op_param.h 70.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
38
using framework::Variable;
W
wangliu 已提交
39 40
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
41

N
nhzlx 已提交
42 43 44 45 46 47 48 49 50
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
51
class OpParam {
朔-望's avatar
朔-望 已提交
52
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
53 54 55 56
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
57 58 59 60 61
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

62 63 64 65 66 67 68 69 70
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
71 72 73 74 75
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

103 104 105 106
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
107 108 109 110 111 112

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

113 114 115 116 117
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
118 119 120 121 122
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

123 124 125 126 127
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
128 129 130 131
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
132 133 134 135 136 137 138 139 140 141 142 143
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
144 145 146 147
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
164

E
eclipsess 已提交
165 166 167 168 169 170 171 172 173 174
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
175 176 177 178
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
179

180
  template <typename T>
W
wangliu 已提交
181 182
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
183 184 185
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
186 187 188 189 190
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

220 221 222 223 224
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
225 226 227 228 229
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
235 236 237 238 239 240
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

241 242 243 244 245
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
252 253 254 255 256
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
257 258 259 260 261 262
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

263 264 265 266 267 268 269 270 271 272 273
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
274
  static const T GetAttr(const string &key, const AttributeMap &map) {
275 276
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
277 278
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
279 280
    return ((Attribute)map.at(key)).GetString();
  }
281

282 283 284 285
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

286
  template <typename T>
W
wangliu 已提交
287
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
288
                        const Scope &scope) {
W
wangliu 已提交
289 290
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
291 292 293 294 295 296
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
297
    }
298
  }
朔-望's avatar
朔-望 已提交
299

E
eclipsess 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

333
  template <typename T>
W
wangliu 已提交
334 335 336
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
337 338
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
339
    vector<T *> var_res;
340 341 342
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
343
    }
344 345
    return var_res;
  }
E
eclipsess 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
359 360
};

N
nhzlx 已提交
361
template <typename Dtype>
362
class ConvParam : public OpParam {
N
nhzlx 已提交
363 364 365
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
366
 public:
367
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
368
            const AttributeMap &attrs, const Scope &scope) {
369 370 371 372 373 374 375 376 377
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
378
  }
朔-望's avatar
朔-望 已提交
379

N
nhzlx 已提交
380
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
381

N
nhzlx 已提交
382
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
383

N
nhzlx 已提交
384
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
385

W
wangliu 已提交
386
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
387

W
wangliu 已提交
388
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
389

W
wangliu 已提交
390
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
391

392
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
393

朔-望's avatar
朔-望 已提交
394
 private:
N
nhzlx 已提交
395 396 397
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
398 399 400
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
401
  int groups;
朔-望's avatar
朔-望 已提交
402
};
N
nhzlx 已提交
403 404
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
template <typename Dtype>
朔-望's avatar
朔-望 已提交
407
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
408 409 410
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
411
 public:
412
  ElementwiseAddParam(const VariableNameMap &inputs,
413 414
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
415 416 417
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
418 419 420
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
421
  const GType *InputX() const { return input_x_; }
422

xiebaiyuan's avatar
xiebaiyuan 已提交
423
  const GType *InputY() const { return input_y_; }
424

xiebaiyuan's avatar
xiebaiyuan 已提交
425
  GType *Out() const { return out_; }
426 427 428

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
429
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
430 431 432
  GType *input_x_;
  GType *input_y_;
  GType *out_;
433
  int axis_;
Z
zhangyang 已提交
434 435 436
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
437
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
438 439

 public:
H
hanbuhe 已提交
440 441
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
442
#endif
朔-望's avatar
朔-望 已提交
443 444
};

E
eclipsess 已提交
445
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
475
#endif
E
eclipsess 已提交
476

477
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
478 479
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
480 481
#endif

482
#ifdef ELEMENTWISESUB_OP
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
512
#endif
513

L
liuruilong 已提交
514
#ifdef MUL_OP
N
nhzlx 已提交
515
template <typename Dtype>
朔-望's avatar
朔-望 已提交
516
class MulParam : OpParam {
N
nhzlx 已提交
517 518 519
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
520
 public:
521
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
522
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
523 524 525
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
526 527 528
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
529

xiebaiyuan's avatar
xiebaiyuan 已提交
530
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
531

xiebaiyuan's avatar
xiebaiyuan 已提交
532
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
533

xiebaiyuan's avatar
xiebaiyuan 已提交
534
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
535

536
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
537

538
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
539

朔-望's avatar
朔-望 已提交
540
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
541 542 543
  GType *input_x_;
  GType *input_y_;
  GType *out_;
544 545
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
546 547 548 549 550 551 552 553 554
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::WrapperConvArgs fpga_conv_args;

 public:
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
555
};
L
liuruilong 已提交
556
#endif
朔-望's avatar
朔-望 已提交
557

L
liuruilong 已提交
558
#ifdef CONCAT_OP
N
nhzlx 已提交
559
template <typename Dtype>
朔-望's avatar
朔-望 已提交
560
class ConcatParam : public OpParam {
N
nhzlx 已提交
561 562 563
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
564
 public:
565
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
566
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
567 568
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
569 570
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
571

N
nhzlx 已提交
572
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
573

xiebaiyuan's avatar
xiebaiyuan 已提交
574
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
575

576
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
577

朔-望's avatar
朔-望 已提交
578
 private:
N
nhzlx 已提交
579
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
580
  GType *out_;
581
  int axis_;
Z
zhangyang 已提交
582 583 584 585 586 587 588 589 590
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
591
};
L
liuruilong 已提交
592
#endif
朔-望's avatar
朔-望 已提交
593

E
eclipsess 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
625
#ifdef LRN_OP
N
nhzlx 已提交
626
template <typename Dtype>
E
eclipsess 已提交
627
class LrnParam : public OpParam {
N
nhzlx 已提交
628 629 630
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
631
 public:
632
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
633
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
634 635 636
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
637 638 639 640
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
641
    data_format_ = GetStringAttr("data_format", attrs);
642
  }
E
eclipsess 已提交
643

N
nhzlx 已提交
644
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
645

N
nhzlx 已提交
646
  RType *Out() const { return out_; }
E
eclipsess 已提交
647

N
nhzlx 已提交
648
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
649

650
  const int &N() const { return n_; }
E
eclipsess 已提交
651

652
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
653

654
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
655

656
  const float &K() const { return k_; }
E
eclipsess 已提交
657

W
wangliu 已提交
658
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
659

朔-望's avatar
朔-望 已提交
660
 private:
N
nhzlx 已提交
661 662 663
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
664 665 666 667
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
668
  string data_format_;
E
eclipsess 已提交
669
};
L
liuruilong 已提交
670 671 672
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
673
template <typename Dtype>
E
eclipsess 已提交
674
class BatchNormParam : OpParam {
N
nhzlx 已提交
675 676 677
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
678
 public:
679
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
680
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
681 682 683 684 685 686
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
687 688
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
689
    //    is_test_ = GetAttr<bool>("is_test", attrs);
690
  }
E
eclipsess 已提交
691

N
nhzlx 已提交
692
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
693

N
nhzlx 已提交
694
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
695

N
nhzlx 已提交
696
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
697

N
nhzlx 已提交
698
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
699

N
nhzlx 已提交
700
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
701

N
nhzlx 已提交
702
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
703

704
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
705

706
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
707

708
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
709

W
wangliu 已提交
710
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
711

朔-望's avatar
朔-望 已提交
712
 private:
N
nhzlx 已提交
713 714 715 716 717 718
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
719 720 721
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
722
  string data_format_;
E
eclipsess 已提交
723
};
L
liuruilong 已提交
724 725 726
#endif

#ifdef POOL_OP
N
nhzlx 已提交
727
template <typename Dtype>
728
class PoolParam : public OpParam {
N
nhzlx 已提交
729 730 731
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
732
 public:
733
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
734
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
735
    input_ = InputXFrom<GType>(inputs, scope);
736

N
nhzlx 已提交
737
    output_ = OutFrom<GType>(outputs, scope);
738
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
739 740 741
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
742
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
743
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
744
  }
745

N
nhzlx 已提交
746
  const RType *Input() const { return input_; }
747

N
nhzlx 已提交
748
  RType *Output() const { return output_; }
749

W
wangliu 已提交
750
  const string &PoolingType() const { return pooling_type_; }
751

W
wangliu 已提交
752
  const vector<int> &Ksize() const { return ksize_; }
753

W
wangliu 已提交
754
  const vector<int> &Strides() const { return strides_; }
755

W
wangliu 已提交
756
  const vector<int> &Paddings() const { return paddings_; }
757

758
  bool isCeilMode() const { return ceil_mode_; }
759

Z
zhangyang 已提交
760
  bool isGlobalPooling() const { return global_pooling_; }
761

朔-望's avatar
朔-望 已提交
762
 private:
N
nhzlx 已提交
763 764
  RType *input_;
  RType *output_;
W
wangliu 已提交
765 766 767 768
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
769
  bool ceil_mode_;
770
  bool global_pooling_ = false;
Z
zhangyang 已提交
771
#ifdef PADDLE_MOBILE_FPGA
772 773

 private:
H
hanbuhe 已提交
774
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
775 776

 public:
H
hanbuhe 已提交
777 778
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
779
#endif
780
};
L
liuruilong 已提交
781 782 783
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
784
template <typename Dtype>
E
eclipsess 已提交
785
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
786 787 788
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
789 790
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
791
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
792 793 794 795
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
796 797 798 799
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
800 801 802 803 804

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
805 806 807 808 809 810
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
811
  const RType *Input() const { return input_; }
E
eclipsess 已提交
812

N
nhzlx 已提交
813
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
814

N
nhzlx 已提交
815
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
816

N
nhzlx 已提交
817
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
818

W
wangliu 已提交
819
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
820

W
wangliu 已提交
821
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
822

W
wangliu 已提交
823
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
824

W
wangliu 已提交
825
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
826 827 828 829 830 831 832 833 834 835 836

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

837 838 839 840
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
841
 private:
N
nhzlx 已提交
842 843 844 845
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
846 847 848 849
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
850 851 852 853 854
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
855
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
856
};
L
liuruilong 已提交
857
#endif
E
eclipsess 已提交
858

L
liuruilong 已提交
859
#ifdef BOXCODER_OP
N
nhzlx 已提交
860
template <typename Dtype>
E
eclipsess 已提交
861
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
862 863 864
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
865 866
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
867
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
868 869 870 871
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
872
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
873
  }
N
nhzlx 已提交
874
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
875

N
nhzlx 已提交
876
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
877

N
nhzlx 已提交
878
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
879

N
nhzlx 已提交
880
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
881 882 883 884

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
885 886 887 888
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
889 890
  std::string code_type_;
};
L
liuruilong 已提交
891
#endif
W
wangliu 已提交
892

L
liuruilong 已提交
893
#ifdef SOFTMAX_OP
N
nhzlx 已提交
894
template <typename Dtype>
W
wangliu 已提交
895
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
896 897 898
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
899 900
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
901
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
902 903
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
904
  }
N
nhzlx 已提交
905 906
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
907 908

 private:
N
nhzlx 已提交
909 910
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
911 912 913 914

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
915
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
916 917 918
  fpga::BypassArgs fpga_bypass_args;

 public:
919
  RType *FloatInput() const {
H
hanbuhe 已提交
920 921 922 923 924 925
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
926
};
L
liuruilong 已提交
927
#endif
W
wangliu 已提交
928

L
liuruilong 已提交
929
#ifdef SIGMOID_OP
N
nhzlx 已提交
930
template <typename Dtype>
W
wangliu 已提交
931
class SigmoidParam : public OpParam {
N
nhzlx 已提交
932 933 934
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
935 936
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
937
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
938 939
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
940
  }
N
nhzlx 已提交
941 942
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
943 944

 private:
N
nhzlx 已提交
945 946
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
947
};
L
liuruilong 已提交
948 949 950
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
951
template <typename Dtype>
E
eclipsess 已提交
952
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
953 954 955
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
956 957 958 959
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
960 961 962
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
963 964 965 966 967 968 969 970
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
971
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
972

N
nhzlx 已提交
973
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
974

N
nhzlx 已提交
975
  RType *Out() const { return out_; }
E
eclipsess 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
990 991 992
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
993 994 995 996 997 998 999
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1000
#endif
W
wangliu 已提交
1001

N
nhzlx 已提交
1002
template <typename Dtype>
L
liuruilong 已提交
1003
class FeedParam : public OpParam {
N
nhzlx 已提交
1004 1005 1006
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1007 1008
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1009
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
1010 1011
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
1012
    auto var = scope->Var("batch_size");
W
wangliu 已提交
1013
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1014
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1015 1016
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1017
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1018

L
liuruilong 已提交
1019
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1020 1021
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
1022
  int batch_size;
L
liuruilong 已提交
1023 1024
};

N
nhzlx 已提交
1025
template <typename Dtype>
L
liuruilong 已提交
1026
class FetchParam : public OpParam {
N
nhzlx 已提交
1027 1028 1029
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1030 1031
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1032
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1033 1034
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
1035
  }
N
nhzlx 已提交
1036 1037
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
1038

L
liuruilong 已提交
1039
 private:
N
nhzlx 已提交
1040 1041
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
1042 1043
};

L
liuruilong 已提交
1044
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1045
template <typename Dtype>
E
eclipsess 已提交
1046
class TransposeParam : public OpParam {
N
nhzlx 已提交
1047 1048 1049
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1050 1051 1052
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1053 1054
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1055 1056 1057
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1058
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1059

N
nhzlx 已提交
1060
  RType *Out() const { return out_; }
E
eclipsess 已提交
1061 1062 1063 1064

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1065 1066
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1067 1068
  vector<int> axis_;
};
L
liuruilong 已提交
1069
#endif
E
eclipsess 已提交
1070

xiebaiyuan's avatar
xiebaiyuan 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1137
#ifdef RESHAPE_OP
N
nhzlx 已提交
1138
template <typename Dtype>
E
eclipsess 已提交
1139
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1140 1141 1142
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1143 1144 1145
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1146 1147 1148
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1149
    shape_ = GetAttr<vector<int>>("shape", attrs);
1150 1151 1152 1153 1154 1155 1156

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1157 1158
  }

N
nhzlx 已提交
1159
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1160

N
nhzlx 已提交
1161
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1162

N
nhzlx 已提交
1163
  RType *Out() const { return out_; }
E
eclipsess 已提交
1164 1165 1166 1167 1168 1169

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1170 1171 1172
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1173 1174 1175
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1176
#endif
E
eclipsess 已提交
1177

T
Tian 已提交
1178
#ifdef SCALE_OP
N
nhzlx 已提交
1179
template <typename Dtype>
I
itminner 已提交
1180
class ScaleParam : public OpParam {
N
nhzlx 已提交
1181 1182 1183
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1184 1185 1186
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1187 1188 1189
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1190 1191 1192 1193 1194 1195
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1196
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1197

N
nhzlx 已提交
1198
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1199

N
nhzlx 已提交
1200
  RType *Out() const { return out_; }
I
itminner 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1211 1212 1213
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1214 1215 1216 1217 1218
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1219 1220 1221
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1222
template <typename Dtype>
I
itminner 已提交
1223
class SliceParam : public OpParam {
N
nhzlx 已提交
1224 1225 1226
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1227 1228 1229
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1230 1231 1232
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1233 1234 1235 1236 1237
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1238
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1239

N
nhzlx 已提交
1240
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1241

N
nhzlx 已提交
1242
  RType *Out() const { return out_; }
I
itminner 已提交
1243 1244 1245 1246 1247 1248 1249 1250

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1251 1252 1253
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1254 1255 1256 1257
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1258 1259 1260
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1261
template <typename Dtype>
T
Tian 已提交
1262
class ResizeParam : public OpParam {
N
nhzlx 已提交
1263 1264 1265
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1266 1267 1268
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1269 1270 1271
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1272 1273 1274 1275 1276 1277
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1278

N
nhzlx 已提交
1279
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1280

N
nhzlx 已提交
1281
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1282

N
nhzlx 已提交
1283
  RType *Out() const { return out_; }
T
Tian 已提交
1284

I
itminner 已提交
1285
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1286

I
itminner 已提交
1287
  const int &Height() const { return height_; }
T
Tian 已提交
1288

I
itminner 已提交
1289
  const int &Width() const { return width_; }
T
Tian 已提交
1290

I
itminner 已提交
1291
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1292

I
itminner 已提交
1293
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1294

I
itminner 已提交
1295
 private:
N
nhzlx 已提交
1296 1297 1298
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1299 1300 1301 1302 1303
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1304 1305 1306
};
#endif

L
liuruilong 已提交
1307
#ifdef RELU_OP
L
liuruilong 已提交
1308 1309 1310
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1311
template <typename Dtype>
E
eclipsess 已提交
1312
class ReluParam : public OpParam {
N
nhzlx 已提交
1313 1314 1315
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1316 1317 1318
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1319 1320
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1321 1322
  }

N
nhzlx 已提交
1323
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1324

N
nhzlx 已提交
1325
  RType *Out() const { return out_; }
E
eclipsess 已提交
1326 1327

 private:
N
nhzlx 已提交
1328 1329
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1330
};
L
liuruilong 已提交
1331
#endif
E
eclipsess 已提交
1332

T
Tian 已提交
1333
#ifdef PRELU_OP
N
nhzlx 已提交
1334
template <typename Dtype>
T
Tian 已提交
1335
class PReluParam : public OpParam {
N
nhzlx 已提交
1336 1337 1338
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1339 1340 1341
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1342
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1343
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1344
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1345
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1346
    out_ = OutFrom<GType>(outputs, scope);
1347
    mode_ = GetStringAttr("mode", attrs);
1348
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1349
  }
N
nhzlx 已提交
1350
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1351
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1352
  RType *Out() const { return out_; }
1353
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1354

I
itminner 已提交
1355
 private:
N
nhzlx 已提交
1356 1357
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1358
  RType *alpha_;
1359
  std::string mode_;
T
Tian 已提交
1360 1361 1362
};
#endif

N
nhzlx 已提交
1363
template <typename Dtype>
L
liuruilong 已提交
1364
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1365 1366 1367
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1368
 public:
L
liuruilong 已提交
1369
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1370
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1371 1372 1373 1374
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1375 1376 1377 1378
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1379
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1380

N
nhzlx 已提交
1381
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1382

N
nhzlx 已提交
1383
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1384

xiebaiyuan's avatar
xiebaiyuan 已提交
1385
  GType *Out() const { return out_; }
E
eclipsess 已提交
1386 1387 1388 1389 1390 1391 1392 1393

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1394
  GType *input_x_;
N
nhzlx 已提交
1395 1396
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1397
  GType *out_;
E
eclipsess 已提交
1398 1399 1400
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1401 1402 1403
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1404
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1405 1406

 public:
Z
zhangyang 已提交
1407 1408
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1409
#endif
E
eclipsess 已提交
1410
};
1411 1412

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1413 1414
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1415
#endif
E
eclipsess 已提交
1416

N
nhzlx 已提交
1417
template <typename Dtype>
1418
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1419 1420 1421
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1422
 public:
L
liuruilong 已提交
1423
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1424
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1425 1426 1427 1428 1429
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1430
  }
N
nhzlx 已提交
1431
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1432 1433 1434

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1435
  RType *Output() const { return output_; }
W
wangliu 已提交
1436

L
liuruilong 已提交
1437
 protected:
N
nhzlx 已提交
1438
  RType *bias_;
W
wangliu 已提交
1439
  int axis_;
N
nhzlx 已提交
1440
  RType *output_;
Z
zhangyang 已提交
1441 1442 1443
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1444
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1445 1446

 public:
Z
zhangyang 已提交
1447 1448
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1449
#endif
W
wangliu 已提交
1450 1451
};

N
nhzlx 已提交
1452 1453
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1454

Z
zhangyang 已提交
1455
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1456 1457
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1458
 public:
L
liuruilong 已提交
1459
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1460 1461
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1462
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1463 1464 1465
};
#endif

1466
#ifdef FUSION_CONVADDPRELU_OP
1467 1468 1469 1470
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1471 1472 1473 1474

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1475 1476 1477
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1478
    mode_ = OpParam::GetStringAttr("mode", attrs);
1479
    framework::DDim dims = alpha_->dims();
1480 1481 1482
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1499
  fpga::WrapperConvArgs fpga_conv_args;
1500 1501

 public:
Z
zhangyang 已提交
1502 1503
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1504 1505 1506 1507 1508
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1509 1510 1511 1512
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1513 1514 1515 1516

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1517 1518 1519 1520
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1521
    mode_ = OpParam::GetStringAttr("mode", attrs);
1522
    framework::DDim dims = alpha_->dims();
1523 1524 1525 1526 1527 1528
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1529
    if (keyX1_ == keyOutput_) {
1530
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1531
    } else if (keyY1_ == keyOutput_) {
1532
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1557
  fpga::WrapperConvArgs fpga_conv_args;
1558 1559

 public:
Z
zhangyang 已提交
1560 1561
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1562 1563 1564 1565
#endif
};
#endif

E
eclipsess 已提交
1566
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1567
template <typename Dtype>
1568
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1569 1570 1571
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1572 1573 1574
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1587
  }
N
nhzlx 已提交
1588
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1589 1590 1591

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1592
  RType *Output() const { return output_; }
E
eclipsess 已提交
1593

N
nhzlx 已提交
1594
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1595

N
nhzlx 已提交
1596
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1597

N
nhzlx 已提交
1598
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1599

N
nhzlx 已提交
1600
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1601 1602 1603 1604 1605 1606 1607

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1608
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1609

N
nhzlx 已提交
1610
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1611

N
nhzlx 已提交
1612
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1613

N
nhzlx 已提交
1614
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1615 1616

 protected:
N
nhzlx 已提交
1617
  RType *bias_;
E
eclipsess 已提交
1618
  int axis_;
N
nhzlx 已提交
1619 1620 1621 1622 1623
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1624 1625 1626
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1627 1628
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1629 1630 1631
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1632
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1633 1634

 public:
Z
zhangyang 已提交
1635 1636
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1637 1638 1639 1640 1641 1642
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1643
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1644 1645 1646 1647 1648 1649
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1664
    if (keyX_ == keyBNY_) {
1665
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1666
    } else if (keyY_ == keyBNY_) {
1667
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1668
    }
1669
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1718
  fpga::WrapperConvArgs fpga_conv_args;
1719 1720

 public:
Z
zhangyang 已提交
1721 1722
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1723
#endif
E
eclipsess 已提交
1724
};
1725
#endif
E
eclipsess 已提交
1726

Z
zhangyang 已提交
1727
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1728
template <typename Dtype>
1729
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1730 1731 1732
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1733 1734 1735
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1746
  }
N
nhzlx 已提交
1747
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1748

N
nhzlx 已提交
1749
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1750

N
nhzlx 已提交
1751
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1752

N
nhzlx 已提交
1753
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1754

N
nhzlx 已提交
1755
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1756 1757 1758 1759 1760 1761 1762

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1763
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1764

N
nhzlx 已提交
1765
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1766

N
nhzlx 已提交
1767
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1768

N
nhzlx 已提交
1769
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1770 1771

 protected:
N
nhzlx 已提交
1772 1773 1774 1775 1776
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1777 1778 1779
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1780 1781
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1782 1783 1784
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1785
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1786 1787

 public:
Z
zhangyang 已提交
1788 1789
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1790 1791 1792 1793
#endif
};
#endif

1794
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1795
template <typename Dtype>
1796
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1797 1798 1799
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1800 1801 1802
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1815
  }
N
nhzlx 已提交
1816
  RType *Bias() const { return bias_; }
1817 1818 1819

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1820
  RType *Output() const { return output_y_; }
1821

N
nhzlx 已提交
1822
  const RType *InputBias() const { return input_bias_; }
1823

N
nhzlx 已提交
1824
  const RType *InputMean() const { return input_mean_; }
1825

N
nhzlx 已提交
1826
  const RType *InputScale() const { return input_scale_; }
1827

N
nhzlx 已提交
1828
  const RType *InputVariance() const { return input_variance_; }
1829 1830 1831 1832 1833 1834 1835

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1836
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1837

N
nhzlx 已提交
1838
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1839

N
nhzlx 已提交
1840
  const RType *NewScale() const { return new_scale_; }
1841

N
nhzlx 已提交
1842
  const RType *NewBias() const { return new_bias_; }
1843 1844

 protected:
N
nhzlx 已提交
1845
  RType *bias_;
1846
  int axis_;
N
nhzlx 已提交
1847 1848 1849 1850 1851
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1852 1853 1854
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1855 1856
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1857 1858 1859
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1860
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1861 1862

 public:
Z
zhangyang 已提交
1863 1864
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1865
#endif
1866
};
E
eclipsess 已提交
1867
#endif
Y
Yao,kun 已提交
1868

E
eclipsess 已提交
1869
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1870
template <typename Dtype>
1871
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1872 1873 1874
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1875 1876 1877
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1888
  }
N
nhzlx 已提交
1889
  RType *Output() const { return output_; }
E
eclipsess 已提交
1890

N
nhzlx 已提交
1891
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1892

N
nhzlx 已提交
1893
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1894

N
nhzlx 已提交
1895
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1896

N
nhzlx 已提交
1897
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1898 1899 1900 1901 1902 1903 1904

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1905
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1906

N
nhzlx 已提交
1907
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1908

N
nhzlx 已提交
1909
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1910

N
nhzlx 已提交
1911
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1912 1913

 protected:
N
nhzlx 已提交
1914 1915 1916 1917 1918
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1919 1920 1921
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1922 1923
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1924 1925 1926 1927
};

#endif

1928
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1929
template <typename Dtype>
1930
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1931 1932 1933
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1934 1935 1936
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1947
  }
N
nhzlx 已提交
1948
  RType *Output() const { return output_; }
1949

N
nhzlx 已提交
1950
  const RType *InputBias() const { return input_bias_; }
1951

N
nhzlx 已提交
1952
  const RType *InputMean() const { return input_mean_; }
1953

N
nhzlx 已提交
1954
  const RType *InputScale() const { return input_scale_; }
1955

N
nhzlx 已提交
1956
  const RType *InputVariance() const { return input_variance_; }
1957 1958 1959 1960 1961 1962 1963

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1964
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1965

N
nhzlx 已提交
1966
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1967

N
nhzlx 已提交
1968
  const RType *NewScale() const { return new_scale_; }
1969

N
nhzlx 已提交
1970
  const RType *NewBias() const { return new_bias_; }
1971 1972

 protected:
N
nhzlx 已提交
1973 1974 1975 1976 1977
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1978 1979 1980
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1981 1982
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1983 1984 1985
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1986
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1987 1988

 public:
Z
zhangyang 已提交
1989 1990
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1991
#endif
1992 1993 1994
};
#endif

Y
Yao,kun 已提交
1995
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1996
template <typename Dtype>
Y
Yao,kun 已提交
1997
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1998 1999 2000
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2001 2002 2003 2004
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2005 2006
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2007 2008 2009 2010 2011
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
2012
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2013

N
nhzlx 已提交
2014
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
2015 2016 2017 2018 2019 2020 2021 2022

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
2023 2024
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2025 2026 2027 2028
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2029
#endif
Y
Yao,kun 已提交
2030

2031
#ifdef DROPOUT_OP
N
nhzlx 已提交
2032
template <typename Dtype>
Y
Yao,kun 已提交
2033
class DropoutParam : public OpParam {
N
nhzlx 已提交
2034 2035 2036
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2037 2038 2039
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2040 2041
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2042 2043

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2044 2045
  }

N
nhzlx 已提交
2046
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2047

N
nhzlx 已提交
2048
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2049

Y
yangfei 已提交
2050 2051
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2052
 private:
N
nhzlx 已提交
2053 2054
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2055
  float dropout_prob_;
Y
Yao,kun 已提交
2056
};
2057
#endif
Y
Yao,kun 已提交
2058

H
hjchen2 已提交
2059
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
2060
template <typename Dtype>
L
liuruilong 已提交
2061
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2062 2063 2064
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2065 2066 2067 2068
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2069 2070 2071
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2072 2073 2074 2075 2076 2077
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2078
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2079

N
nhzlx 已提交
2080
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2081

N
nhzlx 已提交
2082
  RType *Output() const { return output_; }
L
liuruilong 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2093 2094 2095
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2096 2097 2098 2099 2100 2101 2102
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2128 2129
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2174
    axis = GetAttr<int>("axis", attrs);
2175 2176 2177
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2178
  const int &Axis() const { return axis; }
2179 2180 2181 2182

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2183
  int axis;
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2197
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2198
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2199 2200 2201 2202 2203 2204
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2205 2206
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2207 2208 2209 2210 2211
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2212 2213 2214

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2215
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2216
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2217 2218 2219
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2236 2237
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2238 2239
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2240
  const RType *InputOutPutSize() const { return input_outsize_; }
2241
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2242 2243
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2244 2245 2246 2247 2248

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2249 2250
  int out_h_;
  int out_w_;
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2266
  const RType *Input() const { return input_; }
2267 2268 2269 2270 2271 2272 2273 2274
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2275
template <typename Dtype>
2276 2277 2278 2279 2280
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2281 2282
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    if (HasAttr("is_static", attrs)) {
      is_static_ = GetAttr<bool>("is_static", attrs);
    }
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
  RoundType round_type_ = ROUND_NEAREST_TO_EVEN;
};

2317
template <typename Dtype>
2318 2319 2320 2321 2322
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2323 2324
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};

朔-望's avatar
朔-望 已提交
2345 2346
}  // namespace operators
}  // namespace paddle_mobile