

N
nhzlx 已提交
706
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
707

N
nhzlx 已提交
708
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
709

710
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
711

712
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
713

714
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
715

W
wangliu 已提交
716
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
717

朔-望's avatar
朔-望 已提交
718
 private:
N
nhzlx 已提交
719 720 721 722 723 724
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
725 726 727
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
728
  string data_format_;
E
eclipsess 已提交
729
};
L
liuruilong 已提交
730 731 732
#endif

#ifdef POOL_OP
N
nhzlx 已提交
733
template <typename Dtype>
734
class PoolParam : public OpParam {
N
nhzlx 已提交
735 736 737
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
738
 public:
739
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
740
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
741
    input_ = InputXFrom<GType>(inputs, scope);
742

N
nhzlx 已提交
743
    output_ = OutFrom<GType>(outputs, scope);
744
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
745 746 747
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
748
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
749
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
750
  }
751

N
nhzlx 已提交
752
  const RType *Input() const { return input_; }
753

N
nhzlx 已提交
754
  RType *Output() const { return output_; }
755

W
wangliu 已提交
756
  const string &PoolingType() const { return pooling_type_; }
757

W
wangliu 已提交
758
  const vector<int> &Ksize() const { return ksize_; }
759

W
wangliu 已提交
760
  const vector<int> &Strides() const { return strides_; }
761

W
wangliu 已提交
762
  const vector<int> &Paddings() const { return paddings_; }
763

764
  bool isCeilMode() const { return ceil_mode_; }
765

Z
zhangyang 已提交
766
  bool isGlobalPooling() const { return global_pooling_; }
767

朔-望's avatar
朔-望 已提交
768
 private:
N
nhzlx 已提交
769 770
  RType *input_;
  RType *output_;
W
wangliu 已提交
771 772 773 774
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
775
  bool ceil_mode_;
776
  bool global_pooling_ = false;
Z
zhangyang 已提交
777
#ifdef PADDLE_MOBILE_FPGA
778 779

 private:
H
hanbuhe 已提交
780
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
781 782

 public:
H
hanbuhe 已提交
783 784
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
785
#endif
786
};
L
liuruilong 已提交
787 788 789
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
790
template <typename Dtype>
E
eclipsess 已提交
791
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
792 793 794
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
795 796
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
797
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
798 799 800 801
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
802 803 804 805
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
806 807 808 809 810

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
811 812 813 814 815 816
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
817
  const RType *Input() const { return input_; }
E
eclipsess 已提交
818

N
nhzlx 已提交
819
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
820

N
nhzlx 已提交
821
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
822

N
nhzlx 已提交
823
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
824

W
wangliu 已提交
825
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
826

W
wangliu 已提交
827
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
828

W
wangliu 已提交
829
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
830

W
wangliu 已提交
831
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
832 833 834 835 836 837 838 839 840 841 842

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

843 844 845 846
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
847
 private:
N
nhzlx 已提交
848 849 850 851
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
852 853 854 855
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
856 857 858 859 860
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
861
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
862
};
L
liuruilong 已提交
863
#endif
E
eclipsess 已提交
864

L
liuruilong 已提交
865
#ifdef BOXCODER_OP
N
nhzlx 已提交
866
template <typename Dtype>
E
eclipsess 已提交
867
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
868 869 870
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
871 872
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
873
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
874 875 876 877
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
878
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
879
  }
N
nhzlx 已提交
880
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
881

N
nhzlx 已提交
882
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
883

N
nhzlx 已提交
884
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
885

N
nhzlx 已提交
886
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
887 888 889 890

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
891 892 893 894
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
895 896
  std::string code_type_;
};
L
liuruilong 已提交
897
#endif
W
wangliu 已提交
898

L
liuruilong 已提交
899
#ifdef SOFTMAX_OP
N
nhzlx 已提交
900
template <typename Dtype>
W
wangliu 已提交
901
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
902 903 904
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
905 906
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
907
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
908 909
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
910
  }
N
nhzlx 已提交
911 912
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
913 914

 private:
N
nhzlx 已提交
915 916
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
917 918 919 920

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
921
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
922 923 924
  fpga::BypassArgs fpga_bypass_args;

 public:
925
  RType *FloatInput() const {
H
hanbuhe 已提交
926 927 928 929 930 931
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
932
};
L
liuruilong 已提交
933
#endif
W
wangliu 已提交
934

L
liuruilong 已提交
935
#ifdef SIGMOID_OP
N
nhzlx 已提交
936
template <typename Dtype>
W
wangliu 已提交
937
class SigmoidParam : public OpParam {
N
nhzlx 已提交
938 939 940
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
941 942
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
943
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
944 945
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
946
  }
N
nhzlx 已提交
947 948
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
949 950

 private:
N
nhzlx 已提交
951 952
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
953
};
L
liuruilong 已提交
954 955 956
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
957
template <typename Dtype>
E
eclipsess 已提交
958
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
959 960 961
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
962 963 964 965
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
966 967 968
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
969 970 971 972 973 974 975 976
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
977
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
978

N
nhzlx 已提交
979
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
980

N
nhzlx 已提交
981
  RType *Out() const { return out_; }
E
eclipsess 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
996 997 998
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
999 1000 1001 1002 1003 1004 1005
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1006
#endif
W
wangliu 已提交
1007

L
lijiancheng0614 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1030
template <typename Dtype>
L
liuruilong 已提交
1031
class FeedParam : public OpParam {
N
nhzlx 已提交
1032 1033 1034
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1035 1036
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1037
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
1038 1039
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
1040
    auto var = scope->Var("batch_size");
W
wangliu 已提交
1041
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1042
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1043 1044
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1045
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1046

L
liuruilong 已提交
1047
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1048 1049
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
1050
  int batch_size;
L
liuruilong 已提交
1051 1052
};

N
nhzlx 已提交
1053
template <typename Dtype>
L
liuruilong 已提交
1054
class FetchParam : public OpParam {
N
nhzlx 已提交
1055 1056 1057
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1058 1059
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1060
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1061 1062
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
1063
  }
N
nhzlx 已提交
1064 1065
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
1066

L
liuruilong 已提交
1067
 private:
N
nhzlx 已提交
1068 1069
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
1070 1071
};

L
lijiancheng0614 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1108
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1109
template <typename Dtype>
E
eclipsess 已提交
1110
class TransposeParam : public OpParam {
N
nhzlx 已提交
1111 1112 1113
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1114 1115 1116
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1117 1118
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1119 1120 1121
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1122
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1123

N
nhzlx 已提交
1124
  RType *Out() const { return out_; }
E
eclipsess 已提交
1125 1126 1127 1128

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1129 1130
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1131 1132
  vector<int> axis_;
};
L
liuruilong 已提交
1133
#endif
E
eclipsess 已提交
1134

L
lijiancheng0614 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1232
#ifdef RESHAPE_OP
N
nhzlx 已提交
1233
template <typename Dtype>
E
eclipsess 已提交
1234
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1235 1236 1237
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1238 1239 1240
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1241 1242 1243
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1244
    shape_ = GetAttr<vector<int>>("shape", attrs);
1245 1246 1247 1248 1249 1250 1251

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1252 1253
  }

N
nhzlx 已提交
1254
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1255

N
nhzlx 已提交
1256
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1257

N
nhzlx 已提交
1258
  RType *Out() const { return out_; }
E
eclipsess 已提交
1259 1260 1261 1262 1263 1264

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1265 1266 1267
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1268 1269 1270
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1271
#endif
E
eclipsess 已提交
1272

L
lijiancheng0614 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

  const RType *InputX() const { return input_x_; }

  const RType *InputShape() const { return input_shape_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
  RType *output_xshape_;
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1316
#ifdef SCALE_OP
N
nhzlx 已提交
1317
template <typename Dtype>
I
itminner 已提交
1318
class ScaleParam : public OpParam {
N
nhzlx 已提交
1319 1320 1321
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1322 1323 1324
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1325 1326 1327
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1328 1329 1330 1331 1332 1333
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1334
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1335

N
nhzlx 已提交
1336
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1337

N
nhzlx 已提交
1338
  RType *Out() const { return out_; }
I
itminner 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1349 1350 1351
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1352 1353 1354 1355 1356
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1357 1358 1359
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1360
template <typename Dtype>
I
itminner 已提交
1361
class SliceParam : public OpParam {
N
nhzlx 已提交
1362 1363 1364
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1365 1366 1367
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1368 1369 1370
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1371 1372 1373 1374 1375
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1376
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1377

N
nhzlx 已提交
1378
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1379

N
nhzlx 已提交
1380
  RType *Out() const { return out_; }
I
itminner 已提交
1381 1382 1383 1384 1385 1386 1387 1388

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1389 1390 1391
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1392 1393 1394 1395
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1396 1397 1398
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1399
template <typename Dtype>
T
Tian 已提交
1400
class ResizeParam : public OpParam {
N
nhzlx 已提交
1401 1402 1403
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1404 1405 1406
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1407 1408 1409
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1410 1411 1412 1413 1414 1415
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1416

N
nhzlx 已提交
1417
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1418

N
nhzlx 已提交
1419
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1420

N
nhzlx 已提交
1421
  RType *Out() const { return out_; }
T
Tian 已提交
1422

I
itminner 已提交
1423
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1424

I
itminner 已提交
1425
  const int &Height() const { return height_; }
T
Tian 已提交
1426

I
itminner 已提交
1427
  const int &Width() const { return width_; }
T
Tian 已提交
1428

I
itminner 已提交
1429
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1430

I
itminner 已提交
1431
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1432

I
itminner 已提交
1433
 private:
N
nhzlx 已提交
1434 1435 1436
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1437 1438 1439 1440 1441
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1442 1443 1444
};
#endif

L
liuruilong 已提交
1445
#ifdef RELU_OP
L
liuruilong 已提交
1446 1447 1448
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1449
template <typename Dtype>
E
eclipsess 已提交
1450
class ReluParam : public OpParam {
N
nhzlx 已提交
1451 1452 1453
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1454 1455 1456
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1457 1458
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1459 1460
  }

N
nhzlx 已提交
1461
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1462

N
nhzlx 已提交
1463
  RType *Out() const { return out_; }
E
eclipsess 已提交
1464 1465

 private:
N
nhzlx 已提交
1466 1467
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1468
};
L
liuruilong 已提交
1469
#endif
E
eclipsess 已提交
1470

T
Tian 已提交
1471
#ifdef PRELU_OP
N
nhzlx 已提交
1472
template <typename Dtype>
T
Tian 已提交
1473
class PReluParam : public OpParam {
N
nhzlx 已提交
1474 1475 1476
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1477 1478 1479
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1480
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1481
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1482
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1483
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1484
    out_ = OutFrom<GType>(outputs, scope);
1485
    mode_ = GetStringAttr("mode", attrs);
1486
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1487
  }
N
nhzlx 已提交
1488
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1489
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1490
  RType *Out() const { return out_; }
1491
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1492

I
itminner 已提交
1493
 private:
N
nhzlx 已提交
1494 1495
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1496
  RType *alpha_;
1497
  std::string mode_;
T
Tian 已提交
1498 1499 1500
};
#endif

N
nhzlx 已提交
1501
template <typename Dtype>
L
liuruilong 已提交
1502
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1503 1504 1505
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1506
 public:
L
liuruilong 已提交
1507
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1508
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1509 1510 1511 1512
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1513 1514 1515 1516
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1517
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1518

N
nhzlx 已提交
1519
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1520

N
nhzlx 已提交
1521
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1522

xiebaiyuan's avatar
xiebaiyuan 已提交
1523
  GType *Out() const { return out_; }
E
eclipsess 已提交
1524 1525 1526 1527 1528 1529 1530 1531

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1532
  GType *input_x_;
N
nhzlx 已提交
1533 1534
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1535
  GType *out_;
E
eclipsess 已提交
1536 1537 1538
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1539 1540 1541
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1542
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1543 1544

 public:
Z
zhangyang 已提交
1545 1546
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1547
#endif
E
eclipsess 已提交
1548
};
1549 1550

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1551 1552
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1553
#endif
E
eclipsess 已提交
1554

N
nhzlx 已提交
1555
template <typename Dtype>
1556
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1557 1558 1559
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1560
 public:
L
liuruilong 已提交
1561
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1562
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1563 1564 1565 1566 1567
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1568
  }
N
nhzlx 已提交
1569
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1570 1571 1572

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1573
  RType *Output() const { return output_; }
W
wangliu 已提交
1574

L
liuruilong 已提交
1575
 protected:
N
nhzlx 已提交
1576
  RType *bias_;
W
wangliu 已提交
1577
  int axis_;
N
nhzlx 已提交
1578
  RType *output_;
Z
zhangyang 已提交
1579 1580 1581
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1582
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1583 1584

 public:
Z
zhangyang 已提交
1585 1586
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1587
#endif
W
wangliu 已提交
1588 1589
};

N
nhzlx 已提交
1590 1591
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1592

Z
zhangyang 已提交
1593
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1594 1595
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1596
 public:
L
liuruilong 已提交
1597
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1598 1599
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1600
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1601 1602 1603
};
#endif

1604
#ifdef FUSION_CONVADDPRELU_OP
1605 1606 1607 1608
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1609 1610 1611 1612

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1613 1614 1615
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1616
    mode_ = OpParam::GetStringAttr("mode", attrs);
1617
    framework::DDim dims = alpha_->dims();
1618 1619 1620
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1637
  fpga::SplitConvArgs fpga_conv_args;
1638 1639

 public:
Z
zhangyang 已提交
1640 1641
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1642 1643 1644 1645 1646
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1647 1648 1649 1650
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1651 1652 1653 1654

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1655 1656 1657 1658
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1659
    mode_ = OpParam::GetStringAttr("mode", attrs);
1660
    framework::DDim dims = alpha_->dims();
1661 1662 1663 1664 1665 1666
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1667
    if (keyX1_ == keyOutput_) {
1668
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1669
    } else if (keyY1_ == keyOutput_) {
1670
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1695
  fpga::SplitConvArgs fpga_conv_args;
1696 1697

 public:
Z
zhangyang 已提交
1698 1699
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1700 1701 1702 1703
#endif
};
#endif

E
eclipsess 已提交
1704
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1705
template <typename Dtype>
1706
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1707 1708 1709
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1710 1711 1712
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1725
  }
N
nhzlx 已提交
1726
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1727 1728 1729

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1730
  RType *Output() const { return output_; }
E
eclipsess 已提交
1731

N
nhzlx 已提交
1732
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1733

N
nhzlx 已提交
1734
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1735

N
nhzlx 已提交
1736
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1737

N
nhzlx 已提交
1738
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1739 1740 1741 1742 1743 1744 1745

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1746
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1747

N
nhzlx 已提交
1748
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1749

N
nhzlx 已提交
1750
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1751

N
nhzlx 已提交
1752
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1753 1754

 protected:
N
nhzlx 已提交
1755
  RType *bias_;
E
eclipsess 已提交
1756
  int axis_;
N
nhzlx 已提交
1757 1758 1759 1760 1761
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1762 1763 1764
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1765 1766
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1767 1768 1769
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1770
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1771 1772

 public:
Z
zhangyang 已提交
1773 1774
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1775 1776 1777 1778 1779 1780
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1781
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1782 1783 1784 1785 1786 1787
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1802
    if (keyX_ == keyBNY_) {
1803
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1804
    } else if (keyY_ == keyBNY_) {
1805
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1806
    }
1807
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1856
  fpga::SplitConvArgs fpga_conv_args;
1857 1858

 public:
Z
zhangyang 已提交
1859 1860
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1861
#endif
E
eclipsess 已提交
1862
};
1863
#endif
E
eclipsess 已提交
1864

Z
zhangyang 已提交
1865
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1866
template <typename Dtype>
1867
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1868 1869 1870
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1871 1872 1873
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1884
  }
N
nhzlx 已提交
1885
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1886

N
nhzlx 已提交
1887
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1888

N
nhzlx 已提交
1889
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1890

N
nhzlx 已提交
1891
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1892

N
nhzlx 已提交
1893
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1894 1895 1896 1897 1898 1899 1900

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1901
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1902

N
nhzlx 已提交
1903
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1904

N
nhzlx 已提交
1905
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1906

N
nhzlx 已提交
1907
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1908 1909

 protected:
N
nhzlx 已提交
1910 1911 1912 1913 1914
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1915 1916 1917
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1918 1919
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1920 1921 1922
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1923
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1924 1925

 public:
Z
zhangyang 已提交
1926 1927
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1928 1929 1930 1931
#endif
};
#endif

1932
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1933
template <typename Dtype>
1934
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1935 1936 1937
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1938 1939 1940
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1953
  }
N
nhzlx 已提交
1954
  RType *Bias() const { return bias_; }
1955 1956 1957

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1958
  RType *Output() const { return output_y_; }
1959

N
nhzlx 已提交
1960
  const RType *InputBias() const { return input_bias_; }
1961

N
nhzlx 已提交
1962
  const RType *InputMean() const { return input_mean_; }
1963

N
nhzlx 已提交
1964
  const RType *InputScale() const { return input_scale_; }
1965

N
nhzlx 已提交
1966
  const RType *InputVariance() const { return input_variance_; }
1967 1968 1969 1970 1971 1972 1973

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1974
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1975

N
nhzlx 已提交
1976
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1977

N
nhzlx 已提交
1978
  const RType *NewScale() const { return new_scale_; }
1979

N
nhzlx 已提交
1980
  const RType *NewBias() const { return new_bias_; }
1981 1982

 protected:
N
nhzlx 已提交
1983
  RType *bias_;
1984
  int axis_;
N
nhzlx 已提交
1985 1986 1987 1988 1989
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1990 1991 1992
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1993 1994
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1995 1996 1997
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1998
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1999 2000

 public:
Z
zhangyang 已提交
2001 2002
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2003
#endif
2004
};
E
eclipsess 已提交
2005
#endif
Y
Yao,kun 已提交
2006

E
eclipsess 已提交
2007
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2008
template <typename Dtype>
2009
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2010 2011 2012
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2013 2014 2015
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2026
  }
N
nhzlx 已提交
2027
  RType *Output() const { return output_; }
E
eclipsess 已提交
2028

N
nhzlx 已提交
2029
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2030

N
nhzlx 已提交
2031
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2032

N
nhzlx 已提交
2033
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2034

N
nhzlx 已提交
2035
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2036 2037 2038 2039 2040 2041 2042

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2043
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2044

N
nhzlx 已提交
2045
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2046

N
nhzlx 已提交
2047
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2048

N
nhzlx 已提交
2049
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2050 2051

 protected:
N
nhzlx 已提交
2052 2053 2054 2055 2056
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2057 2058 2059
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2060 2061
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2062 2063 2064 2065
};

#endif

2066
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2067
template <typename Dtype>
2068
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2069 2070 2071
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2072 2073 2074
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2085
  }
N
nhzlx 已提交
2086
  RType *Output() const { return output_; }
2087

N
nhzlx 已提交
2088
  const RType *InputBias() const { return input_bias_; }
2089

N
nhzlx 已提交
2090
  const RType *InputMean() const { return input_mean_; }
2091

N
nhzlx 已提交
2092
  const RType *InputScale() const { return input_scale_; }
2093

N
nhzlx 已提交
2094
  const RType *InputVariance() const { return input_variance_; }
2095 2096 2097 2098 2099 2100 2101

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2102
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2103

N
nhzlx 已提交
2104
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2105

N
nhzlx 已提交
2106
  const RType *NewScale() const { return new_scale_; }
2107

N
nhzlx 已提交
2108
  const RType *NewBias() const { return new_bias_; }
2109 2110

 protected:
N
nhzlx 已提交
2111 2112 2113 2114 2115
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2116 2117 2118
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2119 2120
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2121 2122 2123
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
2124
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
2125 2126

 public:
Z
zhangyang 已提交
2127 2128
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2129
#endif
2130 2131 2132
};
#endif

Y
Yao,kun 已提交
2133
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2134
template <typename Dtype>
Y
Yao,kun 已提交
2135
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2136 2137 2138
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2139 2140 2141 2142
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2143 2144
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2145 2146 2147 2148 2149
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2150
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2151

E
eclipsess 已提交
2152
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2153 2154 2155 2156 2157 2158 2159 2160

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2161 2162
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2163 2164 2165 2166
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2167
#endif
Y
Yao,kun 已提交
2168

2169
#ifdef DROPOUT_OP
N
nhzlx 已提交
2170
template <typename Dtype>
Y
Yao,kun 已提交
2171
class DropoutParam : public OpParam {
N
nhzlx 已提交
2172 2173 2174
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2175 2176 2177
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2178 2179
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2180 2181

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2182 2183
  }

N
nhzlx 已提交
2184
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2185

N
nhzlx 已提交
2186
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2187

Y
yangfei 已提交
2188 2189
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2190
 private:
N
nhzlx 已提交
2191 2192
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2193
  float dropout_prob_;
Y
Yao,kun 已提交
2194
};
2195
#endif
Y
Yao,kun 已提交
2196

H
hjchen2 已提交
2197
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
2198
template <typename Dtype>
L
liuruilong 已提交
2199
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2200 2201 2202
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2203 2204 2205 2206
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2207 2208 2209
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2210 2211 2212 2213 2214 2215
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2216
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2217

N
nhzlx 已提交
2218
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2219

N
nhzlx 已提交
2220
  RType *Output() const { return output_; }
L
liuruilong 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2231 2232 2233
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2234 2235 2236 2237 2238 2239 2240
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2266 2267
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2312
    axis = GetAttr<int>("axis", attrs);
2313 2314 2315
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2316
  const int &Axis() const { return axis; }
2317 2318 2319 2320

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2321
  int axis;
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2335
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2336
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2337 2338 2339 2340 2341 2342
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2343 2344
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2345 2346 2347 2348 2349
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2350 2351 2352

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2353
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2354
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2355 2356 2357
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2374 2375
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2376 2377
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2378
  const RType *InputOutPutSize() const { return input_outsize_; }
2379
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2380 2381
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2382 2383 2384 2385 2386

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2387 2388
  int out_h_;
  int out_w_;
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2404
  const RType *Input() const { return input_; }
2405 2406 2407 2408 2409 2410 2411 2412
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2413
#ifdef QUANT_OP
2414
template <typename Dtype>
2415 2416 2417 2418 2419
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2420 2421
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2422 2423 2424 2425 2426 2427 2428
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
2429
      is_static_ = true;
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
2451
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
2452
};
2453
#endif
2454

2455
#ifdef DEQUANT_OP
2456
template <typename Dtype>
2457 2458 2459 2460 2461
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2462 2463
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};
2483
#endif
2484

朔-望's avatar
朔-望 已提交
2485 2486
}  // namespace operators
}  // namespace paddle_mobile