memcontrol.c 130.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 97
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 104 105 106 107 108 109 110

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

111 112 113 114
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
115 116 117
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
118 119
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
120 121

	struct zone_reclaim_stat reclaim_stat;
122 123 124 125
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
126 127
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
128 129 130 131 132 133 134 135 136 137 138 139
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

160 161 162 163 164
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
165
/* For threshold */
166 167
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
168
	int current_threshold;
169 170 171 172 173
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
174 175 176 177 178 179 180 181 182 183 184 185

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
186 187 188 189 190
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
191 192

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
193
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194

B
Balbir Singh 已提交
195 196 197 198 199 200 201
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 203 204
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
205 206 207 208 209 210 211
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
212 213 214 215
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
216 217 218 219
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
220
	struct mem_cgroup_lru_info info;
221

K
KOSAKI Motohiro 已提交
222 223 224 225 226
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

227
	/*
228
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
229
	 * reclaimed from.
230
	 */
K
KAMEZAWA Hiroyuki 已提交
231
	int last_scanned_child;
232 233 234 235
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
236
	atomic_t	oom_lock;
237
	atomic_t	refcnt;
238

K
KOSAKI Motohiro 已提交
239
	unsigned int	swappiness;
240 241
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
242

243 244 245
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

246 247 248 249
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
250
	struct mem_cgroup_thresholds thresholds;
251

252
	/* thresholds for mem+swap usage. RCU-protected */
253
	struct mem_cgroup_thresholds memsw_thresholds;
254

K
KAMEZAWA Hiroyuki 已提交
255 256 257
	/* For oom notifier event fd */
	struct list_head oom_notify;

258 259 260 261 262
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
263
	/*
264
	 * percpu counter.
265
	 */
266
	struct mem_cgroup_stat_cpu *stat;
267 268 269 270 271 272
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
273 274
};

275 276 277 278 279 280
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
281
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 284 285
	NR_MOVE_TYPE,
};

286 287
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
288
	spinlock_t	  lock; /* for from, to */
289 290 291
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
292
	unsigned long moved_charge;
293
	unsigned long moved_swap;
294 295 296
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
297
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 299
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
300

D
Daisuke Nishimura 已提交
301 302 303 304 305 306
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

307 308 309 310 311 312
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

313 314 315 316 317 318 319
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

320 321 322
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
325
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
326
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 328 329
	NR_CHARGE_TYPE,
};

330 331 332 333
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
334 335
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
336

337 338 339
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
340
#define _OOM_TYPE		(2)
341 342 343
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
344 345
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
346

347 348 349 350 351 352 353
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 355
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356

357 358
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
359
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360
static void drain_all_stock_async(void);
361

362 363 364 365 366 367
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

368 369 370 371 372
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
402
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403
				struct mem_cgroup_per_zone *mz,
404 405
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
406 407 408 409 410 411 412 413
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

414 415 416
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
433 434 435 436 437 438 439 440 441 442 443 444 445
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

446 447 448 449 450 451
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
452
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453 454 455 456 457 458
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
459
	unsigned long long excess;
460 461
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
462 463
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
464 465 466
	mctz = soft_limit_tree_from_page(page);

	/*
467 468
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
469
	 */
470 471
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472
		excess = res_counter_soft_limit_excess(&mem->res);
473 474 475 476
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
477
		if (excess || mz->on_tree) {
478 479 480 481 482
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
483 484
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
485
			 */
486
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 488
			spin_unlock(&mctz->lock);
		}
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

507 508 509 510 511 512 513 514 515
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
516
	struct mem_cgroup_per_zone *mz;
517 518

retry:
519
	mz = NULL;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
568 569 570 571 572 573
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

574 575
	get_online_cpus();
	for_each_online_cpu(cpu)
576
		val += per_cpu(mem->stat->count[idx], cpu);
577 578 579 580 581 582
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
583 584 585 586 587 588 589 590 591 592 593 594
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

595 596 597 598
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
599
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 601
}

602
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603
					 bool file, int nr_pages)
604
{
605 606
	preempt_disable();

607 608
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609
	else
610
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611

612 613
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
614
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615
	else
616
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617 618

	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619

620
	preempt_enable();
621 622
}

K
KAMEZAWA Hiroyuki 已提交
623
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624
					enum lru_list idx)
625 626 627 628 629 630 631 632 633 634 635
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
636 637
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

661
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
662 663 664 665 666 667
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

668
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669
{
670 671 672 673 674 675 676 677
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

678 679 680 681
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

682 683 684
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
685 686 687

	if (!mm)
		return NULL;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
703 704
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
705
{
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
728 729 730 731 732 733 734 735 736
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
737 738
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
739
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
740

K
KAMEZAWA Hiroyuki 已提交
741
	css_put(&iter->css);
742 743
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
744
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
745

746 747 748
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
749 750
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
751
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
752 753 754

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
755
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
756
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
757
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
758
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
759
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
760
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
761

K
KAMEZAWA Hiroyuki 已提交
762
	return iter;
K
KAMEZAWA Hiroyuki 已提交
763
}
K
KAMEZAWA Hiroyuki 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

777 778 779
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
780

781 782 783 784 785
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
799

K
KAMEZAWA Hiroyuki 已提交
800 801 802 803
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
804

805
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
806 807 808
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
809
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
810
		return;
811
	VM_BUG_ON(!pc->mem_cgroup);
812 813 814 815
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
816
	mz = page_cgroup_zoneinfo(pc);
817 818
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
819 820 821
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
822
	list_del_init(&pc->lru);
823 824
}

K
KAMEZAWA Hiroyuki 已提交
825
void mem_cgroup_del_lru(struct page *page)
826
{
K
KAMEZAWA Hiroyuki 已提交
827 828
	mem_cgroup_del_lru_list(page, page_lru(page));
}
829

K
KAMEZAWA Hiroyuki 已提交
830 831 832 833
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
834

835
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
836
		return;
837

K
KAMEZAWA Hiroyuki 已提交
838
	pc = lookup_page_cgroup(page);
839 840 841 842
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
843
	smp_rmb();
844 845
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
846 847 848
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
849 850
}

K
KAMEZAWA Hiroyuki 已提交
851
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
852
{
K
KAMEZAWA Hiroyuki 已提交
853 854
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
855

856
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
857 858
		return;
	pc = lookup_page_cgroup(page);
859
	VM_BUG_ON(PageCgroupAcctLRU(pc));
860 861 862 863
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
864 865
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
866
		return;
867

K
KAMEZAWA Hiroyuki 已提交
868
	mz = page_cgroup_zoneinfo(pc);
869 870
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
871 872 873
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
874 875
	list_add(&pc->lru, &mz->lists[lru]);
}
876

K
KAMEZAWA Hiroyuki 已提交
877
/*
878 879 880 881 882
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
883
 */
884
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
885
{
886 887 888 889 890 891 892 893 894 895 896 897
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
898 899
}

900 901 902 903 904 905 906 907
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
908
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
909 910 911 912 913
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
914 915 916
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
917
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
918 919 920
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
921 922
}

923 924 925
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
926
	struct mem_cgroup *curr = NULL;
927
	struct task_struct *p;
928

929 930 931 932 933
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
934 935
	if (!curr)
		return 0;
936 937 938 939 940 941 942
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
943 944 945 946
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
947 948 949
	return ret;
}

950
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
951 952 953
{
	unsigned long active;
	unsigned long inactive;
954 955
	unsigned long gb;
	unsigned long inactive_ratio;
956

K
KAMEZAWA Hiroyuki 已提交
957 958
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
987 988 989 990 991
		return 1;

	return 0;
}

992 993 994 995 996 997 998 999 1000 1001 1002
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1003 1004 1005 1006
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1007
	int nid = zone_to_nid(zone);
1008 1009 1010 1011 1012 1013
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1014 1015 1016
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1017
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
1042 1043 1044 1045 1046 1047 1048
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1049 1050 1051 1052 1053
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1054
					int active, int file)
1055 1056 1057 1058 1059 1060
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1061
	struct page_cgroup *pc, *tmp;
1062
	int nid = zone_to_nid(z);
1063 1064
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1065
	int lru = LRU_FILE * file + active;
1066
	int ret;
1067

1068
	BUG_ON(!mem_cont);
1069
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1070
	src = &mz->lists[lru];
1071

1072 1073
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1074
		if (scan >= nr_to_scan)
1075
			break;
K
KAMEZAWA Hiroyuki 已提交
1076 1077

		page = pc->page;
1078 1079
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1080
		if (unlikely(!PageLRU(page)))
1081 1082
			continue;

H
Hugh Dickins 已提交
1083
		scan++;
1084 1085 1086
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1087
			list_move(&page->lru, dst);
1088
			mem_cgroup_del_lru(page);
1089
			nr_taken += hpage_nr_pages(page);
1090 1091 1092 1093 1094 1095 1096
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1097 1098 1099 1100
		}
	}

	*scanned = scan;
1101 1102 1103 1104

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1105 1106 1107
	return nr_taken;
}

1108 1109 1110
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1139 1140 1141
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1142 1143 1144 1145

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1146
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1147 1148 1149
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1160 1161 1162
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1163
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1164 1165 1166
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1185 1186 1187

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1188 1189
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1190
	bool ret = false;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1225
/**
1226
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1245
	if (!memcg || !p)
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1292 1293 1294 1295 1296 1297 1298
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1299 1300 1301 1302
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1303 1304 1305
	return num;
}

D
David Rientjes 已提交
1306 1307 1308 1309 1310 1311 1312 1313
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1314 1315 1316
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1317 1318 1319 1320 1321 1322 1323 1324
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1325
/*
K
KAMEZAWA Hiroyuki 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1368 1369
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1370 1371 1372
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1373 1374
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1375 1376
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1377
						struct zone *zone,
1378 1379
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1380
{
K
KAMEZAWA Hiroyuki 已提交
1381 1382 1383
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1384 1385
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1386 1387
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1388

1389 1390 1391 1392
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1393
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1394
		victim = mem_cgroup_select_victim(root_mem);
1395
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1396
			loop++;
1397 1398
			if (loop >= 1)
				drain_all_stock_async();
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1422
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1423 1424
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1425 1426
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1427
		/* we use swappiness of local cgroup */
1428 1429
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1430
				noswap, get_swappiness(victim), zone);
1431 1432 1433
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1434
		css_put(&victim->css);
1435 1436 1437 1438 1439 1440 1441
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1442
		total += ret;
1443 1444 1445 1446
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1447
			return 1 + total;
1448
	}
K
KAMEZAWA Hiroyuki 已提交
1449
	return total;
1450 1451
}

K
KAMEZAWA Hiroyuki 已提交
1452 1453 1454 1455 1456 1457
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1458 1459
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1460

K
KAMEZAWA Hiroyuki 已提交
1461 1462 1463 1464
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1465 1466 1467 1468

	if (lock_count == 1)
		return true;
	return false;
1469
}
1470

K
KAMEZAWA Hiroyuki 已提交
1471
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1472
{
K
KAMEZAWA Hiroyuki 已提交
1473 1474
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1475 1476 1477 1478 1479
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1480 1481
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1482 1483 1484
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1485 1486 1487 1488

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1525 1526
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1527
	if (mem && atomic_read(&mem->oom_lock))
1528 1529 1530
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1531 1532 1533 1534
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1535
{
K
KAMEZAWA Hiroyuki 已提交
1536
	struct oom_wait_info owait;
1537
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1538

K
KAMEZAWA Hiroyuki 已提交
1539 1540 1541 1542 1543
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1544
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1545 1546 1547 1548 1549 1550 1551 1552
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1553 1554 1555 1556
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1557
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1558 1559
	mutex_unlock(&memcg_oom_mutex);

1560 1561
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1562
		mem_cgroup_out_of_memory(mem, mask);
1563
	} else {
K
KAMEZAWA Hiroyuki 已提交
1564
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1565
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1566 1567 1568
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1569
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1570 1571 1572 1573 1574 1575 1576
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1577 1578
}

1579 1580 1581
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1601
 */
1602

1603 1604
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1605 1606
{
	struct mem_cgroup *mem;
1607 1608
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1609
	unsigned long uninitialized_var(flags);
1610 1611 1612 1613

	if (unlikely(!pc))
		return;

1614
	rcu_read_lock();
1615
	mem = pc->mem_cgroup;
1616 1617 1618
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1619
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1620
		/* take a lock against to access pc->mem_cgroup */
1621
		move_lock_page_cgroup(pc, &flags);
1622 1623 1624 1625 1626
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1627 1628

	switch (idx) {
1629
	case MEMCG_NR_FILE_MAPPED:
1630 1631 1632
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1633
			ClearPageCgroupFileMapped(pc);
1634
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1635 1636 1637
		break;
	default:
		BUG();
1638
	}
1639

1640 1641
	this_cpu_add(mem->stat->count[idx], val);

1642 1643
out:
	if (unlikely(need_unlock))
1644
		move_unlock_page_cgroup(pc, &flags);
1645 1646
	rcu_read_unlock();
	return;
1647
}
1648
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1711
 * This will be consumed by consume_stock() function, later.
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1789 1790 1791 1792
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1793 1794 1795 1796 1797
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1798
	struct mem_cgroup *iter;
1799

1800 1801 1802 1803 1804 1805
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1806
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1807
		return NOTIFY_OK;
1808 1809 1810 1811

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1812 1813 1814 1815 1816
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

	if (csize > PAGE_SIZE) /* change csize and retry */
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1884 1885 1886
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1887
 */
1888
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
1889 1890 1891
				   gfp_t gfp_mask,
				   struct mem_cgroup **memcg, bool oom,
				   int page_size)
1892
{
1893 1894 1895
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
A
Andrea Arcangeli 已提交
1896
	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1897

K
KAMEZAWA Hiroyuki 已提交
1898 1899 1900 1901 1902 1903 1904 1905
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1906

1907
	/*
1908 1909
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1910 1911 1912
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1913 1914 1915 1916
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1917
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1918 1919 1920
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
A
Andrea Arcangeli 已提交
1921
		if (page_size == PAGE_SIZE && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
1922
			goto done;
1923 1924
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1925
		struct task_struct *p;
1926

K
KAMEZAWA Hiroyuki 已提交
1927 1928 1929
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
1930 1931 1932 1933 1934 1935 1936 1937
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
1938 1939
		 */
		mem = mem_cgroup_from_task(p);
1940
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1941 1942 1943
			rcu_read_unlock();
			goto done;
		}
A
Andrea Arcangeli 已提交
1944
		if (page_size == PAGE_SIZE && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1963

1964 1965
	do {
		bool oom_check;
1966

1967
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1968 1969
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1970
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1971
		}
1972

1973 1974 1975 1976
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1977
		}
1978

1979
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1980

1981 1982 1983 1984
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
A
Andrea Arcangeli 已提交
1985
			csize = page_size;
K
KAMEZAWA Hiroyuki 已提交
1986 1987 1988
			css_put(&mem->css);
			mem = NULL;
			goto again;
1989
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
1990
			css_put(&mem->css);
1991 1992
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1993 1994
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1995
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
1996
			}
1997 1998 1999 2000
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2001
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2002
			goto bypass;
2003
		}
2004 2005
	} while (ret != CHARGE_OK);

A
Andrea Arcangeli 已提交
2006 2007
	if (csize > page_size)
		refill_stock(mem, csize - page_size);
K
KAMEZAWA Hiroyuki 已提交
2008
	css_put(&mem->css);
2009
done:
K
KAMEZAWA Hiroyuki 已提交
2010
	*memcg = mem;
2011 2012
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2013
	*memcg = NULL;
2014
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2015 2016 2017
bypass:
	*memcg = NULL;
	return 0;
2018
}
2019

2020 2021 2022 2023 2024
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2025 2026
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2027 2028
{
	if (!mem_cgroup_is_root(mem)) {
2029
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2030
		if (do_swap_account)
2031
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2032
	}
2033 2034
}

A
Andrea Arcangeli 已提交
2035 2036
static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
				     int page_size)
2037
{
A
Andrea Arcangeli 已提交
2038
	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2039 2040
}

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2060
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2061
{
2062
	struct mem_cgroup *mem = NULL;
2063
	struct page_cgroup *pc;
2064
	unsigned short id;
2065 2066
	swp_entry_t ent;

2067 2068 2069
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2070
	lock_page_cgroup(pc);
2071
	if (PageCgroupUsed(pc)) {
2072
		mem = pc->mem_cgroup;
2073 2074
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2075
	} else if (PageSwapCache(page)) {
2076
		ent.val = page_private(page);
2077 2078 2079 2080 2081 2082
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2083
	}
2084
	unlock_page_cgroup(pc);
2085 2086 2087
	return mem;
}

2088 2089 2090 2091
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				       struct page_cgroup *pc,
				       enum charge_type ctype,
				       int page_size)
2092
{
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	int nr_pages = page_size >> PAGE_SHIFT;

	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		mem_cgroup_cancel_charge(mem, page_size);
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2109
	pc->mem_cgroup = mem;
2110 2111 2112 2113 2114 2115 2116
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2117
	smp_wmb();
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2131

2132
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2133
	unlock_page_cgroup(pc);
2134 2135 2136 2137 2138
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2139
	memcg_check_events(mem, pc->page);
2140
}
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

	/*
2157
	 * We have no races with charge/uncharge but will have races with
2158 2159 2160 2161 2162 2163
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
		mz = page_cgroup_zoneinfo(head_pc);
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2177 2178 2179 2180 2181
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2182
/**
2183
 * __mem_cgroup_move_account - move account of the page
2184 2185 2186
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2187
 * @uncharge: whether we should call uncharge and css_put against @from.
2188 2189
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2190
 * - page is not on LRU (isolate_page() is useful.)
2191
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2192
 *
2193 2194 2195 2196
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2197 2198
 */

2199
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2200 2201
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
	int charge_size)
2202
{
2203 2204
	int nr_pages = charge_size >> PAGE_SHIFT;

2205
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2206
	VM_BUG_ON(PageLRU(pc->page));
2207
	VM_BUG_ON(!page_is_cgroup_locked(pc));
2208 2209
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2210

2211
	if (PageCgroupFileMapped(pc)) {
2212 2213 2214 2215 2216
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2217
	}
2218
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2219 2220
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2221
		mem_cgroup_cancel_charge(from, charge_size);
2222

2223
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2224
	pc->mem_cgroup = to;
2225
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2226 2227 2228
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2229 2230 2231
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2232
	 */
2233 2234 2235 2236 2237 2238 2239
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2240 2241
		struct mem_cgroup *from, struct mem_cgroup *to,
		bool uncharge, int charge_size)
2242 2243
{
	int ret = -EINVAL;
2244 2245
	unsigned long flags;

2246 2247 2248
	if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
		return -EBUSY;

2249 2250
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2251
		move_lock_page_cgroup(pc, &flags);
2252
		__mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2253
		move_unlock_page_cgroup(pc, &flags);
2254 2255 2256
		ret = 0;
	}
	unlock_page_cgroup(pc);
2257 2258 2259 2260 2261
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2273
	struct page *page = pc->page;
2274 2275 2276
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2277 2278
	int charge = PAGE_SIZE;
	unsigned long flags;
2279 2280 2281 2282 2283 2284
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2285 2286 2287 2288 2289
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2290 2291
	/* The page is isolated from LRU and we have no race with splitting */
	charge = PAGE_SIZE << compound_order(page);
K
KAMEZAWA Hiroyuki 已提交
2292

2293
	parent = mem_cgroup_from_cont(pcg);
2294
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, charge);
2295
	if (ret || !parent)
2296
		goto put_back;
2297

2298 2299 2300 2301
	if (charge > PAGE_SIZE)
		flags = compound_lock_irqsave(page);

	ret = mem_cgroup_move_account(pc, child, parent, true, charge);
2302
	if (ret)
2303
		mem_cgroup_cancel_charge(parent, charge);
2304
put_back:
2305 2306
	if (charge > PAGE_SIZE)
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2307
	putback_lru_page(page);
2308
put:
2309
	put_page(page);
2310
out:
2311 2312 2313
	return ret;
}

2314 2315 2316 2317 2318 2319 2320
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2321
				gfp_t gfp_mask, enum charge_type ctype)
2322
{
2323
	struct mem_cgroup *mem = NULL;
2324 2325
	struct page_cgroup *pc;
	int ret;
A
Andrea Arcangeli 已提交
2326 2327
	int page_size = PAGE_SIZE;

A
Andrea Arcangeli 已提交
2328
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2329
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2330 2331
		VM_BUG_ON(!PageTransHuge(page));
	}
2332 2333 2334 2335 2336 2337 2338

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

A
Andrea Arcangeli 已提交
2339
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2340
	if (ret || !mem)
2341 2342
		return ret;

A
Andrea Arcangeli 已提交
2343
	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2344 2345 2346
	return 0;
}

2347 2348
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2349
{
2350
	if (mem_cgroup_disabled())
2351
		return 0;
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2363
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2364
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2365 2366
}

D
Daisuke Nishimura 已提交
2367 2368 2369 2370
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2371 2372
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2373
{
2374 2375
	int ret;

2376
	if (mem_cgroup_disabled())
2377
		return 0;
2378 2379
	if (PageCompound(page))
		return 0;
2380 2381 2382 2383 2384 2385 2386 2387
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2388 2389
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2390 2391 2392 2393
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2394 2395 2396 2397 2398 2399
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2400 2401
			return 0;
		}
2402
		unlock_page_cgroup(pc);
2403 2404
	}

2405
	if (unlikely(!mm))
2406
		mm = &init_mm;
2407

2408 2409
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2410
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2411

D
Daisuke Nishimura 已提交
2412 2413
	/* shmem */
	if (PageSwapCache(page)) {
2414 2415
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2416 2417 2418 2419 2420 2421
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2422
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2423 2424

	return ret;
2425 2426
}

2427 2428 2429
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2430
 * struct page_cgroup is acquired. This refcnt will be consumed by
2431 2432
 * "commit()" or removed by "cancel()"
 */
2433 2434 2435 2436 2437
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2438
	int ret;
2439

2440
	if (mem_cgroup_disabled())
2441 2442 2443 2444 2445 2446
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2447 2448 2449
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2450 2451
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2452
		goto charge_cur_mm;
2453
	mem = try_get_mem_cgroup_from_page(page);
2454 2455
	if (!mem)
		goto charge_cur_mm;
2456
	*ptr = mem;
A
Andrea Arcangeli 已提交
2457
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2458 2459
	css_put(&mem->css);
	return ret;
2460 2461 2462
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
A
Andrea Arcangeli 已提交
2463
	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2464 2465
}

D
Daisuke Nishimura 已提交
2466 2467 2468
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2469 2470 2471
{
	struct page_cgroup *pc;

2472
	if (mem_cgroup_disabled())
2473 2474 2475
		return;
	if (!ptr)
		return;
2476
	cgroup_exclude_rmdir(&ptr->css);
2477
	pc = lookup_page_cgroup(page);
2478
	mem_cgroup_lru_del_before_commit_swapcache(page);
A
Andrea Arcangeli 已提交
2479
	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2480
	mem_cgroup_lru_add_after_commit_swapcache(page);
2481 2482 2483
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2484 2485 2486
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2487
	 */
2488
	if (do_swap_account && PageSwapCache(page)) {
2489
		swp_entry_t ent = {.val = page_private(page)};
2490
		unsigned short id;
2491
		struct mem_cgroup *memcg;
2492 2493 2494 2495

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2496
		if (memcg) {
2497 2498 2499 2500
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2501
			if (!mem_cgroup_is_root(memcg))
2502
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2503
			mem_cgroup_swap_statistics(memcg, false);
2504 2505
			mem_cgroup_put(memcg);
		}
2506
		rcu_read_unlock();
2507
	}
2508 2509 2510 2511 2512 2513
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2514 2515
}

D
Daisuke Nishimura 已提交
2516 2517 2518 2519 2520 2521
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2522 2523
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2524
	if (mem_cgroup_disabled())
2525 2526 2527
		return;
	if (!mem)
		return;
A
Andrea Arcangeli 已提交
2528
	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2529 2530
}

2531
static void
A
Andrea Arcangeli 已提交
2532 2533
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
	      int page_size)
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

A
Andrea Arcangeli 已提交
2560 2561 2562
	if (page_size != PAGE_SIZE)
		goto direct_uncharge;

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
A
Andrea Arcangeli 已提交
2576
	res_counter_uncharge(&mem->res, page_size);
2577
	if (uncharge_memsw)
A
Andrea Arcangeli 已提交
2578
		res_counter_uncharge(&mem->memsw, page_size);
2579 2580
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2581 2582
	return;
}
2583

2584
/*
2585
 * uncharge if !page_mapped(page)
2586
 */
2587
static struct mem_cgroup *
2588
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2589
{
2590
	int count;
H
Hugh Dickins 已提交
2591
	struct page_cgroup *pc;
2592
	struct mem_cgroup *mem = NULL;
A
Andrea Arcangeli 已提交
2593
	int page_size = PAGE_SIZE;
2594

2595
	if (mem_cgroup_disabled())
2596
		return NULL;
2597

K
KAMEZAWA Hiroyuki 已提交
2598
	if (PageSwapCache(page))
2599
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2600

A
Andrea Arcangeli 已提交
2601
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2602
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2603 2604
		VM_BUG_ON(!PageTransHuge(page));
	}
A
Andrea Arcangeli 已提交
2605

2606
	count = page_size >> PAGE_SHIFT;
2607
	/*
2608
	 * Check if our page_cgroup is valid
2609
	 */
2610 2611
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2612
		return NULL;
2613

2614
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2615

2616 2617
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2618 2619 2620 2621 2622
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2623
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2624 2625
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2637
	}
K
KAMEZAWA Hiroyuki 已提交
2638

2639
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
K
KAMEZAWA Hiroyuki 已提交
2640

2641
	ClearPageCgroupUsed(pc);
2642 2643 2644 2645 2646 2647
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2648

2649
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2650 2651 2652 2653
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2654
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2655 2656 2657 2658 2659
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
A
Andrea Arcangeli 已提交
2660
		__do_uncharge(mem, ctype, page_size);
2661

2662
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2663 2664 2665

unlock_out:
	unlock_page_cgroup(pc);
2666
	return NULL;
2667 2668
}

2669 2670
void mem_cgroup_uncharge_page(struct page *page)
{
2671 2672 2673 2674 2675
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2676 2677 2678 2679 2680 2681
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2682
	VM_BUG_ON(page->mapping);
2683 2684 2685
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2726
	memcg_oom_recover(batch->memcg);
2727 2728 2729 2730
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2731
#ifdef CONFIG_SWAP
2732
/*
2733
 * called after __delete_from_swap_cache() and drop "page" account.
2734 2735
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2736 2737
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2738 2739
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2740 2741 2742 2743 2744 2745
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2746

K
KAMEZAWA Hiroyuki 已提交
2747 2748 2749 2750 2751
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2752
		swap_cgroup_record(ent, css_id(&memcg->css));
2753
}
2754
#endif
2755 2756 2757 2758 2759 2760 2761

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2762
{
2763
	struct mem_cgroup *memcg;
2764
	unsigned short id;
2765 2766 2767 2768

	if (!do_swap_account)
		return;

2769 2770 2771
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2772
	if (memcg) {
2773 2774 2775 2776
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2777
		if (!mem_cgroup_is_root(memcg))
2778
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2779
		mem_cgroup_swap_statistics(memcg, false);
2780 2781
		mem_cgroup_put(memcg);
	}
2782
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2783
}
2784 2785 2786 2787 2788 2789

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2790
 * @need_fixup: whether we should fixup res_counters and refcounts.
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2801
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2802 2803 2804 2805 2806 2807 2808 2809
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2810
		mem_cgroup_swap_statistics(to, true);
2811
		/*
2812 2813 2814 2815 2816 2817
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2818 2819
		 */
		mem_cgroup_get(to);
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2831 2832 2833 2834 2835 2836
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2837
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2838 2839 2840
{
	return -EINVAL;
}
2841
#endif
K
KAMEZAWA Hiroyuki 已提交
2842

2843
/*
2844 2845
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2846
 */
2847 2848
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2849 2850
{
	struct page_cgroup *pc;
2851
	struct mem_cgroup *mem = NULL;
2852
	enum charge_type ctype;
2853
	int ret = 0;
2854

A
Andrea Arcangeli 已提交
2855
	VM_BUG_ON(PageTransHuge(page));
2856
	if (mem_cgroup_disabled())
2857 2858
		return 0;

2859 2860 2861
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2862 2863
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2895
	}
2896
	unlock_page_cgroup(pc);
2897 2898 2899 2900 2901 2902
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2903

A
Andrea Arcangeli 已提交
2904
	*ptr = mem;
A
Andrea Arcangeli 已提交
2905
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2918
	}
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
A
Andrea Arcangeli 已提交
2932
	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2933
	return ret;
2934
}
2935

2936
/* remove redundant charge if migration failed*/
2937
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2938
	struct page *oldpage, struct page *newpage, bool migration_ok)
2939
{
2940
	struct page *used, *unused;
2941 2942 2943 2944
	struct page_cgroup *pc;

	if (!mem)
		return;
2945
	/* blocks rmdir() */
2946
	cgroup_exclude_rmdir(&mem->css);
2947
	if (!migration_ok) {
2948 2949
		used = oldpage;
		unused = newpage;
2950
	} else {
2951
		used = newpage;
2952 2953
		unused = oldpage;
	}
2954
	/*
2955 2956 2957
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2958
	 */
2959 2960 2961 2962
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2963

2964 2965
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2966
	/*
2967 2968 2969 2970 2971 2972
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2973
	 */
2974 2975
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2976
	/*
2977 2978
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2979 2980 2981 2982
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2983
}
2984

2985
/*
2986 2987 2988 2989 2990 2991
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2992
 */
2993
int mem_cgroup_shmem_charge_fallback(struct page *page,
2994 2995
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2996
{
2997
	struct mem_cgroup *mem = NULL;
2998
	int ret;
2999

3000
	if (mem_cgroup_disabled())
3001
		return 0;
3002

3003 3004 3005
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3006

3007
	return ret;
3008 3009
}

3010 3011
static DEFINE_MUTEX(set_limit_mutex);

3012
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3013
				unsigned long long val)
3014
{
3015
	int retry_count;
3016
	u64 memswlimit, memlimit;
3017
	int ret = 0;
3018 3019
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3020
	int enlarge;
3021 3022 3023 3024 3025 3026 3027 3028 3029

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3030

3031
	enlarge = 0;
3032
	while (retry_count) {
3033 3034 3035 3036
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3047 3048
			break;
		}
3049 3050 3051 3052 3053

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3054
		ret = res_counter_set_limit(&memcg->res, val);
3055 3056 3057 3058 3059 3060
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3061 3062 3063 3064 3065
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3066
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3067
						MEM_CGROUP_RECLAIM_SHRINK);
3068 3069 3070 3071 3072 3073
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3074
	}
3075 3076
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3077

3078 3079 3080
	return ret;
}

L
Li Zefan 已提交
3081 3082
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3083
{
3084
	int retry_count;
3085
	u64 memlimit, memswlimit, oldusage, curusage;
3086 3087
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3088
	int enlarge = 0;
3089

3090 3091 3092
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3110 3111 3112
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3113
		ret = res_counter_set_limit(&memcg->memsw, val);
3114 3115 3116 3117 3118 3119
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3120 3121 3122 3123 3124
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3125
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3126 3127
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3128
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3129
		/* Usage is reduced ? */
3130
		if (curusage >= oldusage)
3131
			retry_count--;
3132 3133
		else
			oldusage = curusage;
3134
	}
3135 3136
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3137 3138 3139
	return ret;
}

3140
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3141
					    gfp_t gfp_mask)
3142 3143 3144 3145 3146 3147
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3148
	unsigned long long excess;
3149 3150 3151 3152

	if (order > 0)
		return 0;

3153
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3201
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3202 3203 3204 3205 3206 3207 3208 3209
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3210 3211
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3230 3231 3232 3233
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3234
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3235
				int node, int zid, enum lru_list lru)
3236
{
K
KAMEZAWA Hiroyuki 已提交
3237 3238
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3239
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3240
	unsigned long flags, loop;
3241
	struct list_head *list;
3242
	int ret = 0;
3243

K
KAMEZAWA Hiroyuki 已提交
3244 3245
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3246
	list = &mz->lists[lru];
3247

3248 3249 3250 3251 3252 3253
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3254
		spin_lock_irqsave(&zone->lru_lock, flags);
3255
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3256
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3257
			break;
3258 3259 3260 3261
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3262
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3263
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3264 3265
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3266
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3267

K
KAMEZAWA Hiroyuki 已提交
3268
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3269
		if (ret == -ENOMEM)
3270
			break;
3271 3272 3273 3274 3275 3276 3277

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3278
	}
K
KAMEZAWA Hiroyuki 已提交
3279

3280 3281 3282
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3283 3284 3285 3286 3287 3288
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3289
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3290
{
3291 3292 3293
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3294
	struct cgroup *cgrp = mem->css.cgroup;
3295

3296
	css_get(&mem->css);
3297 3298

	shrink = 0;
3299 3300 3301
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3302
move_account:
3303
	do {
3304
		ret = -EBUSY;
3305 3306 3307 3308
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3309
			goto out;
3310 3311
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3312
		drain_all_stock_sync();
3313
		ret = 0;
3314
		mem_cgroup_start_move(mem);
3315
		for_each_node_state(node, N_HIGH_MEMORY) {
3316
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3317
				enum lru_list l;
3318 3319
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3320
							node, zid, l);
3321 3322 3323
					if (ret)
						break;
				}
3324
			}
3325 3326 3327
			if (ret)
				break;
		}
3328
		mem_cgroup_end_move(mem);
3329
		memcg_oom_recover(mem);
3330 3331 3332
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3333
		cond_resched();
3334 3335
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3336 3337 3338
out:
	css_put(&mem->css);
	return ret;
3339 3340

try_to_free:
3341 3342
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3343 3344 3345
		ret = -EBUSY;
		goto out;
	}
3346 3347
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3348 3349 3350 3351
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3352 3353 3354 3355 3356

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3357 3358
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3359
		if (!progress) {
3360
			nr_retries--;
3361
			/* maybe some writeback is necessary */
3362
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3363
		}
3364 3365

	}
K
KAMEZAWA Hiroyuki 已提交
3366
	lru_add_drain();
3367
	/* try move_account...there may be some *locked* pages. */
3368
	goto move_account;
3369 3370
}

3371 3372 3373 3374 3375 3376
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3395
	 * If parent's use_hierarchy is set, we can't make any modifications
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3415

K
KAMEZAWA Hiroyuki 已提交
3416 3417
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3418
{
K
KAMEZAWA Hiroyuki 已提交
3419 3420
	struct mem_cgroup *iter;
	s64 val = 0;
3421

K
KAMEZAWA Hiroyuki 已提交
3422 3423 3424 3425 3426 3427 3428
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3429 3430
}

3431 3432
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3433
	u64 val;
3434 3435 3436 3437 3438 3439 3440 3441

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3442 3443
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3444

K
KAMEZAWA Hiroyuki 已提交
3445 3446 3447
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3448 3449 3450 3451

	return val << PAGE_SHIFT;
}

3452
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3453
{
3454
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3455
	u64 val;
3456 3457 3458 3459 3460 3461
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3462 3463 3464
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3465
			val = res_counter_read_u64(&mem->res, name);
3466 3467
		break;
	case _MEMSWAP:
3468 3469 3470
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3471
			val = res_counter_read_u64(&mem->memsw, name);
3472 3473 3474 3475 3476 3477
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3478
}
3479 3480 3481 3482
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3483 3484
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3485
{
3486
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3487
	int type, name;
3488 3489 3490
	unsigned long long val;
	int ret;

3491 3492 3493
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3494
	case RES_LIMIT:
3495 3496 3497 3498
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3499 3500
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3501 3502 3503
		if (ret)
			break;
		if (type == _MEM)
3504
			ret = mem_cgroup_resize_limit(memcg, val);
3505 3506
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3507
		break;
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3522 3523 3524 3525 3526
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3527 3528
}

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3557
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3558 3559
{
	struct mem_cgroup *mem;
3560
	int type, name;
3561 3562

	mem = mem_cgroup_from_cont(cont);
3563 3564 3565
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3566
	case RES_MAX_USAGE:
3567 3568 3569 3570
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3571 3572
		break;
	case RES_FAILCNT:
3573 3574 3575 3576
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3577 3578
		break;
	}
3579

3580
	return 0;
3581 3582
}

3583 3584 3585 3586 3587 3588
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3589
#ifdef CONFIG_MMU
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3608 3609 3610 3611 3612 3613 3614
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3615

K
KAMEZAWA Hiroyuki 已提交
3616 3617 3618 3619 3620

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3621
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3622 3623
	MCS_PGPGIN,
	MCS_PGPGOUT,
3624
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3635 3636
};

K
KAMEZAWA Hiroyuki 已提交
3637 3638 3639 3640 3641 3642
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3643
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3644 3645
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3646
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3647 3648 3649 3650 3651 3652 3653 3654
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3655 3656
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3657 3658 3659 3660
{
	s64 val;

	/* per cpu stat */
3661
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3662
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3663
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3664
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3665
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3666
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3667
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3668
	s->stat[MCS_PGPGIN] += val;
3669
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3670
	s->stat[MCS_PGPGOUT] += val;
3671
	if (do_swap_account) {
3672
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3673 3674
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3692 3693 3694 3695
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3696 3697
}

3698 3699
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3700 3701
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3702
	struct mcs_total_stat mystat;
3703 3704
	int i;

K
KAMEZAWA Hiroyuki 已提交
3705 3706
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3707

3708 3709 3710
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3711
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3712
	}
L
Lee Schermerhorn 已提交
3713

K
KAMEZAWA Hiroyuki 已提交
3714
	/* Hierarchical information */
3715 3716 3717 3718 3719 3720 3721
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3722

K
KAMEZAWA Hiroyuki 已提交
3723 3724
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3725 3726 3727
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3728
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3729
	}
K
KAMEZAWA Hiroyuki 已提交
3730

K
KOSAKI Motohiro 已提交
3731
#ifdef CONFIG_DEBUG_VM
3732
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3760 3761 3762
	return 0;
}

K
KOSAKI Motohiro 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3775

K
KOSAKI Motohiro 已提交
3776 3777 3778 3779 3780 3781 3782
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3783 3784 3785

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3786 3787
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3788 3789
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3790
		return -EINVAL;
3791
	}
K
KOSAKI Motohiro 已提交
3792 3793 3794 3795 3796

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3797 3798
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3799 3800 3801
	return 0;
}

3802 3803 3804 3805 3806 3807 3808 3809
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3810
		t = rcu_dereference(memcg->thresholds.primary);
3811
	else
3812
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3824
	i = t->current_threshold;
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3848
	t->current_threshold = i - 1;
3849 3850 3851 3852 3853 3854
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3855 3856 3857 3858 3859 3860 3861
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3872
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3883 3884 3885 3886
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3887 3888 3889 3890
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3891 3892
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3893 3894
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3895 3896
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3897
	int i, size, ret;
3898 3899 3900 3901 3902 3903

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3904

3905
	if (type == _MEM)
3906
		thresholds = &memcg->thresholds;
3907
	else if (type == _MEMSWAP)
3908
		thresholds = &memcg->memsw_thresholds;
3909 3910 3911 3912 3913 3914
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3915
	if (thresholds->primary)
3916 3917
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3918
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3919 3920

	/* Allocate memory for new array of thresholds */
3921
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3922
			GFP_KERNEL);
3923
	if (!new) {
3924 3925 3926
		ret = -ENOMEM;
		goto unlock;
	}
3927
	new->size = size;
3928 3929

	/* Copy thresholds (if any) to new array */
3930 3931
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3932
				sizeof(struct mem_cgroup_threshold));
3933 3934
	}

3935
	/* Add new threshold */
3936 3937
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3938 3939

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3940
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3941 3942 3943
			compare_thresholds, NULL);

	/* Find current threshold */
3944
	new->current_threshold = -1;
3945
	for (i = 0; i < size; i++) {
3946
		if (new->entries[i].threshold < usage) {
3947
			/*
3948 3949
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3950 3951
			 * it here.
			 */
3952
			++new->current_threshold;
3953 3954 3955
		}
	}

3956 3957 3958 3959 3960
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3961

3962
	/* To be sure that nobody uses thresholds */
3963 3964 3965 3966 3967 3968 3969 3970
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3971
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3972
	struct cftype *cft, struct eventfd_ctx *eventfd)
3973 3974
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3975 3976
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3977 3978
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3979
	int i, j, size;
3980 3981 3982

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3983
		thresholds = &memcg->thresholds;
3984
	else if (type == _MEMSWAP)
3985
		thresholds = &memcg->memsw_thresholds;
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4001 4002 4003
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4004 4005 4006
			size++;
	}

4007
	new = thresholds->spare;
4008

4009 4010
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4011 4012
		kfree(new);
		new = NULL;
4013
		goto swap_buffers;
4014 4015
	}

4016
	new->size = size;
4017 4018

	/* Copy thresholds and find current threshold */
4019 4020 4021
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4022 4023
			continue;

4024 4025
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4026
			/*
4027
			 * new->current_threshold will not be used
4028 4029 4030
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4031
			++new->current_threshold;
4032 4033 4034 4035
		}
		j++;
	}

4036
swap_buffers:
4037 4038 4039
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4040

4041
	/* To be sure that nobody uses thresholds */
4042 4043 4044 4045
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4046

K
KAMEZAWA Hiroyuki 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4072
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4127 4128
	if (!val)
		memcg_oom_recover(mem);
4129 4130 4131 4132
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4133 4134
static struct cftype mem_cgroup_files[] = {
	{
4135
		.name = "usage_in_bytes",
4136
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4137
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4138 4139
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4140
	},
4141 4142
	{
		.name = "max_usage_in_bytes",
4143
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4144
		.trigger = mem_cgroup_reset,
4145 4146
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4147
	{
4148
		.name = "limit_in_bytes",
4149
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4150
		.write_string = mem_cgroup_write,
4151
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4152
	},
4153 4154 4155 4156 4157 4158
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4159 4160
	{
		.name = "failcnt",
4161
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4162
		.trigger = mem_cgroup_reset,
4163
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4164
	},
4165 4166
	{
		.name = "stat",
4167
		.read_map = mem_control_stat_show,
4168
	},
4169 4170 4171 4172
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4173 4174 4175 4176 4177
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4178 4179 4180 4181 4182
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4183 4184 4185 4186 4187
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4188 4189
	{
		.name = "oom_control",
4190 4191
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4192 4193 4194 4195
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4196 4197
};

4198 4199 4200 4201 4202 4203
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4204 4205
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4241 4242 4243
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4244
	struct mem_cgroup_per_zone *mz;
4245
	enum lru_list l;
4246
	int zone, tmp = node;
4247 4248 4249 4250 4251 4252 4253 4254
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4255 4256
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4257
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4258 4259
	if (!pn)
		return 1;
4260

4261
	mem->info.nodeinfo[node] = pn;
4262 4263
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4264 4265
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4266
		mz->usage_in_excess = 0;
4267 4268
		mz->on_tree = false;
		mz->mem = mem;
4269
	}
4270 4271 4272
	return 0;
}

4273 4274 4275 4276 4277
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4278 4279 4280
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4281
	int size = sizeof(struct mem_cgroup);
4282

4283
	/* Can be very big if MAX_NUMNODES is very big */
4284
	if (size < PAGE_SIZE)
4285
		mem = kzalloc(size, GFP_KERNEL);
4286
	else
4287
		mem = vzalloc(size);
4288

4289 4290 4291
	if (!mem)
		return NULL;

4292
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4293 4294
	if (!mem->stat)
		goto out_free;
4295
	spin_lock_init(&mem->pcp_counter_lock);
4296
	return mem;
4297 4298 4299 4300 4301 4302 4303

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4304 4305
}

4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4317
static void __mem_cgroup_free(struct mem_cgroup *mem)
4318
{
K
KAMEZAWA Hiroyuki 已提交
4319 4320
	int node;

4321
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4322 4323
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4324 4325 4326
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4327 4328
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4329 4330 4331 4332 4333
		kfree(mem);
	else
		vfree(mem);
}

4334 4335 4336 4337 4338
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4339
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4340
{
4341
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4342
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4343
		__mem_cgroup_free(mem);
4344 4345 4346
		if (parent)
			mem_cgroup_put(parent);
	}
4347 4348
}

4349 4350 4351 4352 4353
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4354 4355 4356 4357 4358 4359 4360 4361 4362
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4363

4364 4365 4366
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4367
	if (!mem_cgroup_disabled() && really_do_swap_account)
4368 4369 4370 4371 4372 4373 4374 4375
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4401
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4402 4403
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4404
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4405
	long error = -ENOMEM;
4406
	int node;
B
Balbir Singh 已提交
4407

4408 4409
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4410
		return ERR_PTR(error);
4411

4412 4413 4414
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4415

4416
	/* root ? */
4417
	if (cont->parent == NULL) {
4418
		int cpu;
4419
		enable_swap_cgroup();
4420
		parent = NULL;
4421
		root_mem_cgroup = mem;
4422 4423
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4424 4425 4426 4427 4428
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4429
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4430
	} else {
4431
		parent = mem_cgroup_from_cont(cont->parent);
4432
		mem->use_hierarchy = parent->use_hierarchy;
4433
		mem->oom_kill_disable = parent->oom_kill_disable;
4434
	}
4435

4436 4437 4438
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4439 4440 4441 4442 4443 4444 4445
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4446 4447 4448 4449
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4450
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4451
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4452
	INIT_LIST_HEAD(&mem->oom_notify);
4453

K
KOSAKI Motohiro 已提交
4454 4455
	if (parent)
		mem->swappiness = get_swappiness(parent);
4456
	atomic_set(&mem->refcnt, 1);
4457
	mem->move_charge_at_immigrate = 0;
4458
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4459
	return &mem->css;
4460
free_out:
4461
	__mem_cgroup_free(mem);
4462
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4463
	return ERR_PTR(error);
B
Balbir Singh 已提交
4464 4465
}

4466
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4467 4468 4469
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4470 4471

	return mem_cgroup_force_empty(mem, false);
4472 4473
}

B
Balbir Singh 已提交
4474 4475 4476
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4477 4478 4479
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4480 4481 4482 4483 4484
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4485 4486 4487 4488 4489 4490 4491 4492
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4493 4494
}

4495
#ifdef CONFIG_MMU
4496
/* Handlers for move charge at task migration. */
4497 4498
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4499
{
4500 4501
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4502 4503
	struct mem_cgroup *mem = mc.to;

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
A
Andrea Arcangeli 已提交
4539 4540
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
					      PAGE_SIZE);
4541 4542 4543 4544 4545
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4546 4547 4548 4549 4550 4551 4552 4553
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4554
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4555 4556 4557 4558 4559 4560
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4561 4562 4563
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4564 4565 4566 4567 4568
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4569
	swp_entry_t	ent;
4570 4571 4572 4573 4574
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4575
	MC_TARGET_SWAP,
4576 4577
};

D
Daisuke Nishimura 已提交
4578 4579
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4580
{
D
Daisuke Nishimura 已提交
4581
	struct page *page = vm_normal_page(vma, addr, ptent);
4582

D
Daisuke Nishimura 已提交
4583 4584 4585 4586 4587 4588
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4589 4590
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4609 4610
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4611
		return NULL;
4612
	}
D
Daisuke Nishimura 已提交
4613 4614 4615 4616 4617 4618
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4664 4665
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4666 4667 4668

	if (!page && !ent.val)
		return 0;
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4684 4685
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4686 4687 4688 4689
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

A
Andrea Arcangeli 已提交
4702
	VM_BUG_ON(pmd_trans_huge(*pmd));
4703 4704 4705 4706 4707 4708 4709
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4710 4711 4712
	return 0;
}

4713 4714 4715 4716 4717
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4718
	down_read(&mm->mmap_sem);
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4730
	up_read(&mm->mmap_sem);
4731 4732 4733 4734 4735 4736 4737 4738 4739

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4740 4741 4742 4743 4744
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4745 4746
}

4747 4748
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4749
{
4750 4751 4752
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4753
	/* we must uncharge all the leftover precharges from mc.to */
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4765
	}
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4800
	spin_lock(&mc.lock);
4801 4802
	mc.from = NULL;
	mc.to = NULL;
4803
	spin_unlock(&mc.lock);
4804
	mem_cgroup_end_move(from);
4805 4806
}

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4825 4826 4827 4828
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4829
			VM_BUG_ON(mc.moved_charge);
4830
			VM_BUG_ON(mc.moved_swap);
4831
			mem_cgroup_start_move(from);
4832
			spin_lock(&mc.lock);
4833 4834
			mc.from = from;
			mc.to = mem;
4835
			spin_unlock(&mc.lock);
4836
			/* We set mc.moving_task later */
4837 4838 4839 4840

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4841 4842
		}
		mmput(mm);
4843 4844 4845 4846 4847 4848 4849 4850 4851
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4852
	mem_cgroup_clear_mc();
4853 4854
}

4855 4856 4857
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4858
{
4859 4860 4861 4862 4863 4864
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
A
Andrea Arcangeli 已提交
4865
	VM_BUG_ON(pmd_trans_huge(*pmd));
4866 4867 4868 4869 4870 4871 4872
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4873
		swp_entry_t ent;
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4885
			if (!mem_cgroup_move_account(pc,
4886
					mc.from, mc.to, false, PAGE_SIZE)) {
4887
				mc.precharge--;
4888 4889
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4890 4891 4892 4893 4894
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4895 4896
		case MC_TARGET_SWAP:
			ent = target.ent;
4897 4898
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4899
				mc.precharge--;
4900 4901 4902
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4903
			break;
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4918
		ret = mem_cgroup_do_precharge(1);
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
4962
	up_read(&mm->mmap_sem);
4963 4964
}

B
Balbir Singh 已提交
4965 4966 4967
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4968 4969
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4970
{
4971 4972 4973
	struct mm_struct *mm;

	if (!mc.to)
4974 4975 4976
		/* no need to move charge */
		return;

4977 4978 4979 4980 4981
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
4982
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4983
}
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
5006

B
Balbir Singh 已提交
5007 5008 5009 5010
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5011
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5012 5013
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5014 5015
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5016
	.attach = mem_cgroup_move_task,
5017
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5018
	.use_id = 1,
B
Balbir Singh 已提交
5019
};
5020 5021

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
	if (!s || !strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
5032 5033 5034

static int __init disable_swap_account(char *s)
{
5035
	enable_swap_account("0");
5036 5037 5038 5039
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif