blk-mq.c 71.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66 67
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128
		blk_mq_run_hw_queues(q, false);
129
	}
130
}
131
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132

133
void blk_mq_freeze_queue_wait(struct request_queue *q)
134
{
135
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138

139 140 141 142 143 144 145 146
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147

148 149 150 151
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
152
void blk_freeze_queue(struct request_queue *q)
153
{
154 155 156 157 158 159 160
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
161
	blk_freeze_queue_start(q);
162 163
	blk_mq_freeze_queue_wait(q);
}
164 165 166 167 168 169 170 171 172

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
173
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174

175
void blk_mq_unfreeze_queue(struct request_queue *q)
176
{
177
	int freeze_depth;
178

179 180 181
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
182
		percpu_ref_reinit(&q->q_usage_counter);
183
		wake_up_all(&q->mq_freeze_wq);
184
	}
185
}
186
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

202
/**
203
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 205 206
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
207 208 209
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
210 211 212 213 214 215 216
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

217
	blk_mq_quiesce_queue_nowait(q);
218

219 220
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
221
			synchronize_srcu(hctx->queue_rq_srcu);
222 223 224 225 226 227 228 229
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

230 231 232 233 234 235 236 237 238
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
239 240 241
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
242
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243
	spin_unlock_irqrestore(q->queue_lock, flags);
244

245 246
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
247 248 249
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

250 251 252 253 254 255 256 257
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
258 259 260 261 262 263 264

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
265 266
}

267 268 269 270 271 272
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

273 274
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
275
{
276 277 278
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

279 280
	rq->rq_flags = 0;

281 282 283 284 285 286 287 288 289 290 291 292 293
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

294 295
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
296 297
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
298
	rq->cmd_flags = op;
299
	if (blk_queue_io_stat(data->q))
300
		rq->rq_flags |= RQF_IO_STAT;
301 302 303 304 305 306
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
307
	rq->start_time = jiffies;
308 309
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
310
	set_start_time_ns(rq);
311 312 313 314 315 316 317 318 319 320 321
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
322 323
	rq->timeout = 0;

324 325 326 327
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

328 329
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
330 331
}

332 333 334 335 336 337
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
338
	unsigned int tag;
339
	struct blk_mq_ctx *local_ctx = NULL;
340 341 342 343

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
344
		data->ctx = local_ctx = blk_mq_get_ctx(q);
345 346
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 348
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
349 350 351 352 353 354 355 356

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
357 358
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
359 360
	}

361 362
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
363 364 365 366
		if (local_ctx) {
			blk_mq_put_ctx(local_ctx);
			data->ctx = NULL;
		}
367 368
		blk_queue_exit(q);
		return NULL;
369 370
	}

371
	rq = blk_mq_rq_ctx_init(data, tag, op);
372 373
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
374
		if (e && e->type->ops.mq.prepare_request) {
375 376 377
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

378 379
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
380
		}
381 382 383
	}
	data->hctx->queued++;
	return rq;
384 385
}

386
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387
		unsigned int flags)
388
{
389
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
390
	struct request *rq;
391
	int ret;
392

393
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 395
	if (ret)
		return ERR_PTR(ret);
396

397
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398
	blk_queue_exit(q);
399

400
	if (!rq)
401
		return ERR_PTR(-EWOULDBLOCK);
402

403 404
	blk_mq_put_ctx(alloc_data.ctx);

405 406 407
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
408 409
	return rq;
}
410
EXPORT_SYMBOL(blk_mq_alloc_request);
411

412 413
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
414
{
415
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
416
	struct request *rq;
417
	unsigned int cpu;
M
Ming Lin 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

436 437 438 439
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
440 441 442 443
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
444
	}
445 446
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
447

448
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449
	blk_queue_exit(q);
450

451 452 453 454
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
455 456 457
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

458
void blk_mq_free_request(struct request *rq)
459 460
{
	struct request_queue *q = rq->q;
461 462 463 464 465
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

466
	if (rq->rq_flags & RQF_ELVPRIV) {
467 468 469 470 471 472 473
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
474

475
	ctx->rq_completed[rq_is_sync(rq)]++;
476
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
477
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
478

479 480 481
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
482
	wbt_done(q->rq_wb, &rq->issue_stat);
483

S
Shaohua Li 已提交
484 485 486
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

487
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
488
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
489 490 491
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
492
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493
	blk_mq_sched_restart(hctx);
494
	blk_queue_exit(q);
495
}
J
Jens Axboe 已提交
496
EXPORT_SYMBOL_GPL(blk_mq_free_request);
497

498
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499
{
M
Ming Lei 已提交
500 501
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
502
	if (rq->end_io) {
J
Jens Axboe 已提交
503
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
504
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
505 506 507
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
508
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
509
	}
510
}
511
EXPORT_SYMBOL(__blk_mq_end_request);
512

513
void blk_mq_end_request(struct request *rq, blk_status_t error)
514 515 516
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
517
	__blk_mq_end_request(rq, error);
518
}
519
EXPORT_SYMBOL(blk_mq_end_request);
520

521
static void __blk_mq_complete_request_remote(void *data)
522
{
523
	struct request *rq = data;
524

525
	rq->q->softirq_done_fn(rq);
526 527
}

528
static void __blk_mq_complete_request(struct request *rq)
529 530
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
531
	bool shared = false;
532 533
	int cpu;

534 535 536 537 538 539 540
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
541
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
542 543 544
		rq->q->softirq_done_fn(rq);
		return;
	}
545 546

	cpu = get_cpu();
C
Christoph Hellwig 已提交
547 548 549 550
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
551
		rq->csd.func = __blk_mq_complete_request_remote;
552 553
		rq->csd.info = rq;
		rq->csd.flags = 0;
554
		smp_call_function_single_async(ctx->cpu, &rq->csd);
555
	} else {
556
		rq->q->softirq_done_fn(rq);
557
	}
558 559
	put_cpu();
}
560 561 562 563 564 565 566 567 568

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
569
void blk_mq_complete_request(struct request *rq)
570
{
571 572 573
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
574
		return;
575
	if (!blk_mark_rq_complete(rq))
576
		__blk_mq_complete_request(rq);
577 578
}
EXPORT_SYMBOL(blk_mq_complete_request);
579

580 581 582 583 584 585
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

586
void blk_mq_start_request(struct request *rq)
587 588 589
{
	struct request_queue *q = rq->q;

590 591
	blk_mq_sched_started_request(rq);

592 593
	trace_block_rq_issue(q, rq);

594
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
595
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
596
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
597
		wbt_issue(q->rq_wb, &rq->issue_stat);
598 599
	}

600
	blk_add_timer(rq);
601

602
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
603

604 605 606 607 608
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
609 610 611 612
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
613
	 */
614 615 616 617 618 619 620 621 622 623 624 625
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
626
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
627
	}
628 629 630 631 632 633 634 635 636

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
637
}
638
EXPORT_SYMBOL(blk_mq_start_request);
639

640 641
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
642
 * flag isn't set yet, so there may be race with timeout handler,
643 644 645 646 647 648
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
649
static void __blk_mq_requeue_request(struct request *rq)
650 651 652 653
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
654
	wbt_requeue(q->rq_wb, &rq->issue_stat);
655
	blk_mq_sched_requeue_request(rq);
656

657 658 659 660
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
661 662
}

663
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
664 665 666 667
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
668
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
669 670 671
}
EXPORT_SYMBOL(blk_mq_requeue_request);

672 673 674
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
675
		container_of(work, struct request_queue, requeue_work.work);
676 677 678
	LIST_HEAD(rq_list);
	struct request *rq, *next;

679
	spin_lock_irq(&q->requeue_lock);
680
	list_splice_init(&q->requeue_list, &rq_list);
681
	spin_unlock_irq(&q->requeue_lock);
682 683

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
684
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
685 686
			continue;

687
		rq->rq_flags &= ~RQF_SOFTBARRIER;
688
		list_del_init(&rq->queuelist);
689
		blk_mq_sched_insert_request(rq, true, false, false, true);
690 691 692 693 694
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
695
		blk_mq_sched_insert_request(rq, false, false, false, true);
696 697
	}

698
	blk_mq_run_hw_queues(q, false);
699 700
}

701 702
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
703 704 705 706 707 708 709 710
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
711
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
712 713 714

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
715
		rq->rq_flags |= RQF_SOFTBARRIER;
716 717 718 719 720
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
721 722 723

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
724 725 726 727 728
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
729
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
730 731 732
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

733 734 735
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
736 737
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
738 739 740
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

741 742
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
743 744
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
745
		return tags->rqs[tag];
746
	}
747 748

	return NULL;
749 750 751
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

752
struct blk_mq_timeout_data {
753 754
	unsigned long next;
	unsigned int next_set;
755 756
};

757
void blk_mq_rq_timed_out(struct request *req, bool reserved)
758
{
J
Jens Axboe 已提交
759
	const struct blk_mq_ops *ops = req->q->mq_ops;
760
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
761 762 763 764 765 766 767

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
768
	 * both flags will get cleared. So check here again, and ignore
769 770
	 * a timeout event with a request that isn't active.
	 */
771 772
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
773

774
	if (ops->timeout)
775
		ret = ops->timeout(req, reserved);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
791
}
792

793 794 795 796
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
797
	unsigned long deadline;
798

799
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
800
		return;
801

802 803 804 805 806 807 808 809
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

810 811 812 813 814 815 816 817 818 819 820 821 822
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
823 824 825 826 827 828 829 830 831 832
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
833
			blk_mq_rq_timed_out(rq, reserved);
834 835 836
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
837 838
		data->next_set = 1;
	}
839 840
}

841
static void blk_mq_timeout_work(struct work_struct *work)
842
{
843 844
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
845 846 847 848 849
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
850

851 852 853 854 855 856 857 858 859
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
860
	 * blk_freeze_queue_start, and the moment the last request is
861 862 863 864
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
865 866
		return;

867
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
868

869 870 871
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
872
	} else {
873 874
		struct blk_mq_hw_ctx *hctx;

875 876 877 878 879
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
880
	}
881
	blk_queue_exit(q);
882 883
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

902 903 904 905
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
906
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
907
{
908 909 910 911
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
912

913
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
914
}
915
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
916

917 918 919 920
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
921

922
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
923 924
}

925 926
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
927 928 929 930 931 932 933
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

934 935
	might_sleep_if(wait);

936 937
	if (rq->tag != -1)
		goto done;
938

939 940 941
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

942 943
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
944 945 946 947
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
948 949 950
		data.hctx->tags->rqs[rq->tag] = rq;
	}

951 952 953 954
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
955 956
}

957 958
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
959 960 961 962 963 964 965 966 967 968
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

1013
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1014 1015 1016 1017 1018 1019
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1020
	list_del(&wait->entry);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1051
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1052
{
1053
	struct blk_mq_hw_ctx *hctx;
1054
	struct request *rq;
1055
	int errors, queued;
1056

1057 1058 1059
	if (list_empty(list))
		return false;

1060 1061 1062
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1063
	errors = queued = 0;
1064
	do {
1065
		struct blk_mq_queue_data bd;
1066
		blk_status_t ret;
1067

1068
		rq = list_first_entry(list, struct request, queuelist);
1069 1070 1071
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1072 1073

			/*
1074 1075
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1076
			 */
1077 1078 1079 1080 1081 1082 1083 1084 1085
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1086
				break;
1087
		}
1088

1089 1090
		list_del_init(&rq->queuelist);

1091
		bd.rq = rq;
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1105 1106

		ret = q->mq_ops->queue_rq(hctx, &bd);
1107
		if (ret == BLK_STS_RESOURCE) {
1108
			blk_mq_put_driver_tag_hctx(hctx, rq);
1109
			list_add(&rq->queuelist, list);
1110
			__blk_mq_requeue_request(rq);
1111
			break;
1112 1113 1114
		}

		if (unlikely(ret != BLK_STS_OK)) {
1115
			errors++;
1116
			blk_mq_end_request(rq, BLK_STS_IOERR);
1117
			continue;
1118 1119
		}

1120
		queued++;
1121
	} while (!list_empty(list));
1122

1123
	hctx->dispatched[queued_to_index(queued)]++;
1124 1125 1126 1127 1128

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1129
	if (!list_empty(list)) {
1130
		/*
1131 1132
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1133 1134 1135 1136
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1137
		spin_lock(&hctx->lock);
1138
		list_splice_init(list, &hctx->dispatch);
1139
		spin_unlock(&hctx->lock);
1140

1141
		/*
1142 1143 1144
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1145
		 *
1146 1147 1148 1149
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1150
		 *
1151 1152 1153 1154 1155 1156 1157
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1158
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1159
		 *   and dm-rq.
1160
		 */
1161 1162
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1163
			blk_mq_run_hw_queue(hctx, true);
1164
	}
1165

1166
	return (queued + errors) != 0;
1167 1168
}

1169 1170 1171 1172
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1173 1174 1175 1176
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1177 1178 1179
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1180 1181 1182 1183 1184 1185
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1186 1187
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1188
		blk_mq_sched_dispatch_requests(hctx);
1189 1190
		rcu_read_unlock();
	} else {
1191 1192
		might_sleep();

1193
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1194
		blk_mq_sched_dispatch_requests(hctx);
1195
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1196 1197 1198
	}
}

1199 1200 1201 1202 1203 1204 1205 1206
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1207 1208
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1209 1210

	if (--hctx->next_cpu_batch <= 0) {
1211
		int next_cpu;
1212 1213 1214 1215 1216 1217 1218 1219 1220

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1221
	return hctx->next_cpu;
1222 1223
}

1224 1225
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1226
{
1227 1228 1229 1230
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1231 1232
		return;

1233
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1234 1235
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1236
			__blk_mq_run_hw_queue(hctx);
1237
			put_cpu();
1238 1239
			return;
		}
1240

1241
		put_cpu();
1242
	}
1243

1244 1245 1246
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1258
}
O
Omar Sandoval 已提交
1259
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1260

1261
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1262 1263 1264 1265 1266
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1267
		if (!blk_mq_hctx_has_pending(hctx) ||
1268
		    blk_mq_hctx_stopped(hctx))
1269 1270
			continue;

1271
		blk_mq_run_hw_queue(hctx, async);
1272 1273
	}
}
1274
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1275

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1296 1297 1298
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1299
 * BLK_STS_RESOURCE is usually returned.
1300 1301 1302 1303 1304
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1305 1306
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1307
	cancel_delayed_work(&hctx->run_work);
1308

1309
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1310
}
1311
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1312

1313 1314 1315
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1316
 * BLK_STS_RESOURCE is usually returned.
1317 1318 1319 1320 1321
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1322 1323
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1324 1325 1326 1327 1328
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1329 1330 1331
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1332 1333 1334
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1335

1336
	blk_mq_run_hw_queue(hctx, false);
1337 1338 1339
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1360
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1361 1362 1363 1364
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1365 1366
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1367 1368 1369
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1370
static void blk_mq_run_work_fn(struct work_struct *work)
1371 1372 1373
{
	struct blk_mq_hw_ctx *hctx;

1374
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1375

1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1384

1385 1386 1387
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1388 1389 1390 1391

	__blk_mq_run_hw_queue(hctx);
}

1392 1393 1394

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1395
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1396
		return;
1397

1398 1399 1400 1401 1402
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1403
	blk_mq_stop_hw_queue(hctx);
1404 1405 1406 1407
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1408 1409 1410
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1411 1412 1413
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1414
{
J
Jens Axboe 已提交
1415 1416
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1417 1418
	lockdep_assert_held(&ctx->lock);

1419 1420
	trace_block_rq_insert(hctx->queue, rq);

1421 1422 1423 1424
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1425
}
1426

1427 1428
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1429 1430 1431
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1432 1433
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1434
	__blk_mq_insert_req_list(hctx, rq, at_head);
1435 1436 1437
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
void blk_mq_request_bypass_insert(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

	blk_mq_run_hw_queue(hctx, false);
}

1454 1455
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1467
		BUG_ON(rq->mq_ctx != ctx);
1468
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1469
		__blk_mq_insert_req_list(hctx, rq, false);
1470
	}
1471
	blk_mq_hctx_mark_pending(hctx, ctx);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1508 1509 1510 1511
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1528 1529 1530
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1531 1532 1533 1534 1535
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1536
	blk_init_request_from_bio(rq, bio);
1537

S
Shaohua Li 已提交
1538 1539
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1540
	blk_account_io_start(rq, true);
1541 1542
}

1543 1544 1545 1546 1547 1548 1549
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1550
}
1551

1552 1553
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1554 1555 1556 1557
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1558 1559
}

M
Ming Lei 已提交
1560 1561 1562
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1563 1564 1565 1566
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1567
		.last = true,
1568
	};
1569
	blk_qc_t new_cookie;
1570
	blk_status_t ret;
M
Ming Lei 已提交
1571 1572
	bool run_queue = true;

1573 1574
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1575 1576 1577
		run_queue = false;
		goto insert;
	}
1578

1579
	if (q->elevator)
1580 1581
		goto insert;

M
Ming Lei 已提交
1582
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1583 1584 1585 1586
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1587 1588 1589 1590 1591 1592
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1593 1594
	switch (ret) {
	case BLK_STS_OK:
1595
		*cookie = new_cookie;
1596
		return;
1597 1598 1599 1600
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1601
		*cookie = BLK_QC_T_NONE;
1602
		blk_mq_end_request(rq, ret);
1603
		return;
1604
	}
1605

1606
insert:
M
Ming Lei 已提交
1607
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1608 1609
}

1610 1611 1612 1613 1614
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1615
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1616 1617
		rcu_read_unlock();
	} else {
1618 1619 1620 1621
		unsigned int srcu_idx;

		might_sleep();

1622
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1623
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1624
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1625 1626 1627
	}
}

1628
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1629
{
1630
	const int is_sync = op_is_sync(bio->bi_opf);
1631
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1632
	struct blk_mq_alloc_data data = { .flags = 0 };
1633
	struct request *rq;
1634
	unsigned int request_count = 0;
1635
	struct blk_plug *plug;
1636
	struct request *same_queue_rq = NULL;
1637
	blk_qc_t cookie;
J
Jens Axboe 已提交
1638
	unsigned int wb_acct;
1639 1640 1641

	blk_queue_bounce(q, &bio);

1642
	blk_queue_split(q, &bio);
1643

1644
	if (!bio_integrity_prep(bio))
1645
		return BLK_QC_T_NONE;
1646

1647 1648 1649
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1650

1651 1652 1653
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1654 1655
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1656 1657
	trace_block_getrq(q, bio, bio->bi_opf);

1658
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1659 1660
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1661 1662
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1663
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1664 1665 1666
	}

	wbt_track(&rq->issue_stat, wb_acct);
1667

1668
	cookie = request_to_qc_t(data.hctx, rq);
1669

1670
	plug = current->plug;
1671
	if (unlikely(is_flush_fua)) {
1672
		blk_mq_put_ctx(data.ctx);
1673
		blk_mq_bio_to_request(rq, bio);
1674 1675 1676
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1677
		} else {
1678 1679
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1680
		}
1681
	} else if (plug && q->nr_hw_queues == 1) {
1682 1683
		struct request *last = NULL;

1684
		blk_mq_put_ctx(data.ctx);
1685
		blk_mq_bio_to_request(rq, bio);
1686 1687 1688 1689 1690 1691 1692

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1693 1694 1695
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1696
		if (!request_count)
1697
			trace_block_plug(q);
1698 1699
		else
			last = list_entry_rq(plug->mq_list.prev);
1700

1701 1702
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1703 1704
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1705
		}
1706

1707
		list_add_tail(&rq->queuelist, &plug->mq_list);
1708
	} else if (plug && !blk_queue_nomerges(q)) {
1709
		blk_mq_bio_to_request(rq, bio);
1710 1711

		/*
1712
		 * We do limited plugging. If the bio can be merged, do that.
1713 1714
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1715 1716
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1717
		 */
1718 1719 1720 1721 1722 1723
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1724 1725
		blk_mq_put_ctx(data.ctx);

1726 1727 1728
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1729 1730
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1731
		}
1732
	} else if (q->nr_hw_queues > 1 && is_sync) {
1733
		blk_mq_put_ctx(data.ctx);
1734 1735
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1736
	} else if (q->elevator) {
1737
		blk_mq_put_ctx(data.ctx);
1738
		blk_mq_bio_to_request(rq, bio);
1739
		blk_mq_sched_insert_request(rq, false, true, true, true);
1740
	} else {
1741
		blk_mq_put_ctx(data.ctx);
1742 1743
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1744
		blk_mq_run_hw_queue(data.hctx, true);
1745
	}
1746

1747
	return cookie;
1748 1749
}

1750 1751
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1752
{
1753
	struct page *page;
1754

1755
	if (tags->rqs && set->ops->exit_request) {
1756
		int i;
1757

1758
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1759 1760 1761
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1762
				continue;
1763
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1764
			tags->static_rqs[i] = NULL;
1765
		}
1766 1767
	}

1768 1769
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1770
		list_del_init(&page->lru);
1771 1772 1773 1774 1775
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1776 1777
		__free_pages(page, page->private);
	}
1778
}
1779

1780 1781
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1782
	kfree(tags->rqs);
1783
	tags->rqs = NULL;
J
Jens Axboe 已提交
1784 1785
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1786

1787
	blk_mq_free_tags(tags);
1788 1789
}

1790 1791 1792 1793
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1794
{
1795
	struct blk_mq_tags *tags;
1796
	int node;
1797

1798 1799 1800 1801 1802
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1803
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1804 1805
	if (!tags)
		return NULL;
1806

1807
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1808
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1809
				 node);
1810 1811 1812 1813
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1814

J
Jens Axboe 已提交
1815 1816
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1817
				 node);
J
Jens Axboe 已提交
1818 1819 1820 1821 1822 1823
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1837 1838 1839 1840 1841
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1842 1843 1844

	INIT_LIST_HEAD(&tags->page_list);

1845 1846 1847 1848
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1849
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1850
				cache_line_size());
1851
	left = rq_size * depth;
1852

1853
	for (i = 0; i < depth; ) {
1854 1855 1856 1857 1858
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1859
		while (this_order && left < order_to_size(this_order - 1))
1860 1861 1862
			this_order--;

		do {
1863
			page = alloc_pages_node(node,
1864
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1865
				this_order);
1866 1867 1868 1869 1870 1871 1872 1873 1874
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1875
			goto fail;
1876 1877

		page->private = this_order;
1878
		list_add_tail(&page->lru, &tags->page_list);
1879 1880

		p = page_address(page);
1881 1882 1883 1884
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1885
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1886
		entries_per_page = order_to_size(this_order) / rq_size;
1887
		to_do = min(entries_per_page, depth - i);
1888 1889
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1890 1891 1892
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1893
			if (set->ops->init_request) {
1894
				if (set->ops->init_request(set, rq, hctx_idx,
1895
						node)) {
J
Jens Axboe 已提交
1896
					tags->static_rqs[i] = NULL;
1897
					goto fail;
1898
				}
1899 1900
			}

1901 1902 1903 1904
			p += rq_size;
			i++;
		}
	}
1905
	return 0;
1906

1907
fail:
1908 1909
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1910 1911
}

J
Jens Axboe 已提交
1912 1913 1914 1915 1916
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1917
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1918
{
1919
	struct blk_mq_hw_ctx *hctx;
1920 1921 1922
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1923
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1924
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1925 1926 1927 1928 1929 1930 1931 1932 1933

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1934
		return 0;
1935

J
Jens Axboe 已提交
1936 1937 1938
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1939 1940

	blk_mq_run_hw_queue(hctx, true);
1941
	return 0;
1942 1943
}

1944
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1945
{
1946 1947
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1948 1949
}

1950
/* hctx->ctxs will be freed in queue's release handler */
1951 1952 1953 1954
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1955 1956
	blk_mq_debugfs_unregister_hctx(hctx);

1957 1958
	blk_mq_tag_idle(hctx);

1959
	if (set->ops->exit_request)
1960
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1961

1962 1963
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1964 1965 1966
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1967
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1968
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1969

1970
	blk_mq_remove_cpuhp(hctx);
1971
	blk_free_flush_queue(hctx->fq);
1972
	sbitmap_free(&hctx->ctx_map);
1973 1974
}

M
Ming Lei 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1984
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1985 1986 1987
	}
}

1988 1989 1990
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1991
{
1992 1993 1994 1995 1996 1997
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1998
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1999 2000 2001
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2002
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2003

2004
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2005 2006

	hctx->tags = set->tags[hctx_idx];
2007 2008

	/*
2009 2010
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2011
	 */
2012 2013 2014 2015
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2016

2017 2018
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2019
		goto free_ctxs;
2020

2021
	hctx->nr_ctx = 0;
2022

2023 2024 2025
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2026

2027 2028 2029
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2030 2031
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2032
		goto sched_exit_hctx;
2033

2034
	if (set->ops->init_request &&
2035 2036
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2037
		goto free_fq;
2038

2039
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2040
		init_srcu_struct(hctx->queue_rq_srcu);
2041

2042 2043
	blk_mq_debugfs_register_hctx(q, hctx);

2044
	return 0;
2045

2046 2047
 free_fq:
	kfree(hctx->fq);
2048 2049
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2050 2051 2052
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2053
 free_bitmap:
2054
	sbitmap_free(&hctx->ctx_map);
2055 2056 2057
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2058
	blk_mq_remove_cpuhp(hctx);
2059 2060
	return -1;
}
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2076 2077
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2078 2079
			continue;

C
Christoph Hellwig 已提交
2080
		hctx = blk_mq_map_queue(q, i);
2081

2082 2083 2084 2085 2086
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2087
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2088 2089 2090
	}
}

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2113 2114 2115 2116 2117
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2118 2119
}

2120
static void blk_mq_map_swqueue(struct request_queue *q)
2121
{
2122
	unsigned int i, hctx_idx;
2123 2124
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2125
	struct blk_mq_tag_set *set = q->tag_set;
2126

2127 2128 2129 2130 2131
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2132
	queue_for_each_hw_ctx(q, hctx, i) {
2133
		cpumask_clear(hctx->cpumask);
2134 2135 2136 2137
		hctx->nr_ctx = 0;
	}

	/*
2138 2139 2140
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2141
	 */
2142
	for_each_present_cpu(i) {
2143 2144
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2145 2146
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2147 2148 2149 2150 2151 2152
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2153
			q->mq_map[i] = 0;
2154 2155
		}

2156
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2157
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2158

2159
		cpumask_set_cpu(i, hctx->cpumask);
2160 2161 2162
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2163

2164 2165
	mutex_unlock(&q->sysfs_lock);

2166
	queue_for_each_hw_ctx(q, hctx, i) {
2167
		/*
2168 2169
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2170 2171
		 */
		if (!hctx->nr_ctx) {
2172 2173 2174 2175
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2176 2177 2178
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2179
			hctx->tags = NULL;
2180 2181 2182
			continue;
		}

M
Ming Lei 已提交
2183 2184 2185
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2186 2187 2188 2189 2190
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2191
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2192

2193 2194 2195
		/*
		 * Initialize batch roundrobin counts
		 */
2196 2197 2198
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2199 2200
}

2201 2202 2203 2204
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2205
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2206 2207 2208 2209
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2210
	queue_for_each_hw_ctx(q, hctx, i) {
2211 2212 2213
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2214
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2215 2216 2217
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2218
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2219
		}
2220 2221 2222
	}
}

2223 2224
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2225 2226
{
	struct request_queue *q;
2227

2228 2229
	lockdep_assert_held(&set->tag_list_lock);

2230 2231
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2232
		queue_set_hctx_shared(q, shared);
2233 2234 2235 2236 2237 2238 2239 2240 2241
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2242 2243
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2244 2245 2246 2247 2248 2249
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2250
	mutex_unlock(&set->tag_list_lock);
2251 2252

	synchronize_rcu();
2253 2254 2255 2256 2257 2258 2259 2260
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2261 2262 2263 2264 2265 2266 2267 2268 2269

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2270
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2271

2272 2273 2274
	mutex_unlock(&set->tag_list_lock);
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2287 2288 2289
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2290
		kobject_put(&hctx->kobj);
2291
	}
2292

2293 2294
	q->mq_map = NULL;

2295 2296
	kfree(q->queue_hw_ctx);

2297 2298 2299 2300 2301 2302
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2303 2304 2305
	free_percpu(q->queue_ctx);
}

2306
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2336 2337
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2338
{
K
Keith Busch 已提交
2339 2340
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2341

K
Keith Busch 已提交
2342
	blk_mq_sysfs_unregister(q);
2343
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2344
		int node;
2345

K
Keith Busch 已提交
2346 2347 2348 2349
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2350
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2351
					GFP_KERNEL, node);
2352
		if (!hctxs[i])
K
Keith Busch 已提交
2353
			break;
2354

2355
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2356 2357 2358 2359 2360
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2361

2362
		atomic_set(&hctxs[i]->nr_active, 0);
2363
		hctxs[i]->numa_node = node;
2364
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2365 2366 2367 2368 2369 2370 2371 2372

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2373
	}
K
Keith Busch 已提交
2374 2375 2376 2377
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2378 2379
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2393 2394 2395
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2396
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2397 2398
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2399 2400 2401
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2402 2403
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2404
		goto err_exit;
K
Keith Busch 已提交
2405

2406 2407 2408
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2409 2410 2411 2412 2413
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2414
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2415 2416 2417 2418

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2419

2420
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2421
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2422 2423 2424

	q->nr_queues = nr_cpu_ids;

2425
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2426

2427 2428 2429
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2430 2431
	q->sg_reserved_size = INT_MAX;

2432
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2433 2434 2435
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2436
	blk_queue_make_request(q, blk_mq_make_request);
2437

2438 2439 2440 2441 2442
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2443 2444 2445 2446 2447
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2448 2449
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2450

2451
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2452
	blk_mq_add_queue_tag_set(set, q);
2453
	blk_mq_map_swqueue(q);
2454

2455 2456 2457 2458 2459 2460 2461 2462
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2463
	return q;
2464

2465
err_hctxs:
K
Keith Busch 已提交
2466
	kfree(q->queue_hw_ctx);
2467
err_percpu:
K
Keith Busch 已提交
2468
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2469 2470
err_exit:
	q->mq_ops = NULL;
2471 2472
	return ERR_PTR(-ENOMEM);
}
2473
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2474 2475 2476

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2477
	struct blk_mq_tag_set	*set = q->tag_set;
2478

2479
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2480
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2481 2482 2483
}

/* Basically redo blk_mq_init_queue with queue frozen */
2484
static void blk_mq_queue_reinit(struct request_queue *q)
2485
{
2486
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2487

2488
	blk_mq_debugfs_unregister_hctxs(q);
2489 2490
	blk_mq_sysfs_unregister(q);

2491 2492 2493 2494 2495 2496
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2497
	blk_mq_map_swqueue(q);
2498

2499
	blk_mq_sysfs_register(q);
2500
	blk_mq_debugfs_register_hctxs(q);
2501 2502
}

2503 2504 2505 2506
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2507 2508
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2509 2510 2511 2512 2513 2514
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2515
		blk_mq_free_rq_map(set->tags[i]);
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2555 2556 2557 2558 2559 2560 2561 2562
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2563 2564 2565 2566 2567 2568
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2569 2570
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2571 2572
	int ret;

B
Bart Van Assche 已提交
2573 2574
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2575 2576
	if (!set->nr_hw_queues)
		return -EINVAL;
2577
	if (!set->queue_depth)
2578 2579 2580 2581
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2582
	if (!set->ops->queue_rq)
2583 2584
		return -EINVAL;

2585 2586 2587 2588 2589
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2590

2591 2592 2593 2594 2595 2596 2597 2598 2599
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2600 2601 2602 2603 2604
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2605

K
Keith Busch 已提交
2606
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2607 2608
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2609
		return -ENOMEM;
2610

2611 2612 2613
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2614 2615 2616
	if (!set->mq_map)
		goto out_free_tags;

2617
	ret = blk_mq_update_queue_map(set);
2618 2619 2620 2621 2622
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2623
		goto out_free_mq_map;
2624

2625 2626 2627
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2628
	return 0;
2629 2630 2631 2632 2633

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2634 2635
	kfree(set->tags);
	set->tags = NULL;
2636
	return ret;
2637 2638 2639 2640 2641 2642 2643
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2644 2645
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2646

2647 2648 2649
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2650
	kfree(set->tags);
2651
	set->tags = NULL;
2652 2653 2654
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2655 2656 2657 2658 2659 2660
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2661
	if (!set)
2662 2663
		return -EINVAL;

2664 2665
	blk_mq_freeze_queue(q);

2666 2667
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2668 2669
		if (!hctx->tags)
			continue;
2670 2671 2672 2673
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2674 2675 2676 2677 2678 2679 2680 2681
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2682 2683 2684 2685 2686 2687 2688
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2689 2690
	blk_mq_unfreeze_queue(q);

2691 2692 2693
	return ret;
}

2694 2695
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2696 2697 2698
{
	struct request_queue *q;

2699 2700
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2710
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2711 2712
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2713
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2714 2715 2716 2717 2718
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2719 2720 2721 2722 2723 2724 2725

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2726 2727
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2754
	int bucket;
2755

2756 2757 2758 2759
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2760 2761
}

2762 2763 2764 2765 2766
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2767
	int bucket;
2768 2769 2770 2771 2772

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2773
	if (!blk_poll_stats_enable(q))
2774 2775 2776 2777 2778 2779 2780 2781
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2782 2783
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2784
	 */
2785 2786 2787 2788 2789 2790
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2791 2792 2793 2794

	return ret;
}

2795
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2796
				     struct blk_mq_hw_ctx *hctx,
2797 2798 2799 2800
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2801
	unsigned int nsecs;
2802 2803
	ktime_t kt;

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2822 2823 2824 2825 2826 2827 2828 2829
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2830
	kt = nsecs;
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2853 2854 2855 2856 2857
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2858 2859 2860 2861 2862 2863 2864
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2865
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2866 2867
		return true;

J
Jens Axboe 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2911 2912
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2913
	else {
2914
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2915 2916 2917 2918 2919 2920 2921 2922 2923
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2924 2925 2926 2927 2928

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2929 2930
static int __init blk_mq_init(void)
{
2931 2932 2933 2934 2935 2936
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

2937 2938
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2939 2940 2941
	return 0;
}
subsys_initcall(blk_mq_init);