blk-mq.c 70.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

43 44 45
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

46 47 48 49
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
50
	ddir = rq_data_dir(rq);
51 52 53 54 55 56 57 58 59 60 61 62
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

63 64 65
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
66
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67
{
68 69 70
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
71 72
}

73 74 75 76 77 78
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
79 80
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 82 83 84 85
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
86
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 88
}

89
void blk_freeze_queue_start(struct request_queue *q)
90
{
91
	int freeze_depth;
92

93 94
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
95
		percpu_ref_kill(&q->q_usage_counter);
96
		blk_mq_run_hw_queues(q, false);
97
	}
98
}
99
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100

101
void blk_mq_freeze_queue_wait(struct request_queue *q)
102
{
103
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104
}
105
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106

107 108 109 110 111 112 113 114
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115

116 117 118 119
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
120
void blk_freeze_queue(struct request_queue *q)
121
{
122 123 124 125 126 127 128
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
129
	blk_freeze_queue_start(q);
130 131
	blk_mq_freeze_queue_wait(q);
}
132 133 134 135 136 137 138 139 140

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
141
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142

143
void blk_mq_unfreeze_queue(struct request_queue *q)
144
{
145
	int freeze_depth;
146

147 148 149
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
150
		percpu_ref_reinit(&q->q_usage_counter);
151
		wake_up_all(&q->mq_freeze_wq);
152
	}
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155

156
/**
157
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
158 159 160
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
161 162 163
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
164 165 166 167 168 169 170
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

171
	blk_mq_quiesce_queue_nowait(q);
172

173 174
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
175
			synchronize_srcu(hctx->queue_rq_srcu);
176 177 178 179 180 181 182 183
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

184 185 186 187 188 189 190 191 192
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
193 194 195 196
	spin_lock_irq(q->queue_lock);
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irq(q->queue_lock);

197 198
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
199 200 201
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

202 203 204 205 206 207 208 209
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
210 211 212 213 214 215 216

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
217 218
}

219 220 221 222 223 224
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

225 226
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
227
{
228 229 230
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

231 232
	rq->rq_flags = 0;

233 234 235 236 237 238 239 240 241 242 243 244 245
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

246 247
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
248 249
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
250
	rq->cmd_flags = op;
251
	if (blk_queue_io_stat(data->q))
252
		rq->rq_flags |= RQF_IO_STAT;
253 254 255 256 257 258
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
259
	rq->start_time = jiffies;
260 261
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
262
	set_start_time_ns(rq);
263 264 265 266 267 268 269 270 271 272 273
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
274 275
	rq->timeout = 0;

276 277 278 279
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

280 281
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
282 283
}

284 285 286 287 288 289
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
290
	unsigned int tag;
291 292 293 294 295 296 297

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
298 299
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
300 301 302 303 304 305 306 307

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
308 309
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
310 311
	}

312 313
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
314 315
		blk_queue_exit(q);
		return NULL;
316 317
	}

318
	rq = blk_mq_rq_ctx_init(data, tag, op);
319 320
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
321
		if (e && e->type->ops.mq.prepare_request) {
322 323 324
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

325 326
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
327
		}
328 329 330
	}
	data->hctx->queued++;
	return rq;
331 332
}

333
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
334
		unsigned int flags)
335
{
336
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
337
	struct request *rq;
338
	int ret;
339

340
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
341 342
	if (ret)
		return ERR_PTR(ret);
343

344
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
345

346 347 348 349
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
350
		return ERR_PTR(-EWOULDBLOCK);
351 352 353 354

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
355 356
	return rq;
}
357
EXPORT_SYMBOL(blk_mq_alloc_request);
358

359 360
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
361
{
362
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
363
	struct request *rq;
364
	unsigned int cpu;
M
Ming Lin 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

383 384 385 386
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
387 388 389 390
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
391
	}
392 393
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
394

395
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
396 397

	blk_queue_exit(q);
398 399 400 401 402

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
403 404 405
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

406
void blk_mq_free_request(struct request *rq)
407 408
{
	struct request_queue *q = rq->q;
409 410 411 412 413
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

414
	if (rq->rq_flags & RQF_ELVPRIV) {
415 416 417 418 419 420 421
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
422

423
	ctx->rq_completed[rq_is_sync(rq)]++;
424
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
425
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
426 427

	wbt_done(q->rq_wb, &rq->issue_stat);
428

429
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
430
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
431 432 433
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
434
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
435
	blk_mq_sched_restart(hctx);
436
	blk_queue_exit(q);
437
}
J
Jens Axboe 已提交
438
EXPORT_SYMBOL_GPL(blk_mq_free_request);
439

440
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
441
{
M
Ming Lei 已提交
442 443
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
444
	if (rq->end_io) {
J
Jens Axboe 已提交
445
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
446
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
447 448 449
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
450
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
451
	}
452
}
453
EXPORT_SYMBOL(__blk_mq_end_request);
454

455
void blk_mq_end_request(struct request *rq, blk_status_t error)
456 457 458
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
459
	__blk_mq_end_request(rq, error);
460
}
461
EXPORT_SYMBOL(blk_mq_end_request);
462

463
static void __blk_mq_complete_request_remote(void *data)
464
{
465
	struct request *rq = data;
466

467
	rq->q->softirq_done_fn(rq);
468 469
}

470
static void __blk_mq_complete_request(struct request *rq)
471 472
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
473
	bool shared = false;
474 475
	int cpu;

476 477 478 479 480 481 482
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
483
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
484 485 486
		rq->q->softirq_done_fn(rq);
		return;
	}
487 488

	cpu = get_cpu();
C
Christoph Hellwig 已提交
489 490 491 492
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
493
		rq->csd.func = __blk_mq_complete_request_remote;
494 495
		rq->csd.info = rq;
		rq->csd.flags = 0;
496
		smp_call_function_single_async(ctx->cpu, &rq->csd);
497
	} else {
498
		rq->q->softirq_done_fn(rq);
499
	}
500 501
	put_cpu();
}
502 503 504 505 506 507 508 509 510

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
511
void blk_mq_complete_request(struct request *rq)
512
{
513 514 515
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
516
		return;
517
	if (!blk_mark_rq_complete(rq))
518
		__blk_mq_complete_request(rq);
519 520
}
EXPORT_SYMBOL(blk_mq_complete_request);
521

522 523 524 525 526 527
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

528
void blk_mq_start_request(struct request *rq)
529 530 531
{
	struct request_queue *q = rq->q;

532 533
	blk_mq_sched_started_request(rq);

534 535
	trace_block_rq_issue(q, rq);

536
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
537
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
538
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
539
		wbt_issue(q->rq_wb, &rq->issue_stat);
540 541
	}

542
	blk_add_timer(rq);
543

544 545 546 547 548 549
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

550 551 552 553 554 555
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
556 557 558 559
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
560 561 562 563 564 565 566 567 568

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
569
}
570
EXPORT_SYMBOL(blk_mq_start_request);
571

572 573
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
574
 * flag isn't set yet, so there may be race with timeout handler,
575 576 577 578 579 580
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
581
static void __blk_mq_requeue_request(struct request *rq)
582 583 584 585
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
586
	wbt_requeue(q->rq_wb, &rq->issue_stat);
587
	blk_mq_sched_requeue_request(rq);
588

589 590 591 592
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
593 594
}

595
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
596 597 598 599
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
600
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
601 602 603
}
EXPORT_SYMBOL(blk_mq_requeue_request);

604 605 606
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
607
		container_of(work, struct request_queue, requeue_work.work);
608 609 610 611 612 613 614 615 616
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
617
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
618 619
			continue;

620
		rq->rq_flags &= ~RQF_SOFTBARRIER;
621
		list_del_init(&rq->queuelist);
622
		blk_mq_sched_insert_request(rq, true, false, false, true);
623 624 625 626 627
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
628
		blk_mq_sched_insert_request(rq, false, false, false, true);
629 630
	}

631
	blk_mq_run_hw_queues(q, false);
632 633
}

634 635
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
636 637 638 639 640 641 642 643
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
644
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
645 646 647

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
648
		rq->rq_flags |= RQF_SOFTBARRIER;
649 650 651 652 653
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
654 655 656

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
657 658 659 660 661
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
662
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
663 664 665
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

666 667 668 669 670 671 672 673
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

674 675
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
676 677
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
678
		return tags->rqs[tag];
679
	}
680 681

	return NULL;
682 683 684
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

685
struct blk_mq_timeout_data {
686 687
	unsigned long next;
	unsigned int next_set;
688 689
};

690
void blk_mq_rq_timed_out(struct request *req, bool reserved)
691
{
J
Jens Axboe 已提交
692
	const struct blk_mq_ops *ops = req->q->mq_ops;
693
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
694 695 696 697 698 699 700

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
701
	 * both flags will get cleared. So check here again, and ignore
702 703
	 * a timeout event with a request that isn't active.
	 */
704 705
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
706

707
	if (ops->timeout)
708
		ret = ops->timeout(req, reserved);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
724
}
725

726 727 728 729
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
730

731
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
732
		return;
733

734 735 736 737 738 739 740 741 742 743 744 745 746
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
747 748
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
749
			blk_mq_rq_timed_out(rq, reserved);
750 751 752 753
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
754 755
}

756
static void blk_mq_timeout_work(struct work_struct *work)
757
{
758 759
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
760 761 762 763 764
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
765

766 767 768 769 770 771 772 773 774
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
775
	 * blk_freeze_queue_start, and the moment the last request is
776 777 778 779
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
780 781
		return;

782
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
783

784 785 786
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
787
	} else {
788 789
		struct blk_mq_hw_ctx *hctx;

790 791 792 793 794
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
795
	}
796
	blk_queue_exit(q);
797 798
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

817 818 819 820
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
821
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822
{
823 824 825 826
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
827

828
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829
}
830
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831

832 833 834 835
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
836

837
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 839
}

840 841
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
842 843 844 845 846 847 848
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

849 850
	might_sleep_if(wait);

851 852
	if (rq->tag != -1)
		goto done;
853

854 855 856
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

857 858
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
859 860 861 862
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
863 864 865
		data.hctx->tags->rqs[rq->tag] = rq;
	}

866 867 868 869
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
870 871
}

872 873
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
874 875 876 877 878 879 880 881 882 883
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

966
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
967
{
968
	struct blk_mq_hw_ctx *hctx;
969
	struct request *rq;
970
	int errors, queued;
971

972 973 974
	if (list_empty(list))
		return false;

975 976 977
	/*
	 * Now process all the entries, sending them to the driver.
	 */
978
	errors = queued = 0;
979
	do {
980
		struct blk_mq_queue_data bd;
981
		blk_status_t ret;
982

983
		rq = list_first_entry(list, struct request, queuelist);
984 985 986
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
987 988

			/*
989 990
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
991
			 */
992 993 994 995 996 997 998 999 1000
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1001
				break;
1002
		}
1003

1004 1005
		list_del_init(&rq->queuelist);

1006
		bd.rq = rq;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1020 1021

		ret = q->mq_ops->queue_rq(hctx, &bd);
1022
		if (ret == BLK_STS_RESOURCE) {
1023
			blk_mq_put_driver_tag_hctx(hctx, rq);
1024
			list_add(&rq->queuelist, list);
1025
			__blk_mq_requeue_request(rq);
1026
			break;
1027 1028 1029
		}

		if (unlikely(ret != BLK_STS_OK)) {
1030
			errors++;
1031
			blk_mq_end_request(rq, BLK_STS_IOERR);
1032
			continue;
1033 1034
		}

1035
		queued++;
1036
	} while (!list_empty(list));
1037

1038
	hctx->dispatched[queued_to_index(queued)]++;
1039 1040 1041 1042 1043

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1044
	if (!list_empty(list)) {
1045
		/*
1046 1047
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1048 1049 1050 1051
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1052
		spin_lock(&hctx->lock);
1053
		list_splice_init(list, &hctx->dispatch);
1054
		spin_unlock(&hctx->lock);
1055

1056
		/*
1057 1058 1059
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1060
		 *
1061 1062 1063 1064
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1065
		 *
1066 1067 1068 1069 1070 1071 1072
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1073
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1074
		 *   and dm-rq.
1075
		 */
1076 1077
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1078
			blk_mq_run_hw_queue(hctx, true);
1079
	}
1080

1081
	return (queued + errors) != 0;
1082 1083
}

1084 1085 1086 1087 1088 1089 1090 1091 1092
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1093
		blk_mq_sched_dispatch_requests(hctx);
1094 1095
		rcu_read_unlock();
	} else {
1096 1097
		might_sleep();

1098
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1099
		blk_mq_sched_dispatch_requests(hctx);
1100
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1101 1102 1103
	}
}

1104 1105 1106 1107 1108 1109 1110 1111
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1112 1113
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1114 1115

	if (--hctx->next_cpu_batch <= 0) {
1116
		int next_cpu;
1117 1118 1119 1120 1121 1122 1123 1124 1125

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1126
	return hctx->next_cpu;
1127 1128
}

1129 1130
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1131
{
1132 1133 1134 1135
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1136 1137
		return;

1138
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1139 1140
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1141
			__blk_mq_run_hw_queue(hctx);
1142
			put_cpu();
1143 1144
			return;
		}
1145

1146
		put_cpu();
1147
	}
1148

1149 1150 1151
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1163
}
O
Omar Sandoval 已提交
1164
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1165

1166
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1167 1168 1169 1170 1171
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1172
		if (!blk_mq_hctx_has_pending(hctx) ||
1173
		    blk_mq_hctx_stopped(hctx))
1174 1175
			continue;

1176
		blk_mq_run_hw_queue(hctx, async);
1177 1178
	}
}
1179
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1201 1202 1203 1204 1205 1206 1207 1208 1209
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1210 1211
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1212
	cancel_delayed_work(&hctx->run_work);
1213

1214
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1215
}
1216
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1217

1218 1219 1220 1221 1222 1223 1224 1225 1226
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1227 1228
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1229 1230 1231 1232 1233
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1234 1235 1236
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1237 1238 1239
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1240

1241
	blk_mq_run_hw_queue(hctx, false);
1242 1243 1244
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1265
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1266 1267 1268 1269
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1270 1271
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1272 1273 1274
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1275
static void blk_mq_run_work_fn(struct work_struct *work)
1276 1277 1278
{
	struct blk_mq_hw_ctx *hctx;

1279
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1280

1281 1282 1283 1284 1285 1286 1287 1288
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1289

1290 1291 1292
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1293 1294 1295 1296

	__blk_mq_run_hw_queue(hctx);
}

1297 1298 1299

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1300
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1301
		return;
1302

1303 1304 1305 1306 1307
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1308
	blk_mq_stop_hw_queue(hctx);
1309 1310 1311 1312
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1313 1314 1315
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1316 1317 1318
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1319
{
J
Jens Axboe 已提交
1320 1321
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1322 1323
	lockdep_assert_held(&ctx->lock);

1324 1325
	trace_block_rq_insert(hctx->queue, rq);

1326 1327 1328 1329
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1330
}
1331

1332 1333
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1334 1335 1336
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1337 1338
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1339
	__blk_mq_insert_req_list(hctx, rq, at_head);
1340 1341 1342
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1343 1344
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1356
		BUG_ON(rq->mq_ctx != ctx);
1357
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1358
		__blk_mq_insert_req_list(hctx, rq, false);
1359
	}
1360
	blk_mq_hctx_mark_pending(hctx, ctx);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1397 1398 1399 1400
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1417 1418 1419
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1420 1421 1422 1423 1424
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1425
	blk_init_request_from_bio(rq, bio);
1426

1427
	blk_account_io_start(rq, true);
1428 1429
}

1430 1431 1432 1433 1434 1435
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1436 1437 1438 1439 1440 1441 1442
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1443
}
1444

1445 1446
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1447 1448 1449 1450
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1451 1452
}

M
Ming Lei 已提交
1453 1454 1455
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1456 1457 1458 1459
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1460
		.last = true,
1461
	};
1462
	blk_qc_t new_cookie;
1463
	blk_status_t ret;
M
Ming Lei 已提交
1464 1465
	bool run_queue = true;

1466 1467
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1468 1469 1470
		run_queue = false;
		goto insert;
	}
1471

1472
	if (q->elevator)
1473 1474
		goto insert;

M
Ming Lei 已提交
1475
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1476 1477 1478 1479
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1480 1481 1482 1483 1484 1485
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1486 1487
	switch (ret) {
	case BLK_STS_OK:
1488
		*cookie = new_cookie;
1489
		return;
1490 1491 1492 1493
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1494
		*cookie = BLK_QC_T_NONE;
1495
		blk_mq_end_request(rq, ret);
1496
		return;
1497
	}
1498

1499
insert:
M
Ming Lei 已提交
1500
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1501 1502
}

1503 1504 1505 1506 1507
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1508
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1509 1510
		rcu_read_unlock();
	} else {
1511 1512 1513 1514
		unsigned int srcu_idx;

		might_sleep();

1515
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1516
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1517
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1518 1519 1520
	}
}

1521
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1522
{
1523
	const int is_sync = op_is_sync(bio->bi_opf);
1524
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1525
	struct blk_mq_alloc_data data = { .flags = 0 };
1526
	struct request *rq;
1527
	unsigned int request_count = 0;
1528
	struct blk_plug *plug;
1529
	struct request *same_queue_rq = NULL;
1530
	blk_qc_t cookie;
J
Jens Axboe 已提交
1531
	unsigned int wb_acct;
1532 1533 1534

	blk_queue_bounce(q, &bio);

1535
	blk_queue_split(q, &bio);
1536

1537
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1538
		bio_io_error(bio);
1539
		return BLK_QC_T_NONE;
1540 1541
	}

1542 1543 1544
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1545

1546 1547 1548
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1549 1550
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1551 1552
	trace_block_getrq(q, bio, bio->bi_opf);

1553
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1554 1555
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1556 1557
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1558
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1559 1560 1561
	}

	wbt_track(&rq->issue_stat, wb_acct);
1562

1563
	cookie = request_to_qc_t(data.hctx, rq);
1564

1565
	plug = current->plug;
1566
	if (unlikely(is_flush_fua)) {
1567
		blk_mq_put_ctx(data.ctx);
1568
		blk_mq_bio_to_request(rq, bio);
1569 1570 1571
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1572
		} else {
1573 1574
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1575
		}
1576
	} else if (plug && q->nr_hw_queues == 1) {
1577 1578
		struct request *last = NULL;

1579
		blk_mq_put_ctx(data.ctx);
1580
		blk_mq_bio_to_request(rq, bio);
1581 1582 1583 1584 1585 1586 1587

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1588 1589 1590
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1591
		if (!request_count)
1592
			trace_block_plug(q);
1593 1594
		else
			last = list_entry_rq(plug->mq_list.prev);
1595

1596 1597
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1598 1599
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1600
		}
1601

1602
		list_add_tail(&rq->queuelist, &plug->mq_list);
1603
	} else if (plug && !blk_queue_nomerges(q)) {
1604
		blk_mq_bio_to_request(rq, bio);
1605 1606

		/*
1607
		 * We do limited plugging. If the bio can be merged, do that.
1608 1609
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1610 1611
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1612
		 */
1613 1614 1615 1616 1617 1618
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1619 1620
		blk_mq_put_ctx(data.ctx);

1621 1622 1623
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1624 1625
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1626
		}
1627
	} else if (q->nr_hw_queues > 1 && is_sync) {
1628
		blk_mq_put_ctx(data.ctx);
1629 1630
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1631
	} else if (q->elevator) {
1632
		blk_mq_put_ctx(data.ctx);
1633
		blk_mq_bio_to_request(rq, bio);
1634
		blk_mq_sched_insert_request(rq, false, true, true, true);
1635
	} else {
1636
		blk_mq_put_ctx(data.ctx);
1637 1638
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1639
		blk_mq_run_hw_queue(data.hctx, true);
1640
	}
1641

1642
	return cookie;
1643 1644
}

1645 1646
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1647
{
1648
	struct page *page;
1649

1650
	if (tags->rqs && set->ops->exit_request) {
1651
		int i;
1652

1653
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1654 1655 1656
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1657
				continue;
1658
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1659
			tags->static_rqs[i] = NULL;
1660
		}
1661 1662
	}

1663 1664
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1665
		list_del_init(&page->lru);
1666 1667 1668 1669 1670
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1671 1672
		__free_pages(page, page->private);
	}
1673
}
1674

1675 1676
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1677
	kfree(tags->rqs);
1678
	tags->rqs = NULL;
J
Jens Axboe 已提交
1679 1680
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1681

1682
	blk_mq_free_tags(tags);
1683 1684
}

1685 1686 1687 1688
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1689
{
1690
	struct blk_mq_tags *tags;
1691
	int node;
1692

1693 1694 1695 1696 1697
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1698
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1699 1700
	if (!tags)
		return NULL;
1701

1702
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1703
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1704
				 node);
1705 1706 1707 1708
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1709

J
Jens Axboe 已提交
1710 1711
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1712
				 node);
J
Jens Axboe 已提交
1713 1714 1715 1716 1717 1718
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1732 1733 1734 1735 1736
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1737 1738 1739

	INIT_LIST_HEAD(&tags->page_list);

1740 1741 1742 1743
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1744
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1745
				cache_line_size());
1746
	left = rq_size * depth;
1747

1748
	for (i = 0; i < depth; ) {
1749 1750 1751 1752 1753
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1754
		while (this_order && left < order_to_size(this_order - 1))
1755 1756 1757
			this_order--;

		do {
1758
			page = alloc_pages_node(node,
1759
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1760
				this_order);
1761 1762 1763 1764 1765 1766 1767 1768 1769
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1770
			goto fail;
1771 1772

		page->private = this_order;
1773
		list_add_tail(&page->lru, &tags->page_list);
1774 1775

		p = page_address(page);
1776 1777 1778 1779
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1780
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1781
		entries_per_page = order_to_size(this_order) / rq_size;
1782
		to_do = min(entries_per_page, depth - i);
1783 1784
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1785 1786 1787
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1788
			if (set->ops->init_request) {
1789
				if (set->ops->init_request(set, rq, hctx_idx,
1790
						node)) {
J
Jens Axboe 已提交
1791
					tags->static_rqs[i] = NULL;
1792
					goto fail;
1793
				}
1794 1795
			}

1796 1797 1798 1799
			p += rq_size;
			i++;
		}
	}
1800
	return 0;
1801

1802
fail:
1803 1804
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1805 1806
}

J
Jens Axboe 已提交
1807 1808 1809 1810 1811
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1812
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1813
{
1814
	struct blk_mq_hw_ctx *hctx;
1815 1816 1817
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1818
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1819
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1820 1821 1822 1823 1824 1825 1826 1827 1828

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1829
		return 0;
1830

J
Jens Axboe 已提交
1831 1832 1833
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1834 1835

	blk_mq_run_hw_queue(hctx, true);
1836
	return 0;
1837 1838
}

1839
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1840
{
1841 1842
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1843 1844
}

1845
/* hctx->ctxs will be freed in queue's release handler */
1846 1847 1848 1849
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1850 1851
	blk_mq_debugfs_unregister_hctx(hctx);

1852 1853
	blk_mq_tag_idle(hctx);

1854
	if (set->ops->exit_request)
1855
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1856

1857 1858
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1859 1860 1861
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1862
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1863
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1864

1865
	blk_mq_remove_cpuhp(hctx);
1866
	blk_free_flush_queue(hctx->fq);
1867
	sbitmap_free(&hctx->ctx_map);
1868 1869
}

M
Ming Lei 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1879
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1880 1881 1882
	}
}

1883 1884 1885
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1886
{
1887 1888 1889 1890 1891 1892
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1893
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1894 1895 1896 1897
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1898
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1899

1900
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1901 1902

	hctx->tags = set->tags[hctx_idx];
1903 1904

	/*
1905 1906
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1907
	 */
1908 1909 1910 1911
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1912

1913 1914
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1915
		goto free_ctxs;
1916

1917
	hctx->nr_ctx = 0;
1918

1919 1920 1921
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1922

1923 1924 1925
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1926 1927
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1928
		goto sched_exit_hctx;
1929

1930
	if (set->ops->init_request &&
1931 1932
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1933
		goto free_fq;
1934

1935
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1936
		init_srcu_struct(hctx->queue_rq_srcu);
1937

1938 1939
	blk_mq_debugfs_register_hctx(q, hctx);

1940
	return 0;
1941

1942 1943
 free_fq:
	kfree(hctx->fq);
1944 1945
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1946 1947 1948
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1949
 free_bitmap:
1950
	sbitmap_free(&hctx->ctx_map);
1951 1952 1953
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1954
	blk_mq_remove_cpuhp(hctx);
1955 1956
	return -1;
}
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1976
		hctx = blk_mq_map_queue(q, i);
1977

1978 1979 1980 1981 1982
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1983
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1984 1985 1986
	}
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2009 2010 2011 2012 2013
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2014 2015
}

2016 2017
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2018
{
2019
	unsigned int i, hctx_idx;
2020 2021
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2022
	struct blk_mq_tag_set *set = q->tag_set;
2023

2024 2025 2026 2027 2028
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2029
	queue_for_each_hw_ctx(q, hctx, i) {
2030
		cpumask_clear(hctx->cpumask);
2031 2032 2033 2034 2035 2036
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2037
	for_each_possible_cpu(i) {
2038
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2039
		if (!cpumask_test_cpu(i, online_mask))
2040 2041
			continue;

2042 2043
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2044 2045
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2046 2047 2048 2049 2050 2051
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2052
			q->mq_map[i] = 0;
2053 2054
		}

2055
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2056
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2057

2058
		cpumask_set_cpu(i, hctx->cpumask);
2059 2060 2061
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2062

2063 2064
	mutex_unlock(&q->sysfs_lock);

2065
	queue_for_each_hw_ctx(q, hctx, i) {
2066
		/*
2067 2068
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2069 2070
		 */
		if (!hctx->nr_ctx) {
2071 2072 2073 2074
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2075 2076 2077
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2078
			hctx->tags = NULL;
2079 2080 2081
			continue;
		}

M
Ming Lei 已提交
2082 2083 2084
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2085 2086 2087 2088 2089
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2090
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2091

2092 2093 2094
		/*
		 * Initialize batch roundrobin counts
		 */
2095 2096 2097
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2098 2099
}

2100
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2101 2102 2103 2104
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2116

2117 2118
	lockdep_assert_held(&set->tag_list_lock);

2119 2120
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2121
		queue_set_hctx_shared(q, shared);
2122 2123 2124 2125 2126 2127 2128 2129 2130
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2131 2132
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2133 2134 2135 2136 2137 2138
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2139
	mutex_unlock(&set->tag_list_lock);
2140 2141

	synchronize_rcu();
2142 2143 2144 2145 2146 2147 2148 2149
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2150 2151 2152 2153 2154 2155 2156 2157 2158

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2159
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2160

2161 2162 2163
	mutex_unlock(&set->tag_list_lock);
}

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2176 2177 2178
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2179
		kobject_put(&hctx->kobj);
2180
	}
2181

2182 2183
	q->mq_map = NULL;

2184 2185
	kfree(q->queue_hw_ctx);

2186 2187 2188 2189 2190 2191
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2192 2193 2194
	free_percpu(q->queue_ctx);
}

2195
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2225 2226
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2227
{
K
Keith Busch 已提交
2228 2229
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2230

K
Keith Busch 已提交
2231
	blk_mq_sysfs_unregister(q);
2232
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2233
		int node;
2234

K
Keith Busch 已提交
2235 2236 2237 2238
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2239
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2240
					GFP_KERNEL, node);
2241
		if (!hctxs[i])
K
Keith Busch 已提交
2242
			break;
2243

2244
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2245 2246 2247 2248 2249
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2250

2251
		atomic_set(&hctxs[i]->nr_active, 0);
2252
		hctxs[i]->numa_node = node;
2253
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2254 2255 2256 2257 2258 2259 2260 2261

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2262
	}
K
Keith Busch 已提交
2263 2264 2265 2266
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2267 2268
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2282 2283 2284
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2285
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2286 2287
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2288 2289 2290
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2291 2292
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2293
		goto err_exit;
K
Keith Busch 已提交
2294

2295 2296 2297
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2298 2299 2300 2301 2302
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2303
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2304 2305 2306 2307

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2308

2309
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2310
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2311 2312 2313

	q->nr_queues = nr_cpu_ids;

2314
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2315

2316 2317 2318
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2319 2320
	q->sg_reserved_size = INT_MAX;

2321
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2322 2323 2324
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2325
	blk_queue_make_request(q, blk_mq_make_request);
2326

2327 2328 2329 2330 2331
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2332 2333 2334 2335 2336
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2337 2338
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2339

2340
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2341

2342
	get_online_cpus();
2343
	mutex_lock(&all_q_mutex);
2344

2345
	list_add_tail(&q->all_q_node, &all_q_list);
2346
	blk_mq_add_queue_tag_set(set, q);
2347
	blk_mq_map_swqueue(q, cpu_online_mask);
2348

2349
	mutex_unlock(&all_q_mutex);
2350
	put_online_cpus();
2351

2352 2353 2354 2355 2356 2357 2358 2359
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2360
	return q;
2361

2362
err_hctxs:
K
Keith Busch 已提交
2363
	kfree(q->queue_hw_ctx);
2364
err_percpu:
K
Keith Busch 已提交
2365
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2366 2367
err_exit:
	q->mq_ops = NULL;
2368 2369
	return ERR_PTR(-ENOMEM);
}
2370
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2371 2372 2373

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2374
	struct blk_mq_tag_set	*set = q->tag_set;
2375

2376 2377 2378 2379
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2380 2381
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2382
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2383 2384 2385
}

/* Basically redo blk_mq_init_queue with queue frozen */
2386 2387
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2388
{
2389
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2390

2391
	blk_mq_debugfs_unregister_hctxs(q);
2392 2393
	blk_mq_sysfs_unregister(q);

2394 2395 2396 2397 2398 2399
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2400
	blk_mq_map_swqueue(q, online_mask);
2401

2402
	blk_mq_sysfs_register(q);
2403
	blk_mq_debugfs_register_hctxs(q);
2404 2405
}

2406 2407 2408 2409 2410 2411 2412 2413
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2414 2415 2416 2417
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2418 2419 2420 2421 2422 2423 2424 2425
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2426
		blk_freeze_queue_start(q);
2427
	list_for_each_entry(q, &all_q_list, all_q_node)
2428 2429
		blk_mq_freeze_queue_wait(q);

2430
	list_for_each_entry(q, &all_q_list, all_q_node)
2431
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2432 2433 2434 2435

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2436
	mutex_unlock(&all_q_mutex);
2437 2438 2439 2440
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2441
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2457 2458 2459 2460
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2461 2462 2463 2464 2465 2466 2467
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2468 2469
}

2470 2471 2472 2473
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2474 2475
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2476 2477 2478 2479 2480 2481
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2482
		blk_mq_free_rq_map(set->tags[i]);
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2522 2523 2524 2525 2526 2527 2528 2529
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2530 2531 2532 2533 2534 2535
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2536 2537
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2538 2539
	int ret;

B
Bart Van Assche 已提交
2540 2541
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2542 2543
	if (!set->nr_hw_queues)
		return -EINVAL;
2544
	if (!set->queue_depth)
2545 2546 2547 2548
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2549
	if (!set->ops->queue_rq)
2550 2551
		return -EINVAL;

2552 2553 2554 2555 2556
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2557

2558 2559 2560 2561 2562 2563 2564 2565 2566
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2567 2568 2569 2570 2571
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2572

K
Keith Busch 已提交
2573
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2574 2575
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2576
		return -ENOMEM;
2577

2578 2579 2580
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2581 2582 2583
	if (!set->mq_map)
		goto out_free_tags;

2584
	ret = blk_mq_update_queue_map(set);
2585 2586 2587 2588 2589
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2590
		goto out_free_mq_map;
2591

2592 2593 2594
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2595
	return 0;
2596 2597 2598 2599 2600

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2601 2602
	kfree(set->tags);
	set->tags = NULL;
2603
	return ret;
2604 2605 2606 2607 2608 2609 2610
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2611 2612
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2613

2614 2615 2616
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2617
	kfree(set->tags);
2618
	set->tags = NULL;
2619 2620 2621
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2622 2623 2624 2625 2626 2627
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2628
	if (!set)
2629 2630
		return -EINVAL;

2631 2632
	blk_mq_freeze_queue(q);

2633 2634
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2635 2636
		if (!hctx->tags)
			continue;
2637 2638 2639 2640
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2641 2642 2643 2644 2645 2646 2647 2648
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2649 2650 2651 2652 2653 2654 2655
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2656 2657
	blk_mq_unfreeze_queue(q);

2658 2659 2660
	return ret;
}

2661 2662
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2663 2664 2665
{
	struct request_queue *q;

2666 2667
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2668 2669 2670 2671 2672 2673 2674 2675 2676
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2677
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2678 2679 2680 2681 2682 2683 2684 2685
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2686 2687 2688 2689 2690 2691 2692

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2693 2694
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2721
	int bucket;
2722

2723 2724 2725 2726
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2727 2728
}

2729 2730 2731 2732 2733
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2734
	int bucket;
2735 2736 2737 2738 2739

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2740
	if (!blk_poll_stats_enable(q))
2741 2742 2743 2744 2745 2746 2747 2748
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2749 2750
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2751
	 */
2752 2753 2754 2755 2756 2757
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2758 2759 2760 2761

	return ret;
}

2762
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2763
				     struct blk_mq_hw_ctx *hctx,
2764 2765 2766 2767
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2768
	unsigned int nsecs;
2769 2770
	ktime_t kt;

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2789 2790 2791 2792 2793 2794 2795 2796
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2797
	kt = nsecs;
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2820 2821 2822 2823 2824
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2825 2826 2827 2828 2829 2830 2831
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2832
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2833 2834
		return true;

J
Jens Axboe 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2878 2879
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2880
	else {
2881
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2882 2883 2884 2885 2886 2887 2888 2889 2890
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2891 2892 2893 2894 2895

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2906 2907
static int __init blk_mq_init(void)
{
2908 2909
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2910

2911 2912 2913
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2914 2915 2916
	return 0;
}
subsys_initcall(blk_mq_init);