blk-mq.c 73.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129 130
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
131
	}
132
}
133
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134

135
void blk_mq_freeze_queue_wait(struct request_queue *q)
136
{
137
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138
}
139
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140

141 142 143 144 145 146 147 148
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149

150 151 152 153
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
154
void blk_freeze_queue(struct request_queue *q)
155
{
156 157 158 159 160 161 162
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
163
	blk_freeze_queue_start(q);
164 165
	blk_mq_freeze_queue_wait(q);
}
166 167 168 169 170 171 172 173 174

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
175
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
176

177
void blk_mq_unfreeze_queue(struct request_queue *q)
178
{
179
	int freeze_depth;
180

181 182 183
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
184
		percpu_ref_reinit(&q->q_usage_counter);
185
		wake_up_all(&q->mq_freeze_wq);
186
	}
187
}
188
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

204
/**
205
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
206 207 208
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
209 210 211
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
212 213 214 215 216 217 218
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

219
	blk_mq_quiesce_queue_nowait(q);
220

221 222
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
223
			synchronize_srcu(hctx->queue_rq_srcu);
224 225 226 227 228 229 230 231
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

232 233 234 235 236 237 238 239 240
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
241 242 243
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
244
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
245
	spin_unlock_irqrestore(q->queue_lock, flags);
246

247 248
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
249 250 251
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

252 253 254 255 256 257 258 259 260 261
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

262 263 264 265 266 267
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

268 269
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
270
{
271 272 273
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

274 275
	rq->rq_flags = 0;

276 277 278 279 280 281 282 283 284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

289 290
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
291 292
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
293
	rq->cmd_flags = op;
294 295
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
296
	if (blk_queue_io_stat(data->q))
297
		rq->rq_flags |= RQF_IO_STAT;
298 299 300 301 302 303
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
304
	rq->start_time = jiffies;
305 306
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
307
	set_start_time_ns(rq);
308 309 310 311 312 313 314 315 316 317 318
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
319 320
	rq->timeout = 0;

321 322 323 324
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

325 326
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
327 328
}

329 330 331 332 333 334
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
335
	unsigned int tag;
336
	bool put_ctx_on_error = false;
337 338 339

	blk_queue_enter_live(q);
	data->q = q;
340 341 342 343
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
344 345
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
346 347
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
348 349 350 351 352 353 354 355

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
356 357
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
358 359
	}

360 361
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
362 363
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
364 365
			data->ctx = NULL;
		}
366 367
		blk_queue_exit(q);
		return NULL;
368 369
	}

370
	rq = blk_mq_rq_ctx_init(data, tag, op);
371 372
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
373
		if (e && e->type->ops.mq.prepare_request) {
374 375 376
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

377 378
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
379
		}
380 381 382
	}
	data->hctx->queued++;
	return rq;
383 384
}

385
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
386
		blk_mq_req_flags_t flags)
387
{
388
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
389
	struct request *rq;
390
	int ret;
391

392
	ret = blk_queue_enter(q, flags);
393 394
	if (ret)
		return ERR_PTR(ret);
395

396
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
397
	blk_queue_exit(q);
398

399
	if (!rq)
400
		return ERR_PTR(-EWOULDBLOCK);
401

402 403
	blk_mq_put_ctx(alloc_data.ctx);

404 405 406
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
407 408
	return rq;
}
409
EXPORT_SYMBOL(blk_mq_alloc_request);
410

411
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
412
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
413
{
414
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
415
	struct request *rq;
416
	unsigned int cpu;
M
Ming Lin 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

431
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
432 433 434
	if (ret)
		return ERR_PTR(ret);

435 436 437 438
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
439 440 441 442
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
443
	}
444 445
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
446

447
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
448
	blk_queue_exit(q);
449

450 451 452 453
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
454 455 456
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

457
void blk_mq_free_request(struct request *rq)
458 459
{
	struct request_queue *q = rq->q;
460 461 462 463 464
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

465
	if (rq->rq_flags & RQF_ELVPRIV) {
466 467 468 469 470 471 472
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
473

474
	ctx->rq_completed[rq_is_sync(rq)]++;
475
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
476
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
477

478 479 480
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
481
	wbt_done(q->rq_wb, &rq->issue_stat);
482

S
Shaohua Li 已提交
483 484 485
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

486
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
487
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
488 489 490
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
491
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
492
	blk_mq_sched_restart(hctx);
493
	blk_queue_exit(q);
494
}
J
Jens Axboe 已提交
495
EXPORT_SYMBOL_GPL(blk_mq_free_request);
496

497
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
498
{
M
Ming Lei 已提交
499 500
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
501
	if (rq->end_io) {
J
Jens Axboe 已提交
502
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
503
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
504 505 506
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
507
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
508
	}
509
}
510
EXPORT_SYMBOL(__blk_mq_end_request);
511

512
void blk_mq_end_request(struct request *rq, blk_status_t error)
513 514 515
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
516
	__blk_mq_end_request(rq, error);
517
}
518
EXPORT_SYMBOL(blk_mq_end_request);
519

520
static void __blk_mq_complete_request_remote(void *data)
521
{
522
	struct request *rq = data;
523

524
	rq->q->softirq_done_fn(rq);
525 526
}

527
static void __blk_mq_complete_request(struct request *rq)
528 529
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
530
	bool shared = false;
531 532
	int cpu;

533 534 535 536 537 538 539
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
540
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
541 542 543
		rq->q->softirq_done_fn(rq);
		return;
	}
544 545

	cpu = get_cpu();
C
Christoph Hellwig 已提交
546 547 548 549
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
550
		rq->csd.func = __blk_mq_complete_request_remote;
551 552
		rq->csd.info = rq;
		rq->csd.flags = 0;
553
		smp_call_function_single_async(ctx->cpu, &rq->csd);
554
	} else {
555
		rq->q->softirq_done_fn(rq);
556
	}
557 558
	put_cpu();
}
559 560 561 562 563 564 565 566 567

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
568
void blk_mq_complete_request(struct request *rq)
569
{
570 571 572
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
573
		return;
574
	if (!blk_mark_rq_complete(rq))
575
		__blk_mq_complete_request(rq);
576 577
}
EXPORT_SYMBOL(blk_mq_complete_request);
578

579 580 581 582 583 584
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

585
void blk_mq_start_request(struct request *rq)
586 587 588
{
	struct request_queue *q = rq->q;

589 590
	blk_mq_sched_started_request(rq);

591 592
	trace_block_rq_issue(q, rq);

593
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
594
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
595
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
596
		wbt_issue(q->rq_wb, &rq->issue_stat);
597 598
	}

599
	blk_add_timer(rq);
600

601
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
602

603 604 605 606 607
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
608 609 610 611
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
612
	 */
613 614 615 616 617 618 619 620 621 622 623 624
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
625
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
626
	}
627 628 629 630 631 632 633 634 635

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
636
}
637
EXPORT_SYMBOL(blk_mq_start_request);
638

639 640
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
641
 * flag isn't set yet, so there may be race with timeout handler,
642 643 644 645 646 647
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
648
static void __blk_mq_requeue_request(struct request *rq)
649 650 651
{
	struct request_queue *q = rq->q;

652 653
	blk_mq_put_driver_tag(rq);

654
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
655
	wbt_requeue(q->rq_wb, &rq->issue_stat);
656
	blk_mq_sched_requeue_request(rq);
657

658 659 660 661
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
662 663
}

664
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
665 666 667 668
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
669
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
670 671 672
}
EXPORT_SYMBOL(blk_mq_requeue_request);

673 674 675
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
676
		container_of(work, struct request_queue, requeue_work.work);
677 678 679
	LIST_HEAD(rq_list);
	struct request *rq, *next;

680
	spin_lock_irq(&q->requeue_lock);
681
	list_splice_init(&q->requeue_list, &rq_list);
682
	spin_unlock_irq(&q->requeue_lock);
683 684

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
685
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
686 687
			continue;

688
		rq->rq_flags &= ~RQF_SOFTBARRIER;
689
		list_del_init(&rq->queuelist);
690
		blk_mq_sched_insert_request(rq, true, false, false, true);
691 692 693 694 695
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
696
		blk_mq_sched_insert_request(rq, false, false, false, true);
697 698
	}

699
	blk_mq_run_hw_queues(q, false);
700 701
}

702 703
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
704 705 706 707 708 709
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
710
	 * request head insertion from the workqueue.
711
	 */
712
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
713 714 715

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
716
		rq->rq_flags |= RQF_SOFTBARRIER;
717 718 719 720 721
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
722 723 724

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
725 726 727 728 729
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
730
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
731 732 733
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

734 735 736
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
737 738
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
739 740 741
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

742 743
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
744 745
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
746
		return tags->rqs[tag];
747
	}
748 749

	return NULL;
750 751 752
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

753
struct blk_mq_timeout_data {
754 755
	unsigned long next;
	unsigned int next_set;
756 757
};

758
void blk_mq_rq_timed_out(struct request *req, bool reserved)
759
{
J
Jens Axboe 已提交
760
	const struct blk_mq_ops *ops = req->q->mq_ops;
761
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
762 763 764 765 766 767 768

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
769
	 * both flags will get cleared. So check here again, and ignore
770 771
	 * a timeout event with a request that isn't active.
	 */
772 773
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
774

775
	if (ops->timeout)
776
		ret = ops->timeout(req, reserved);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
792
}
793

794 795 796 797
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
798
	unsigned long deadline;
799

800
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
801
		return;
802

803 804 805 806 807 808 809 810
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

811 812 813 814 815 816 817 818 819 820 821 822 823
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
824 825 826 827 828 829 830 831 832 833
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
834
			blk_mq_rq_timed_out(rq, reserved);
835 836 837
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
838 839
		data->next_set = 1;
	}
840 841
}

842
static void blk_mq_timeout_work(struct work_struct *work)
843
{
844 845
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
846 847 848 849 850
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
851

852 853 854 855 856 857 858 859 860
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
861
	 * blk_freeze_queue_start, and the moment the last request is
862 863 864 865
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
866 867
		return;

868
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
869

870 871 872
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
873
	} else {
874 875
		struct blk_mq_hw_ctx *hctx;

876 877 878 879 880
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
881
	}
882
	blk_queue_exit(q);
883 884
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

903 904 905 906
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
907
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
908
{
909 910 911 912
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
913

914
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
915
}
916
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

957 958 959 960
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
961

962
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
963 964
}

965 966
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
967 968 969 970 971 972 973
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

974 975
	might_sleep_if(wait);

976 977
	if (rq->tag != -1)
		goto done;
978

979 980 981
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

982 983
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
984 985 986 987
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
988 989 990
		data.hctx->tags->rqs[rq->tag] = rq;
	}

991 992 993 994
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
995 996
}

997 998
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
999 1000 1001 1002 1003
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1004
	list_del_init(&wait->entry);
1005 1006 1007 1008
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1009 1010 1011 1012 1013 1014 1015 1016
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
 * restart. For both caes, take care to check the condition again after
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1017
{
1018
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1019
	bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1020
	struct sbq_wait_state *ws;
1021 1022
	wait_queue_entry_t *wait;
	bool ret;
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	if (!shared_tags) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
	} else {
		wait = &this_hctx->dispatch_wait;
		if (!list_empty_careful(&wait->entry))
			return false;

		spin_lock(&this_hctx->lock);
		if (!list_empty(&wait->entry)) {
			spin_unlock(&this_hctx->lock);
			return false;
		}
1037

1038 1039
		ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
		add_wait_queue(&ws->wait, wait);
1040 1041
	}

1042
	/*
1043 1044 1045
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1046
	 */
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	ret = blk_mq_get_driver_tag(rq, hctx, false);

	if (!shared_tags) {
		/*
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return ret;
	} else {
		if (!ret) {
			spin_unlock(&this_hctx->lock);
			return false;
		}

		/*
		 * We got a tag, remove ourselves from the wait queue to ensure
		 * someone else gets the wakeup.
		 */
		spin_lock_irq(&ws->wait.lock);
		list_del_init(&wait->entry);
		spin_unlock_irq(&ws->wait.lock);
1068
		spin_unlock(&this_hctx->lock);
1069
		return true;
1070
	}
1071 1072
}

1073
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1074
			     bool got_budget)
1075
{
1076
	struct blk_mq_hw_ctx *hctx;
1077
	struct request *rq, *nxt;
1078
	bool no_tag = false;
1079
	int errors, queued;
1080

1081 1082 1083
	if (list_empty(list))
		return false;

1084 1085
	WARN_ON(!list_is_singular(list) && got_budget);

1086 1087 1088
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1089
	errors = queued = 0;
1090
	do {
1091
		struct blk_mq_queue_data bd;
1092
		blk_status_t ret;
1093

1094
		rq = list_first_entry(list, struct request, queuelist);
1095
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1096
			/*
1097
			 * The initial allocation attempt failed, so we need to
1098 1099 1100 1101
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1102
			 */
1103
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1104 1105
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1106 1107 1108 1109 1110 1111
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1112 1113 1114 1115
				break;
			}
		}

1116 1117
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1118
			break;
1119
		}
1120

1121 1122
		list_del_init(&rq->queuelist);

1123
		bd.rq = rq;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1135 1136

		ret = q->mq_ops->queue_rq(hctx, &bd);
1137
		if (ret == BLK_STS_RESOURCE) {
1138 1139
			/*
			 * If an I/O scheduler has been configured and we got a
1140 1141
			 * driver tag for the next request already, free it
			 * again.
1142 1143 1144 1145 1146
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1147
			list_add(&rq->queuelist, list);
1148
			__blk_mq_requeue_request(rq);
1149
			break;
1150 1151 1152
		}

		if (unlikely(ret != BLK_STS_OK)) {
1153
			errors++;
1154
			blk_mq_end_request(rq, BLK_STS_IOERR);
1155
			continue;
1156 1157
		}

1158
		queued++;
1159
	} while (!list_empty(list));
1160

1161
	hctx->dispatched[queued_to_index(queued)]++;
1162 1163 1164 1165 1166

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1167
	if (!list_empty(list)) {
1168
		spin_lock(&hctx->lock);
1169
		list_splice_init(list, &hctx->dispatch);
1170
		spin_unlock(&hctx->lock);
1171

1172
		/*
1173 1174 1175
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1176
		 *
1177 1178 1179 1180
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1181
		 *
1182 1183 1184 1185 1186 1187 1188
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1189
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1190
		 *   and dm-rq.
1191
		 */
1192 1193
		if (!blk_mq_sched_needs_restart(hctx) ||
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1194
			blk_mq_run_hw_queue(hctx, true);
1195
	}
1196

1197
	return (queued + errors) != 0;
1198 1199
}

1200 1201 1202 1203
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1204 1205 1206 1207
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1208 1209 1210
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1211 1212 1213 1214 1215 1216
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1217 1218
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1219
		blk_mq_sched_dispatch_requests(hctx);
1220 1221
		rcu_read_unlock();
	} else {
1222 1223
		might_sleep();

1224
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1225
		blk_mq_sched_dispatch_requests(hctx);
1226
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1227 1228 1229
	}
}

1230 1231 1232 1233 1234 1235 1236 1237
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1238 1239
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1240 1241

	if (--hctx->next_cpu_batch <= 0) {
1242
		int next_cpu;
1243 1244 1245 1246 1247 1248 1249 1250 1251

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1252
	return hctx->next_cpu;
1253 1254
}

1255 1256
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1257
{
1258 1259 1260 1261
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1262 1263
		return;

1264
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1265 1266
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1267
			__blk_mq_run_hw_queue(hctx);
1268
			put_cpu();
1269 1270
			return;
		}
1271

1272
		put_cpu();
1273
	}
1274

1275 1276 1277
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1278 1279 1280 1281 1282 1283 1284 1285
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1286
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1287
{
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		need_run = !blk_queue_quiesced(hctx->queue) &&
			blk_mq_hctx_has_pending(hctx);
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
		need_run = !blk_queue_quiesced(hctx->queue) &&
			blk_mq_hctx_has_pending(hctx);
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
	}

	if (need_run) {
1312 1313 1314 1315 1316
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1317
}
O
Omar Sandoval 已提交
1318
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1319

1320
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1321 1322 1323 1324 1325
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1326
		if (blk_mq_hctx_stopped(hctx))
1327 1328
			continue;

1329
		blk_mq_run_hw_queue(hctx, async);
1330 1331
	}
}
1332
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1354 1355 1356
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1357
 * BLK_STS_RESOURCE is usually returned.
1358 1359 1360 1361 1362
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1363 1364
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1365
	cancel_delayed_work(&hctx->run_work);
1366

1367
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1368
}
1369
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1370

1371 1372 1373
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1374
 * BLK_STS_RESOURCE is usually returned.
1375 1376 1377 1378 1379
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1380 1381
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1382 1383 1384 1385 1386
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1387 1388 1389
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1390 1391 1392
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1393

1394
	blk_mq_run_hw_queue(hctx, false);
1395 1396 1397
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1418
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1419 1420 1421 1422
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1423 1424
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1425 1426 1427
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1428
static void blk_mq_run_work_fn(struct work_struct *work)
1429 1430 1431
{
	struct blk_mq_hw_ctx *hctx;

1432
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1433

1434 1435 1436 1437 1438 1439 1440 1441
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1442

1443 1444 1445
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1446 1447 1448 1449

	__blk_mq_run_hw_queue(hctx);
}

1450 1451 1452

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1453
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1454
		return;
1455

1456 1457 1458 1459 1460
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1461
	blk_mq_stop_hw_queue(hctx);
1462 1463 1464 1465
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1466 1467 1468
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1469 1470 1471
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1472
{
J
Jens Axboe 已提交
1473 1474
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1475 1476
	lockdep_assert_held(&ctx->lock);

1477 1478
	trace_block_rq_insert(hctx->queue, rq);

1479 1480 1481 1482
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1483
}
1484

1485 1486
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1487 1488 1489
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1490 1491
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1492
	__blk_mq_insert_req_list(hctx, rq, at_head);
1493 1494 1495
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1496 1497 1498 1499
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1500
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1501 1502 1503 1504 1505 1506 1507 1508
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1509 1510
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1511 1512
}

1513 1514
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1526
		BUG_ON(rq->mq_ctx != ctx);
1527
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1528
		__blk_mq_insert_req_list(hctx, rq, false);
1529
	}
1530
	blk_mq_hctx_mark_pending(hctx, ctx);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1567 1568 1569 1570
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1587 1588 1589
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1590 1591 1592 1593 1594
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1595
	blk_init_request_from_bio(rq, bio);
1596

S
Shaohua Li 已提交
1597 1598
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1599
	blk_account_io_start(rq, true);
1600 1601
}

1602 1603 1604 1605 1606 1607 1608
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1609
}
1610

1611 1612
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1613 1614 1615 1616
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1617 1618
}

M
Ming Lei 已提交
1619 1620 1621
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1622 1623 1624 1625
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1626
		.last = true,
1627
	};
1628
	blk_qc_t new_cookie;
1629
	blk_status_t ret;
M
Ming Lei 已提交
1630 1631
	bool run_queue = true;

1632 1633
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1634 1635 1636
		run_queue = false;
		goto insert;
	}
1637

1638
	if (q->elevator)
1639 1640
		goto insert;

M
Ming Lei 已提交
1641
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1642 1643
		goto insert;

1644
	if (!blk_mq_get_dispatch_budget(hctx)) {
1645 1646
		blk_mq_put_driver_tag(rq);
		goto insert;
1647
	}
1648

1649 1650
	new_cookie = request_to_qc_t(hctx, rq);

1651 1652 1653 1654 1655 1656
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1657 1658
	switch (ret) {
	case BLK_STS_OK:
1659
		*cookie = new_cookie;
1660
		return;
1661 1662 1663 1664
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1665
		*cookie = BLK_QC_T_NONE;
1666
		blk_mq_end_request(rq, ret);
1667
		return;
1668
	}
1669

1670
insert:
M
Ming Lei 已提交
1671
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1672 1673
}

1674 1675 1676 1677 1678
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1679
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1680 1681
		rcu_read_unlock();
	} else {
1682 1683 1684 1685
		unsigned int srcu_idx;

		might_sleep();

1686
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1687
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1688
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1689 1690 1691
	}
}

1692
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1693
{
1694
	const int is_sync = op_is_sync(bio->bi_opf);
1695
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1696
	struct blk_mq_alloc_data data = { .flags = 0 };
1697
	struct request *rq;
1698
	unsigned int request_count = 0;
1699
	struct blk_plug *plug;
1700
	struct request *same_queue_rq = NULL;
1701
	blk_qc_t cookie;
J
Jens Axboe 已提交
1702
	unsigned int wb_acct;
1703 1704 1705

	blk_queue_bounce(q, &bio);

1706
	blk_queue_split(q, &bio);
1707

1708
	if (!bio_integrity_prep(bio))
1709
		return BLK_QC_T_NONE;
1710

1711 1712 1713
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1714

1715 1716 1717
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1718 1719
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1720 1721
	trace_block_getrq(q, bio, bio->bi_opf);

1722
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1723 1724
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1725 1726
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1727
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1728 1729 1730
	}

	wbt_track(&rq->issue_stat, wb_acct);
1731

1732
	cookie = request_to_qc_t(data.hctx, rq);
1733

1734
	plug = current->plug;
1735
	if (unlikely(is_flush_fua)) {
1736
		blk_mq_put_ctx(data.ctx);
1737
		blk_mq_bio_to_request(rq, bio);
1738 1739 1740 1741

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1742
	} else if (plug && q->nr_hw_queues == 1) {
1743 1744
		struct request *last = NULL;

1745
		blk_mq_put_ctx(data.ctx);
1746
		blk_mq_bio_to_request(rq, bio);
1747 1748 1749 1750 1751 1752 1753

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1754 1755 1756
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1757
		if (!request_count)
1758
			trace_block_plug(q);
1759 1760
		else
			last = list_entry_rq(plug->mq_list.prev);
1761

1762 1763
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1764 1765
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1766
		}
1767

1768
		list_add_tail(&rq->queuelist, &plug->mq_list);
1769
	} else if (plug && !blk_queue_nomerges(q)) {
1770
		blk_mq_bio_to_request(rq, bio);
1771 1772

		/*
1773
		 * We do limited plugging. If the bio can be merged, do that.
1774 1775
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1776 1777
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1778
		 */
1779 1780 1781 1782 1783 1784
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1785 1786
		blk_mq_put_ctx(data.ctx);

1787 1788 1789
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1790 1791
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1792
		}
1793
	} else if (q->nr_hw_queues > 1 && is_sync) {
1794
		blk_mq_put_ctx(data.ctx);
1795 1796
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1797
	} else if (q->elevator) {
1798
		blk_mq_put_ctx(data.ctx);
1799
		blk_mq_bio_to_request(rq, bio);
1800
		blk_mq_sched_insert_request(rq, false, true, true, true);
1801
	} else {
1802
		blk_mq_put_ctx(data.ctx);
1803 1804
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1805
		blk_mq_run_hw_queue(data.hctx, true);
1806
	}
1807

1808
	return cookie;
1809 1810
}

1811 1812
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1813
{
1814
	struct page *page;
1815

1816
	if (tags->rqs && set->ops->exit_request) {
1817
		int i;
1818

1819
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1820 1821 1822
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1823
				continue;
1824
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1825
			tags->static_rqs[i] = NULL;
1826
		}
1827 1828
	}

1829 1830
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1831
		list_del_init(&page->lru);
1832 1833 1834 1835 1836
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1837 1838
		__free_pages(page, page->private);
	}
1839
}
1840

1841 1842
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1843
	kfree(tags->rqs);
1844
	tags->rqs = NULL;
J
Jens Axboe 已提交
1845 1846
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1847

1848
	blk_mq_free_tags(tags);
1849 1850
}

1851 1852 1853 1854
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1855
{
1856
	struct blk_mq_tags *tags;
1857
	int node;
1858

1859 1860 1861 1862 1863
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1864
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1865 1866
	if (!tags)
		return NULL;
1867

1868
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1869
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1870
				 node);
1871 1872 1873 1874
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1875

J
Jens Axboe 已提交
1876 1877
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1878
				 node);
J
Jens Axboe 已提交
1879 1880 1881 1882 1883 1884
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1898 1899 1900 1901 1902
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1903 1904 1905

	INIT_LIST_HEAD(&tags->page_list);

1906 1907 1908 1909
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1910
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1911
				cache_line_size());
1912
	left = rq_size * depth;
1913

1914
	for (i = 0; i < depth; ) {
1915 1916 1917 1918 1919
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1920
		while (this_order && left < order_to_size(this_order - 1))
1921 1922 1923
			this_order--;

		do {
1924
			page = alloc_pages_node(node,
1925
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1926
				this_order);
1927 1928 1929 1930 1931 1932 1933 1934 1935
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1936
			goto fail;
1937 1938

		page->private = this_order;
1939
		list_add_tail(&page->lru, &tags->page_list);
1940 1941

		p = page_address(page);
1942 1943 1944 1945
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1946
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1947
		entries_per_page = order_to_size(this_order) / rq_size;
1948
		to_do = min(entries_per_page, depth - i);
1949 1950
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1951 1952 1953
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1954
			if (set->ops->init_request) {
1955
				if (set->ops->init_request(set, rq, hctx_idx,
1956
						node)) {
J
Jens Axboe 已提交
1957
					tags->static_rqs[i] = NULL;
1958
					goto fail;
1959
				}
1960 1961
			}

1962 1963 1964 1965
			p += rq_size;
			i++;
		}
	}
1966
	return 0;
1967

1968
fail:
1969 1970
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1971 1972
}

J
Jens Axboe 已提交
1973 1974 1975 1976 1977
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1978
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1979
{
1980
	struct blk_mq_hw_ctx *hctx;
1981 1982 1983
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1984
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1985
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1986 1987 1988 1989 1990 1991 1992 1993 1994

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1995
		return 0;
1996

J
Jens Axboe 已提交
1997 1998 1999
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2000 2001

	blk_mq_run_hw_queue(hctx, true);
2002
	return 0;
2003 2004
}

2005
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2006
{
2007 2008
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2009 2010
}

2011
/* hctx->ctxs will be freed in queue's release handler */
2012 2013 2014 2015
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2016 2017
	blk_mq_debugfs_unregister_hctx(hctx);

2018 2019
	blk_mq_tag_idle(hctx);

2020
	if (set->ops->exit_request)
2021
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2022

2023 2024
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2025 2026 2027
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2028
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2029
		cleanup_srcu_struct(hctx->queue_rq_srcu);
2030

2031
	blk_mq_remove_cpuhp(hctx);
2032
	blk_free_flush_queue(hctx->fq);
2033
	sbitmap_free(&hctx->ctx_map);
2034 2035
}

M
Ming Lei 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2045
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2046 2047 2048
	}
}

2049 2050 2051
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2052
{
2053 2054 2055 2056 2057 2058
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2059
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2060 2061 2062
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2063
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2064

2065
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2066 2067

	hctx->tags = set->tags[hctx_idx];
2068 2069

	/*
2070 2071
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2072
	 */
2073
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2074 2075 2076
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2077

2078 2079
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2080
		goto free_ctxs;
2081

2082
	hctx->nr_ctx = 0;
2083

2084 2085 2086
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2087 2088 2089
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2090

2091 2092 2093
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2094 2095
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2096
		goto sched_exit_hctx;
2097

2098
	if (set->ops->init_request &&
2099 2100
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2101
		goto free_fq;
2102

2103
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2104
		init_srcu_struct(hctx->queue_rq_srcu);
2105

2106 2107
	blk_mq_debugfs_register_hctx(q, hctx);

2108
	return 0;
2109

2110 2111
 free_fq:
	kfree(hctx->fq);
2112 2113
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2114 2115 2116
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2117
 free_bitmap:
2118
	sbitmap_free(&hctx->ctx_map);
2119 2120 2121
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2122
	blk_mq_remove_cpuhp(hctx);
2123 2124
	return -1;
}
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2140 2141
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2142 2143
			continue;

C
Christoph Hellwig 已提交
2144
		hctx = blk_mq_map_queue(q, i);
2145

2146 2147 2148 2149 2150
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2151
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2152 2153 2154
	}
}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2177 2178 2179 2180 2181
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2182 2183
}

2184
static void blk_mq_map_swqueue(struct request_queue *q)
2185
{
2186
	unsigned int i, hctx_idx;
2187 2188
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2189
	struct blk_mq_tag_set *set = q->tag_set;
2190

2191 2192 2193 2194 2195
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2196
	queue_for_each_hw_ctx(q, hctx, i) {
2197
		cpumask_clear(hctx->cpumask);
2198 2199 2200 2201
		hctx->nr_ctx = 0;
	}

	/*
2202 2203 2204
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2205
	 */
2206
	for_each_present_cpu(i) {
2207 2208
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2209 2210
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2211 2212 2213 2214 2215 2216
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2217
			q->mq_map[i] = 0;
2218 2219
		}

2220
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2221
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2222

2223
		cpumask_set_cpu(i, hctx->cpumask);
2224 2225 2226
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2227

2228 2229
	mutex_unlock(&q->sysfs_lock);

2230
	queue_for_each_hw_ctx(q, hctx, i) {
2231
		/*
2232 2233
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2234 2235
		 */
		if (!hctx->nr_ctx) {
2236 2237 2238 2239
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2240 2241 2242
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2243
			hctx->tags = NULL;
2244 2245 2246
			continue;
		}

M
Ming Lei 已提交
2247 2248 2249
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2250 2251 2252 2253 2254
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2255
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2256

2257 2258 2259
		/*
		 * Initialize batch roundrobin counts
		 */
2260 2261 2262
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2263 2264
}

2265 2266 2267 2268
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2269
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2270 2271 2272 2273
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2274
	queue_for_each_hw_ctx(q, hctx, i) {
2275 2276 2277
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2278
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2279 2280 2281
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2282
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2283
		}
2284 2285 2286
	}
}

2287 2288
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2289 2290
{
	struct request_queue *q;
2291

2292 2293
	lockdep_assert_held(&set->tag_list_lock);

2294 2295
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2296
		queue_set_hctx_shared(q, shared);
2297 2298 2299 2300 2301 2302 2303 2304 2305
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2306 2307
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2308 2309 2310 2311 2312 2313
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2314
	mutex_unlock(&set->tag_list_lock);
2315 2316

	synchronize_rcu();
2317 2318 2319 2320 2321 2322 2323 2324
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2325

2326 2327 2328 2329 2330
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2331 2332 2333 2334 2335 2336
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2337
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2338

2339 2340 2341
	mutex_unlock(&set->tag_list_lock);
}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2354 2355 2356
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2357
		kobject_put(&hctx->kobj);
2358
	}
2359

2360 2361
	q->mq_map = NULL;

2362 2363
	kfree(q->queue_hw_ctx);

2364 2365 2366 2367 2368 2369
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2370 2371 2372
	free_percpu(q->queue_ctx);
}

2373
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2403 2404
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2405
{
K
Keith Busch 已提交
2406 2407
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2408

K
Keith Busch 已提交
2409
	blk_mq_sysfs_unregister(q);
2410 2411 2412

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2413
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2414
		int node;
2415

K
Keith Busch 已提交
2416 2417 2418 2419
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2420
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2421
					GFP_KERNEL, node);
2422
		if (!hctxs[i])
K
Keith Busch 已提交
2423
			break;
2424

2425
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2426 2427 2428 2429 2430
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2431

2432
		atomic_set(&hctxs[i]->nr_active, 0);
2433
		hctxs[i]->numa_node = node;
2434
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2435 2436 2437 2438 2439 2440 2441 2442

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2443
	}
K
Keith Busch 已提交
2444 2445 2446 2447
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2448 2449
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2450 2451 2452 2453 2454 2455 2456
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2457
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2458 2459 2460 2461 2462 2463
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2464 2465 2466
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2467
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2468 2469
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2470 2471 2472
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2473 2474
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2475
		goto err_exit;
K
Keith Busch 已提交
2476

2477 2478 2479
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2480 2481 2482 2483 2484
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2485
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2486 2487 2488 2489

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2490

2491
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2492
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2493 2494 2495

	q->nr_queues = nr_cpu_ids;

2496
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2497

2498 2499 2500
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2501 2502
	q->sg_reserved_size = INT_MAX;

2503
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2504 2505 2506
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2507
	blk_queue_make_request(q, blk_mq_make_request);
2508 2509
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2510

2511 2512 2513 2514 2515
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2516 2517 2518 2519 2520
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2521 2522
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2523

2524
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2525
	blk_mq_add_queue_tag_set(set, q);
2526
	blk_mq_map_swqueue(q);
2527

2528 2529 2530 2531 2532 2533 2534 2535
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2536
	return q;
2537

2538
err_hctxs:
K
Keith Busch 已提交
2539
	kfree(q->queue_hw_ctx);
2540
err_percpu:
K
Keith Busch 已提交
2541
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2542 2543
err_exit:
	q->mq_ops = NULL;
2544 2545
	return ERR_PTR(-ENOMEM);
}
2546
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2547 2548 2549

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2550
	struct blk_mq_tag_set	*set = q->tag_set;
2551

2552
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2553
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2554 2555 2556
}

/* Basically redo blk_mq_init_queue with queue frozen */
2557
static void blk_mq_queue_reinit(struct request_queue *q)
2558
{
2559
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2560

2561
	blk_mq_debugfs_unregister_hctxs(q);
2562 2563
	blk_mq_sysfs_unregister(q);

2564 2565
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2566 2567
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2568
	 */
2569
	blk_mq_map_swqueue(q);
2570

2571
	blk_mq_sysfs_register(q);
2572
	blk_mq_debugfs_register_hctxs(q);
2573 2574
}

2575 2576 2577 2578
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2579 2580
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2581 2582 2583 2584 2585 2586
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2587
		blk_mq_free_rq_map(set->tags[i]);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2627 2628
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2648
		return set->ops->map_queues(set);
2649
	} else
2650 2651 2652
		return blk_mq_map_queues(set);
}

2653 2654 2655 2656 2657 2658
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2659 2660
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2661 2662
	int ret;

B
Bart Van Assche 已提交
2663 2664
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2665 2666
	if (!set->nr_hw_queues)
		return -EINVAL;
2667
	if (!set->queue_depth)
2668 2669 2670 2671
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2672
	if (!set->ops->queue_rq)
2673 2674
		return -EINVAL;

2675 2676 2677
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2678 2679 2680 2681 2682
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2683

2684 2685 2686 2687 2688 2689 2690 2691 2692
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2693 2694 2695 2696 2697
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2698

K
Keith Busch 已提交
2699
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2700 2701
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2702
		return -ENOMEM;
2703

2704 2705 2706
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2707 2708 2709
	if (!set->mq_map)
		goto out_free_tags;

2710
	ret = blk_mq_update_queue_map(set);
2711 2712 2713 2714 2715
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2716
		goto out_free_mq_map;
2717

2718 2719 2720
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2721
	return 0;
2722 2723 2724 2725 2726

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2727 2728
	kfree(set->tags);
	set->tags = NULL;
2729
	return ret;
2730 2731 2732 2733 2734 2735 2736
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2737 2738
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2739

2740 2741 2742
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2743
	kfree(set->tags);
2744
	set->tags = NULL;
2745 2746 2747
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2748 2749 2750 2751 2752 2753
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2754
	if (!set)
2755 2756
		return -EINVAL;

2757
	blk_mq_freeze_queue(q);
2758
	blk_mq_quiesce_queue(q);
2759

2760 2761
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2762 2763
		if (!hctx->tags)
			continue;
2764 2765 2766 2767
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2768
		if (!hctx->sched_tags) {
2769
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2770 2771 2772 2773 2774
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2775 2776 2777 2778 2779 2780 2781
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2782
	blk_mq_unquiesce_queue(q);
2783 2784
	blk_mq_unfreeze_queue(q);

2785 2786 2787
	return ret;
}

2788 2789
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2790 2791 2792
{
	struct request_queue *q;

2793 2794
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2804
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2805 2806
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2807
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2808 2809 2810 2811 2812
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2813 2814 2815 2816 2817 2818 2819

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2820 2821
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2848
	int bucket;
2849

2850 2851 2852 2853
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2854 2855
}

2856 2857 2858 2859 2860
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2861
	int bucket;
2862 2863 2864 2865 2866

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2867
	if (!blk_poll_stats_enable(q))
2868 2869 2870 2871 2872 2873 2874 2875
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2876 2877
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2878
	 */
2879 2880 2881 2882 2883 2884
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2885 2886 2887 2888

	return ret;
}

2889
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2890
				     struct blk_mq_hw_ctx *hctx,
2891 2892 2893 2894
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2895
	unsigned int nsecs;
2896 2897
	ktime_t kt;

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2916 2917 2918 2919 2920 2921 2922 2923
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2924
	kt = nsecs;
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2947 2948 2949 2950 2951
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2952 2953 2954 2955 2956 2957 2958
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2959
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2960 2961
		return true;

J
Jens Axboe 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

2990
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
2991 2992 2993 2994
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

2995
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
2996 2997 2998
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2999 3000
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3001
	else {
3002
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3003 3004 3005 3006 3007 3008 3009 3010 3011
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3012 3013 3014 3015

	return __blk_mq_poll(hctx, rq);
}

3016 3017
static int __init blk_mq_init(void)
{
3018 3019 3020 3021 3022 3023
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

3024 3025
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3026 3027 3028
	return 0;
}
subsys_initcall(blk_mq_init);