hrtimer.c 35.0 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/irq.h>
36 37 38 39 40
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
41
#include <linux/kallsyms.h>
42
#include <linux/interrupt.h>
43
#include <linux/tick.h>
44 45
#include <linux/seq_file.h>
#include <linux/err.h>
46 47 48 49 50 51 52 53

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
54
ktime_t ktime_get(void)
55 56 57 58 59 60 61 62 63 64 65 66 67
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
68
ktime_t ktime_get_real(void)
69 70 71 72 73 74 75 76 77 78 79 80
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
81 82 83 84 85 86
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
87
 */
88
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
89
{
90 91

	.clock_base =
92
	{
93 94 95
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
96
			.resolution = KTIME_LOW_RES,
97 98 99 100
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
101
			.resolution = KTIME_LOW_RES,
102 103
		},
	}
104 105 106 107 108 109 110 111
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
112
 * in normalized timespec format in the variable pointed to by @ts.
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
129
EXPORT_SYMBOL_GPL(ktime_get_ts);
130

131 132 133 134
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
135
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
136 137
{
	ktime_t xtim, tomono;
138
	struct timespec xts, tom;
139 140 141 142
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
J
john stultz 已提交
143 144 145 146 147
#ifdef CONFIG_NO_HZ
		getnstimeofday(&xts);
#else
		xts = xtime;
#endif
148
		tom = wall_to_monotonic;
149 150
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
151
	xtim = timespec_to_ktime(xts);
152
	tomono = timespec_to_ktime(tom);
153 154 155
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
156 157
}

158 159 160 161 162 163 164 165 166
/*
 * Helper function to check, whether the timer is running the callback
 * function
 */
static inline int hrtimer_callback_running(struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_CALLBACK;
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
185 186 187
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
188
{
189
	struct hrtimer_clock_base *base;
190 191 192 193

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
194
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
195 196 197
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
198
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
199 200 201 202 203 204 205 206
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
207 208
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
209
{
210 211
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
212

213 214
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
	new_base = &new_cpu_base->clock_base[base->index];
215 216 217 218 219 220 221 222 223 224 225

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
226
		if (unlikely(hrtimer_callback_running(timer)))
227 228 229 230
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
231 232
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
233 234 235 236 237 238 239
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

240
static inline struct hrtimer_clock_base *
241 242
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
243
	struct hrtimer_clock_base *base = timer->base;
244

245
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
246 247 248 249

	return base;
}

250
# define switch_hrtimer_base(t, b)	(b)
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
286
unsigned long ktime_divns(const ktime_t kt, s64 div)
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
{
	u64 dclc, inc, dns;
	int sft = 0;

	dclc = dns = ktime_to_ns(kt);
	inc = div;
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

	return (unsigned long) dclc;
}
#endif /* BITS_PER_LONG >= 64 */

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
		expires = ktime_sub(timer->expires, base->offset);
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
	ktime_t expires = ktime_sub(timer->expires, base->offset);
	int res;

	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
	 * the callback is executed in the hrtimer_interupt context. The
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 0, 1);
}

461 462 463 464 465 466 467 468 469 470 471 472
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
	WARN_ON_ONCE(num_online_cpus() > 1);

	/* Retrigger the CPU local events: */
	retrigger_next_event(NULL);
}

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/*
 * Check, whether the timer is on the callback pending list
 */
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_PENDING;
}

/*
 * Remove a timer from the callback pending list
 */
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
{
	list_del_init(&timer->cb_entry);
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
	INIT_LIST_HEAD(&base->cb_pending);
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
	INIT_LIST_HEAD(&timer->cb_entry);
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {

		/* Timer is expired, act upon the callback mode */
		switch(timer->cb_mode) {
		case HRTIMER_CB_IRQSAFE_NO_RESTART:
			/*
			 * We can call the callback from here. No restart
			 * happens, so no danger of recursion
			 */
			BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
			return 1;
		case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
			/*
			 * This is solely for the sched tick emulation with
			 * dynamic tick support to ensure that we do not
			 * restart the tick right on the edge and end up with
			 * the tick timer in the softirq ! The calling site
			 * takes care of this.
			 */
			return 1;
		case HRTIMER_CB_IRQSAFE:
		case HRTIMER_CB_SOFTIRQ:
			/*
			 * Move everything else into the softirq pending list !
			 */
			list_add_tail(&timer->cb_entry,
				      &base->cpu_base->cb_pending);
			timer->state = HRTIMER_STATE_PENDING;
			raise_softirq(HRTIMER_SOFTIRQ);
			return 1;
		default:
			BUG();
		}
	}
	return 0;
}

/*
 * Switch to high resolution mode
 */
556
static int hrtimer_switch_to_hres(void)
557 558 559 560 561
{
	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
	unsigned long flags;

	if (base->hres_active)
562
		return 1;
563 564 565 566 567

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
568
		return 0;
569 570 571 572 573 574 575 576 577 578 579 580
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
	printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
	       smp_processor_id());
581
	return 1;
582 583 584 585 586 587
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
588
static inline int hrtimer_switch_to_hres(void) { return 0; }
589 590 591 592 593 594 595 596 597 598 599 600 601
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	return 0;
}
static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

602 603 604 605 606 607 608 609 610 611 612 613
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

614 615 616 617 618 619
/*
 * Counterpart to lock_timer_base above:
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
620
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
621 622 623 624 625
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
626
 * @now:	forward past this time
627 628 629
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
630
 * Returns the number of overruns.
631 632
 */
unsigned long
633
hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
634 635
{
	unsigned long orun = 1;
636
	ktime_t delta;
637 638 639 640 641 642

	delta = ktime_sub(now, timer->expires);

	if (delta.tv64 < 0)
		return 0;

643 644 645
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

646
	if (unlikely(delta.tv64 >= interval.tv64)) {
647
		s64 incr = ktime_to_ns(interval);
648 649 650 651 652 653 654 655 656 657 658 659

		orun = ktime_divns(delta, incr);
		timer->expires = ktime_add_ns(timer->expires, incr * orun);
		if (timer->expires.tv64 > now.tv64)
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
	timer->expires = ktime_add(timer->expires, interval);
660 661 662 663 664 665
	/*
	 * Make sure, that the result did not wrap with a very large
	 * interval.
	 */
	if (timer->expires.tv64 < 0)
		timer->expires = ktime_set(KTIME_SEC_MAX, 0);
666 667 668 669 670 671 672 673 674 675

	return orun;
}

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 */
676
static void enqueue_hrtimer(struct hrtimer *timer,
677
			    struct hrtimer_clock_base *base, int reprogram)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
		if (timer->expires.tv64 < entry->expires.tv64)
			link = &(*link)->rb_left;
695
		else
696 697 698 699
			link = &(*link)->rb_right;
	}

	/*
700 701
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
702
	 */
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	if (!base->first || timer->expires.tv64 <
	    rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
		/*
		 * Reprogram the clock event device. When the timer is already
		 * expired hrtimer_enqueue_reprogram has either called the
		 * callback or added it to the pending list and raised the
		 * softirq.
		 *
		 * This is a NOP for !HIGHRES
		 */
		if (reprogram && hrtimer_enqueue_reprogram(timer, base))
			return;

		base->first = &timer->node;
	}

719 720
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
721 722 723 724 725
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
726
}
727 728 729 730 731

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
732 733 734 735 736
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
737
 */
738
static void __remove_hrtimer(struct hrtimer *timer,
739
			     struct hrtimer_clock_base *base,
740
			     unsigned long newstate, int reprogram)
741
{
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	/* High res. callback list. NOP for !HIGHRES */
	if (hrtimer_cb_pending(timer))
		hrtimer_remove_cb_pending(timer);
	else {
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
758
	timer->state = newstate;
759 760 761 762 763 764
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
765
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
766
{
767
	if (hrtimer_is_queued(timer)) {
768 769 770 771 772 773 774 775 776 777
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
778
		timer_stats_hrtimer_clear_start_info(timer);
779 780 781
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		return 1;
	}
	return 0;
}

/**
 * hrtimer_start - (re)start an relative timer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
800
	struct hrtimer_clock_base *base, *new_base;
801 802 803 804 805 806 807 808 809 810 811
	unsigned long flags;
	int ret;

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base);

812
	if (mode == HRTIMER_MODE_REL) {
813
		tim = ktime_add(tim, new_base->get_time());
814 815 816 817 818 819 820 821 822 823 824
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
		tim = ktime_add(tim, base->resolution);
#endif
	}
825 826
	timer->expires = tim;

827 828
	timer_stats_hrtimer_set_start_info(timer);

829 830 831 832 833 834
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
	 */
	enqueue_hrtimer(timer, new_base,
			new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
835 836 837 838 839

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
840
EXPORT_SYMBOL_GPL(hrtimer_start);
841 842 843 844 845 846 847 848 849

/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
850
 *    cannot be stopped
851 852 853
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
854
	struct hrtimer_clock_base *base;
855 856 857 858 859
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

860
	if (!hrtimer_callback_running(timer))
861 862 863 864 865 866 867
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
868
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
885
		cpu_relax();
886 887
	}
}
888
EXPORT_SYMBOL_GPL(hrtimer_cancel);
889 890 891 892 893 894 895

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
896
	struct hrtimer_clock_base *base;
897 898 899 900
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
901
	rem = ktime_sub(timer->expires, base->get_time());
902 903 904 905
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
906
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
907

908
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
909 910 911 912 913 914 915 916
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
917 918
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
919 920 921 922
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

923 924
	spin_lock_irqsave(&cpu_base->lock, flags);

925 926 927
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
928

929 930
			if (!base->first)
				continue;
931

932 933 934 935 936 937
			timer = rb_entry(base->first, struct hrtimer, node);
			delta.tv64 = timer->expires.tv64;
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
938
	}
939 940 941

	spin_unlock_irqrestore(&cpu_base->lock, flags);

942 943 944 945 946 947
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

948
/**
949 950
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
951
 * @clock_id:	the clock to be used
952
 * @mode:	timer mode abs/rel
953
 */
954 955
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
956
{
957
	struct hrtimer_cpu_base *cpu_base;
958

959 960
	memset(timer, 0, sizeof(struct hrtimer));

961
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
962

963
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
964 965
		clock_id = CLOCK_MONOTONIC;

966
	timer->base = &cpu_base->clock_base[clock_id];
967
	hrtimer_init_timer_hres(timer);
968 969 970 971 972 973

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
974
}
975
EXPORT_SYMBOL_GPL(hrtimer_init);
976 977 978 979 980 981

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
982 983
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
984 985 986
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
987
	struct hrtimer_cpu_base *cpu_base;
988

989 990
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
991 992 993

	return 0;
}
994
EXPORT_SYMBOL_GPL(hrtimer_get_res);
995

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
	int i, raise = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

			if (basenow.tv64 < timer->expires.tv64) {
				ktime_t expires;

				expires = ktime_sub(timer->expires,
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

			/* Move softirq callbacks to the pending list */
			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
				__remove_hrtimer(timer, base,
						 HRTIMER_STATE_PENDING, 0);
				list_add_tail(&timer->cb_entry,
					      &base->cpu_base->cb_pending);
				raise = 1;
				continue;
			}

			__remove_hrtimer(timer, base,
					 HRTIMER_STATE_CALLBACK, 0);
1055
			timer_stats_account_hrtimer(timer);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

			/*
			 * Note: We clear the CALLBACK bit after
			 * enqueue_hrtimer to avoid reprogramming of
			 * the event hardware. This happens at the end
			 * of this function anyway.
			 */
			if (timer->function(timer) != HRTIMER_NORESTART) {
				BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
				enqueue_hrtimer(timer, base, 0);
			}
			timer->state &= ~HRTIMER_STATE_CALLBACK;
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
		if (tick_program_event(expires_next, 0))
			goto retry;
	}

	/* Raise softirq ? */
	if (raise)
		raise_softirq(HRTIMER_SOFTIRQ);
}

static void run_hrtimer_softirq(struct softirq_action *h)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);

	spin_lock_irq(&cpu_base->lock);

	while (!list_empty(&cpu_base->cb_pending)) {
		enum hrtimer_restart (*fn)(struct hrtimer *);
		struct hrtimer *timer;
		int restart;

		timer = list_entry(cpu_base->cb_pending.next,
				   struct hrtimer, cb_entry);

1100 1101
		timer_stats_account_hrtimer(timer);

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		fn = timer->function;
		__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
		spin_unlock_irq(&cpu_base->lock);

		restart = fn(timer);

		spin_lock_irq(&cpu_base->lock);

		timer->state &= ~HRTIMER_STATE_CALLBACK;
		if (restart == HRTIMER_RESTART) {
			BUG_ON(hrtimer_active(timer));
			/*
			 * Enqueue the timer, allow reprogramming of the event
			 * device
			 */
			enqueue_hrtimer(timer, timer->base, 1);
		} else if (hrtimer_active(timer)) {
			/*
			 * If the timer was rearmed on another CPU, reprogram
			 * the event device.
			 */
			if (timer->base->first == &timer->node)
				hrtimer_reprogram(timer, timer->base);
		}
	}
	spin_unlock_irq(&cpu_base->lock);
}

#endif	/* CONFIG_HIGH_RES_TIMERS */

1132 1133 1134
/*
 * Expire the per base hrtimer-queue:
 */
1135 1136
static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
				     int index)
1137
{
1138
	struct rb_node *node;
1139
	struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1140

1141 1142 1143
	if (!base->first)
		return;

1144 1145 1146
	if (base->get_softirq_time)
		base->softirq_time = base->get_softirq_time();

1147
	spin_lock_irq(&cpu_base->lock);
1148

1149
	while ((node = base->first)) {
1150
		struct hrtimer *timer;
1151
		enum hrtimer_restart (*fn)(struct hrtimer *);
1152 1153
		int restart;

1154
		timer = rb_entry(node, struct hrtimer, node);
1155
		if (base->softirq_time.tv64 <= timer->expires.tv64)
1156 1157
			break;

1158 1159 1160
#ifdef CONFIG_HIGH_RES_TIMERS
		WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
#endif
1161 1162
		timer_stats_account_hrtimer(timer);

1163
		fn = timer->function;
1164
		__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1165
		spin_unlock_irq(&cpu_base->lock);
1166

1167
		restart = fn(timer);
1168

1169
		spin_lock_irq(&cpu_base->lock);
1170

1171
		timer->state &= ~HRTIMER_STATE_CALLBACK;
1172 1173
		if (restart != HRTIMER_NORESTART) {
			BUG_ON(hrtimer_active(timer));
1174
			enqueue_hrtimer(timer, base, 0);
1175
		}
1176
	}
1177
	spin_unlock_irq(&cpu_base->lock);
1178 1179 1180 1181
}

/*
 * Called from timer softirq every jiffy, expire hrtimers:
1182 1183 1184 1185
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
1186 1187 1188
 */
void hrtimer_run_queues(void)
{
1189
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1190 1191
	int i;

1192 1193 1194
	if (hrtimer_hres_active())
		return;

1195 1196 1197 1198 1199 1200 1201 1202
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
1203
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1204 1205
		if (hrtimer_switch_to_hres())
			return;
1206

1207
	hrtimer_get_softirq_time(cpu_base);
1208

1209 1210
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		run_hrtimer_queue(cpu_base, i);
1211 1212
}

1213 1214 1215
/*
 * Sleep related functions:
 */
1216
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1229
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1230 1231 1232
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
1233 1234 1235
#ifdef CONFIG_HIGH_RES_TIMERS
	sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
#endif
1236 1237
}

1238
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1239
{
1240
	hrtimer_init_sleeper(t, current);
1241

1242 1243 1244 1245
	do {
		set_current_state(TASK_INTERRUPTIBLE);
		hrtimer_start(&t->timer, t->timer.expires, mode);

1246 1247
		if (likely(t->task))
			schedule();
1248

1249
		hrtimer_cancel(&t->timer);
1250
		mode = HRTIMER_MODE_ABS;
1251 1252

	} while (t->task && !signal_pending(current));
1253

1254
	return t->task == NULL;
1255 1256
}

1257
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1258
{
1259
	struct hrtimer_sleeper t;
1260 1261
	struct timespec __user *rmtp;
	struct timespec tu;
1262
	ktime_t time;
1263 1264 1265

	restart->fn = do_no_restart_syscall;

1266
	hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1267
	t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1268

1269
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1270 1271
		return 0;

1272
	rmtp = (struct timespec __user *) restart->arg1;
1273 1274 1275 1276 1277 1278 1279 1280
	if (rmtp) {
		time = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (time.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(time);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
1281

1282
	restart->fn = hrtimer_nanosleep_restart;
1283 1284 1285 1286 1287 1288 1289 1290 1291

	/* The other values in restart are already filled in */
	return -ERESTART_RESTARTBLOCK;
}

long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1292
	struct hrtimer_sleeper t;
1293 1294 1295
	struct timespec tu;
	ktime_t rem;

1296 1297 1298
	hrtimer_init(&t.timer, clockid, mode);
	t.timer.expires = timespec_to_ktime(*rqtp);
	if (do_nanosleep(&t, mode))
1299 1300
		return 0;

1301
	/* Absolute timers do not update the rmtp value and restart: */
1302
	if (mode == HRTIMER_MODE_ABS)
1303 1304
		return -ERESTARTNOHAND;

1305 1306 1307 1308 1309 1310 1311 1312
	if (rmtp) {
		rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (rem.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(rem);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
1313 1314

	restart = &current_thread_info()->restart_block;
1315 1316 1317 1318 1319
	restart->fn = hrtimer_nanosleep_restart;
	restart->arg0 = (unsigned long) t.timer.base->index;
	restart->arg1 = (unsigned long) rmtp;
	restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
	restart->arg3 = t.timer.expires.tv64 >> 32;
1320 1321 1322 1323

	return -ERESTART_RESTARTBLOCK;
}

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
asmlinkage long
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
{
	struct timespec tu;

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1335
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1336 1337
}

1338 1339 1340 1341 1342
/*
 * Functions related to boot-time initialization:
 */
static void __devinit init_hrtimers_cpu(int cpu)
{
1343
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1344 1345
	int i;

1346 1347 1348 1349 1350 1351
	spin_lock_init(&cpu_base->lock);
	lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1352
	hrtimer_init_hres(cpu_base);
1353 1354 1355 1356
}

#ifdef CONFIG_HOTPLUG_CPU

1357 1358
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
				struct hrtimer_clock_base *new_base)
1359 1360 1361 1362 1363 1364
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1365 1366
		BUG_ON(hrtimer_callback_running(timer));
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1367
		timer->base = new_base;
1368 1369 1370 1371
		/*
		 * Enqueue the timer. Allow reprogramming of the event device
		 */
		enqueue_hrtimer(timer, new_base, 1);
1372 1373 1374 1375 1376
	}
}

static void migrate_hrtimers(int cpu)
{
1377
	struct hrtimer_cpu_base *old_base, *new_base;
1378 1379 1380
	int i;

	BUG_ON(cpu_online(cpu));
1381 1382
	old_base = &per_cpu(hrtimer_bases, cpu);
	new_base = &get_cpu_var(hrtimer_bases);
1383

1384 1385
	tick_cancel_sched_timer(cpu);

1386
	local_irq_disable();
1387 1388
	double_spin_lock(&new_base->lock, &old_base->lock,
			 smp_processor_id() < cpu);
1389

1390 1391 1392
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		migrate_hrtimer_list(&old_base->clock_base[i],
				     &new_base->clock_base[i]);
1393 1394
	}

1395 1396
	double_spin_unlock(&new_base->lock, &old_base->lock,
			   smp_processor_id() < cpu);
1397 1398 1399 1400 1401
	local_irq_enable();
	put_cpu_var(hrtimer_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1402
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
					unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
		init_hrtimers_cpu(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1415
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		migrate_hrtimers(cpu);
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1427
static struct notifier_block __cpuinitdata hrtimers_nb = {
1428 1429 1430 1431 1432 1433 1434 1435
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1436 1437 1438
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
#endif
1439 1440
}