blk-mq.c 69.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66 67
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Count as inflight if it either matches the partition we
		 * asked for, or if it's the root
		 */
		if (rq->part == mi->part || mi->part->partno)
			mi->inflight[0]++;
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

117
void blk_freeze_queue_start(struct request_queue *q)
118
{
119
	int freeze_depth;
120

121 122
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
123
		percpu_ref_kill(&q->q_usage_counter);
124
		blk_mq_run_hw_queues(q, false);
125
	}
126
}
127
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
128

129
void blk_mq_freeze_queue_wait(struct request_queue *q)
130
{
131
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
132
}
133
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
134

135 136 137 138 139 140 141 142
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
143

144 145 146 147
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
148
void blk_freeze_queue(struct request_queue *q)
149
{
150 151 152 153 154 155 156
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
157
	blk_freeze_queue_start(q);
158 159
	blk_mq_freeze_queue_wait(q);
}
160 161 162 163 164 165 166 167 168

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
169
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
170

171
void blk_mq_unfreeze_queue(struct request_queue *q)
172
{
173
	int freeze_depth;
174

175 176 177
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
178
		percpu_ref_reinit(&q->q_usage_counter);
179
		wake_up_all(&q->mq_freeze_wq);
180
	}
181
}
182
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

198
/**
199
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
200 201 202
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
203 204 205
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
206 207 208 209 210 211 212
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

213
	blk_mq_quiesce_queue_nowait(q);
214

215 216
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
217
			synchronize_srcu(hctx->queue_rq_srcu);
218 219 220 221 222 223 224 225
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

226 227 228 229 230 231 232 233 234
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
235 236 237
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
238
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
239
	spin_unlock_irqrestore(q->queue_lock, flags);
240

241 242
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
243 244 245
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

246 247 248 249 250 251 252 253
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
254 255 256 257 258 259 260

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
261 262
}

263 264 265 266 267 268
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

269 270
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
271
{
272 273 274
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

275 276
	rq->rq_flags = 0;

277 278 279 280 281 282 283 284 285 286 287 288 289
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

290 291
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
292 293
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
294
	rq->cmd_flags = op;
295
	if (blk_queue_io_stat(data->q))
296
		rq->rq_flags |= RQF_IO_STAT;
297 298 299 300 301 302
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
303
	rq->start_time = jiffies;
304 305
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
306
	set_start_time_ns(rq);
307 308 309 310 311 312 313 314 315 316 317
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
318 319
	rq->timeout = 0;

320 321 322 323
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

324 325
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
326 327
}

328 329 330 331 332 333
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
334
	unsigned int tag;
335 336 337 338 339 340 341

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
342 343
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
344 345 346 347 348 349 350 351

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
352 353
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
354 355
	}

356 357
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
358 359
		blk_queue_exit(q);
		return NULL;
360 361
	}

362
	rq = blk_mq_rq_ctx_init(data, tag, op);
363 364
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
365
		if (e && e->type->ops.mq.prepare_request) {
366 367 368
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

369 370
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
371
		}
372 373 374
	}
	data->hctx->queued++;
	return rq;
375 376
}

377
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
378
		unsigned int flags)
379
{
380
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
381
	struct request *rq;
382
	int ret;
383

384
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
385 386
	if (ret)
		return ERR_PTR(ret);
387

388
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
389

390 391 392 393
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
394
		return ERR_PTR(-EWOULDBLOCK);
395 396 397 398

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
399 400
	return rq;
}
401
EXPORT_SYMBOL(blk_mq_alloc_request);
402

403 404
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
405
{
406
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
407
	struct request *rq;
408
	unsigned int cpu;
M
Ming Lin 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

427 428 429 430
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
431 432 433 434
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
435
	}
436 437
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
438

439
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
440 441

	blk_queue_exit(q);
442 443 444 445 446

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
447 448 449
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

450
void blk_mq_free_request(struct request *rq)
451 452
{
	struct request_queue *q = rq->q;
453 454 455 456 457
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

458
	if (rq->rq_flags & RQF_ELVPRIV) {
459 460 461 462 463 464 465
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
466

467
	ctx->rq_completed[rq_is_sync(rq)]++;
468
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
469
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
470 471

	wbt_done(q->rq_wb, &rq->issue_stat);
472

473
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
474
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
475 476 477
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
478
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
479
	blk_mq_sched_restart(hctx);
480
	blk_queue_exit(q);
481
}
J
Jens Axboe 已提交
482
EXPORT_SYMBOL_GPL(blk_mq_free_request);
483

484
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
485
{
M
Ming Lei 已提交
486 487
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
488
	if (rq->end_io) {
J
Jens Axboe 已提交
489
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
490
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
491 492 493
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
494
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
495
	}
496
}
497
EXPORT_SYMBOL(__blk_mq_end_request);
498

499
void blk_mq_end_request(struct request *rq, blk_status_t error)
500 501 502
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
503
	__blk_mq_end_request(rq, error);
504
}
505
EXPORT_SYMBOL(blk_mq_end_request);
506

507
static void __blk_mq_complete_request_remote(void *data)
508
{
509
	struct request *rq = data;
510

511
	rq->q->softirq_done_fn(rq);
512 513
}

514
static void __blk_mq_complete_request(struct request *rq)
515 516
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
517
	bool shared = false;
518 519
	int cpu;

520 521 522 523 524 525 526
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
527
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
528 529 530
		rq->q->softirq_done_fn(rq);
		return;
	}
531 532

	cpu = get_cpu();
C
Christoph Hellwig 已提交
533 534 535 536
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
537
		rq->csd.func = __blk_mq_complete_request_remote;
538 539
		rq->csd.info = rq;
		rq->csd.flags = 0;
540
		smp_call_function_single_async(ctx->cpu, &rq->csd);
541
	} else {
542
		rq->q->softirq_done_fn(rq);
543
	}
544 545
	put_cpu();
}
546 547 548 549 550 551 552 553 554

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
555
void blk_mq_complete_request(struct request *rq)
556
{
557 558 559
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
560
		return;
561
	if (!blk_mark_rq_complete(rq))
562
		__blk_mq_complete_request(rq);
563 564
}
EXPORT_SYMBOL(blk_mq_complete_request);
565

566 567 568 569 570 571
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

572
void blk_mq_start_request(struct request *rq)
573 574 575
{
	struct request_queue *q = rq->q;

576 577
	blk_mq_sched_started_request(rq);

578 579
	trace_block_rq_issue(q, rq);

580
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
581
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
582
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
583
		wbt_issue(q->rq_wb, &rq->issue_stat);
584 585
	}

586
	blk_add_timer(rq);
587

588 589 590 591 592 593
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

594 595 596 597 598 599
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
600 601 602 603
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
604 605 606 607 608 609 610 611 612

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
613
}
614
EXPORT_SYMBOL(blk_mq_start_request);
615

616 617
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
618
 * flag isn't set yet, so there may be race with timeout handler,
619 620 621 622 623 624
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
625
static void __blk_mq_requeue_request(struct request *rq)
626 627 628 629
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
630
	wbt_requeue(q->rq_wb, &rq->issue_stat);
631
	blk_mq_sched_requeue_request(rq);
632

633 634 635 636
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
637 638
}

639
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
640 641 642 643
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
644
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
645 646 647
}
EXPORT_SYMBOL(blk_mq_requeue_request);

648 649 650
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
651
		container_of(work, struct request_queue, requeue_work.work);
652 653 654
	LIST_HEAD(rq_list);
	struct request *rq, *next;

655
	spin_lock_irq(&q->requeue_lock);
656
	list_splice_init(&q->requeue_list, &rq_list);
657
	spin_unlock_irq(&q->requeue_lock);
658 659

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
660
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
661 662
			continue;

663
		rq->rq_flags &= ~RQF_SOFTBARRIER;
664
		list_del_init(&rq->queuelist);
665
		blk_mq_sched_insert_request(rq, true, false, false, true);
666 667 668 669 670
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
671
		blk_mq_sched_insert_request(rq, false, false, false, true);
672 673
	}

674
	blk_mq_run_hw_queues(q, false);
675 676
}

677 678
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
679 680 681 682 683 684 685 686
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
687
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
688 689 690

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
691
		rq->rq_flags |= RQF_SOFTBARRIER;
692 693 694 695 696
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
697 698 699

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
700 701 702 703 704
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
705
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
706 707 708
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

709 710 711 712 713 714 715 716
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

717 718
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
719 720
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
721
		return tags->rqs[tag];
722
	}
723 724

	return NULL;
725 726 727
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

728
struct blk_mq_timeout_data {
729 730
	unsigned long next;
	unsigned int next_set;
731 732
};

733
void blk_mq_rq_timed_out(struct request *req, bool reserved)
734
{
J
Jens Axboe 已提交
735
	const struct blk_mq_ops *ops = req->q->mq_ops;
736
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
737 738 739 740 741 742 743

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
744
	 * both flags will get cleared. So check here again, and ignore
745 746
	 * a timeout event with a request that isn't active.
	 */
747 748
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
749

750
	if (ops->timeout)
751
		ret = ops->timeout(req, reserved);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
767
}
768

769 770 771 772
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
773

774
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
775
		return;
776

777 778 779 780 781 782 783 784 785 786 787 788 789
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
790 791
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
792
			blk_mq_rq_timed_out(rq, reserved);
793 794 795 796
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
797 798
}

799
static void blk_mq_timeout_work(struct work_struct *work)
800
{
801 802
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
803 804 805 806 807
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
808

809 810 811 812 813 814 815 816 817
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
818
	 * blk_freeze_queue_start, and the moment the last request is
819 820 821 822
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
823 824
		return;

825
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
826

827 828 829
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
830
	} else {
831 832
		struct blk_mq_hw_ctx *hctx;

833 834 835 836 837
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
838
	}
839
	blk_queue_exit(q);
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

860 861 862 863
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
864
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
865
{
866 867 868 869
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
870

871
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
872
}
873
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
874

875 876 877 878
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
879

880
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
881 882
}

883 884
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
885 886 887 888 889 890 891
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

892 893
	might_sleep_if(wait);

894 895
	if (rq->tag != -1)
		goto done;
896

897 898 899
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

900 901
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
902 903 904 905
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
906 907 908
		data.hctx->tags->rqs[rq->tag] = rq;
	}

909 910 911 912
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
913 914
}

915 916
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
917 918 919 920 921 922 923 924 925 926
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

971
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
972 973 974 975 976 977
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

978
	list_del(&wait->entry);
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1009
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1010
{
1011
	struct blk_mq_hw_ctx *hctx;
1012
	struct request *rq;
1013
	int errors, queued;
1014

1015 1016 1017
	if (list_empty(list))
		return false;

1018 1019 1020
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1021
	errors = queued = 0;
1022
	do {
1023
		struct blk_mq_queue_data bd;
1024
		blk_status_t ret;
1025

1026
		rq = list_first_entry(list, struct request, queuelist);
1027 1028 1029
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1030 1031

			/*
1032 1033
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1034
			 */
1035 1036 1037 1038 1039 1040 1041 1042 1043
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1044
				break;
1045
		}
1046

1047 1048
		list_del_init(&rq->queuelist);

1049
		bd.rq = rq;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1063 1064

		ret = q->mq_ops->queue_rq(hctx, &bd);
1065
		if (ret == BLK_STS_RESOURCE) {
1066
			blk_mq_put_driver_tag_hctx(hctx, rq);
1067
			list_add(&rq->queuelist, list);
1068
			__blk_mq_requeue_request(rq);
1069
			break;
1070 1071 1072
		}

		if (unlikely(ret != BLK_STS_OK)) {
1073
			errors++;
1074
			blk_mq_end_request(rq, BLK_STS_IOERR);
1075
			continue;
1076 1077
		}

1078
		queued++;
1079
	} while (!list_empty(list));
1080

1081
	hctx->dispatched[queued_to_index(queued)]++;
1082 1083 1084 1085 1086

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1087
	if (!list_empty(list)) {
1088
		/*
1089 1090
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1091 1092 1093 1094
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1095
		spin_lock(&hctx->lock);
1096
		list_splice_init(list, &hctx->dispatch);
1097
		spin_unlock(&hctx->lock);
1098

1099
		/*
1100 1101 1102
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1103
		 *
1104 1105 1106 1107
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1108
		 *
1109 1110 1111 1112 1113 1114 1115
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1116
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1117
		 *   and dm-rq.
1118
		 */
1119 1120
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1121
			blk_mq_run_hw_queue(hctx, true);
1122
	}
1123

1124
	return (queued + errors) != 0;
1125 1126
}

1127 1128 1129 1130
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1131 1132 1133 1134
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1135 1136 1137
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1138 1139 1140 1141 1142 1143
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1144 1145
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1146
		blk_mq_sched_dispatch_requests(hctx);
1147 1148
		rcu_read_unlock();
	} else {
1149 1150
		might_sleep();

1151
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1152
		blk_mq_sched_dispatch_requests(hctx);
1153
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1154 1155 1156
	}
}

1157 1158 1159 1160 1161 1162 1163 1164
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1165 1166
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1167 1168

	if (--hctx->next_cpu_batch <= 0) {
1169
		int next_cpu;
1170 1171 1172 1173 1174 1175 1176 1177 1178

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1179
	return hctx->next_cpu;
1180 1181
}

1182 1183
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1184
{
1185 1186 1187 1188
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1189 1190
		return;

1191
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1192 1193
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1194
			__blk_mq_run_hw_queue(hctx);
1195
			put_cpu();
1196 1197
			return;
		}
1198

1199
		put_cpu();
1200
	}
1201

1202 1203 1204
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1216
}
O
Omar Sandoval 已提交
1217
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1218

1219
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1220 1221 1222 1223 1224
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1225
		if (!blk_mq_hctx_has_pending(hctx) ||
1226
		    blk_mq_hctx_stopped(hctx))
1227 1228
			continue;

1229
		blk_mq_run_hw_queue(hctx, async);
1230 1231
	}
}
1232
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1254 1255 1256 1257 1258 1259 1260 1261 1262
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1263 1264
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1265
	cancel_delayed_work(&hctx->run_work);
1266

1267
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1268
}
1269
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1280 1281
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1282 1283 1284 1285 1286
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1287 1288 1289
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1290 1291 1292
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1293

1294
	blk_mq_run_hw_queue(hctx, false);
1295 1296 1297
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1318
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1319 1320 1321 1322
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1323 1324
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1325 1326 1327
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1328
static void blk_mq_run_work_fn(struct work_struct *work)
1329 1330 1331
{
	struct blk_mq_hw_ctx *hctx;

1332
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1333

1334 1335 1336 1337 1338 1339 1340 1341
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1342

1343 1344 1345
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1346 1347 1348 1349

	__blk_mq_run_hw_queue(hctx);
}

1350 1351 1352

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1353
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1354
		return;
1355

1356 1357 1358 1359 1360
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1361
	blk_mq_stop_hw_queue(hctx);
1362 1363 1364 1365
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1366 1367 1368
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1369 1370 1371
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1372
{
J
Jens Axboe 已提交
1373 1374
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1375 1376
	lockdep_assert_held(&ctx->lock);

1377 1378
	trace_block_rq_insert(hctx->queue, rq);

1379 1380 1381 1382
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1383
}
1384

1385 1386
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1387 1388 1389
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1390 1391
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1392
	__blk_mq_insert_req_list(hctx, rq, at_head);
1393 1394 1395
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1396 1397
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1409
		BUG_ON(rq->mq_ctx != ctx);
1410
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1411
		__blk_mq_insert_req_list(hctx, rq, false);
1412
	}
1413
	blk_mq_hctx_mark_pending(hctx, ctx);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1450 1451 1452 1453
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1470 1471 1472
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1473 1474 1475 1476 1477
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1478
	blk_init_request_from_bio(rq, bio);
1479

1480
	blk_account_io_start(rq, true);
1481 1482
}

1483 1484 1485 1486 1487 1488
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1489 1490 1491 1492 1493 1494 1495
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1496
}
1497

1498 1499
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1500 1501 1502 1503
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1504 1505
}

M
Ming Lei 已提交
1506 1507 1508
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1509 1510 1511 1512
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1513
		.last = true,
1514
	};
1515
	blk_qc_t new_cookie;
1516
	blk_status_t ret;
M
Ming Lei 已提交
1517 1518
	bool run_queue = true;

1519 1520
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1521 1522 1523
		run_queue = false;
		goto insert;
	}
1524

1525
	if (q->elevator)
1526 1527
		goto insert;

M
Ming Lei 已提交
1528
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1529 1530 1531 1532
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1533 1534 1535 1536 1537 1538
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1539 1540
	switch (ret) {
	case BLK_STS_OK:
1541
		*cookie = new_cookie;
1542
		return;
1543 1544 1545 1546
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1547
		*cookie = BLK_QC_T_NONE;
1548
		blk_mq_end_request(rq, ret);
1549
		return;
1550
	}
1551

1552
insert:
M
Ming Lei 已提交
1553
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1554 1555
}

1556 1557 1558 1559 1560
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1561
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1562 1563
		rcu_read_unlock();
	} else {
1564 1565 1566 1567
		unsigned int srcu_idx;

		might_sleep();

1568
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1569
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1570
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1571 1572 1573
	}
}

1574
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1575
{
1576
	const int is_sync = op_is_sync(bio->bi_opf);
1577
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1578
	struct blk_mq_alloc_data data = { .flags = 0 };
1579
	struct request *rq;
1580
	unsigned int request_count = 0;
1581
	struct blk_plug *plug;
1582
	struct request *same_queue_rq = NULL;
1583
	blk_qc_t cookie;
J
Jens Axboe 已提交
1584
	unsigned int wb_acct;
1585 1586 1587

	blk_queue_bounce(q, &bio);

1588
	blk_queue_split(q, &bio);
1589

1590
	if (!bio_integrity_prep(bio))
1591
		return BLK_QC_T_NONE;
1592

1593 1594 1595
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1596

1597 1598 1599
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1600 1601
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1602 1603
	trace_block_getrq(q, bio, bio->bi_opf);

1604
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1605 1606
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1607 1608
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1609
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1610 1611 1612
	}

	wbt_track(&rq->issue_stat, wb_acct);
1613

1614
	cookie = request_to_qc_t(data.hctx, rq);
1615

1616
	plug = current->plug;
1617
	if (unlikely(is_flush_fua)) {
1618
		blk_mq_put_ctx(data.ctx);
1619
		blk_mq_bio_to_request(rq, bio);
1620 1621 1622
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1623
		} else {
1624 1625
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1626
		}
1627
	} else if (plug && q->nr_hw_queues == 1) {
1628 1629
		struct request *last = NULL;

1630
		blk_mq_put_ctx(data.ctx);
1631
		blk_mq_bio_to_request(rq, bio);
1632 1633 1634 1635 1636 1637 1638

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1639 1640 1641
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1642
		if (!request_count)
1643
			trace_block_plug(q);
1644 1645
		else
			last = list_entry_rq(plug->mq_list.prev);
1646

1647 1648
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1649 1650
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1651
		}
1652

1653
		list_add_tail(&rq->queuelist, &plug->mq_list);
1654
	} else if (plug && !blk_queue_nomerges(q)) {
1655
		blk_mq_bio_to_request(rq, bio);
1656 1657

		/*
1658
		 * We do limited plugging. If the bio can be merged, do that.
1659 1660
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1661 1662
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1663
		 */
1664 1665 1666 1667 1668 1669
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1670 1671
		blk_mq_put_ctx(data.ctx);

1672 1673 1674
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1675 1676
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1677
		}
1678
	} else if (q->nr_hw_queues > 1 && is_sync) {
1679
		blk_mq_put_ctx(data.ctx);
1680 1681
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1682
	} else if (q->elevator) {
1683
		blk_mq_put_ctx(data.ctx);
1684
		blk_mq_bio_to_request(rq, bio);
1685
		blk_mq_sched_insert_request(rq, false, true, true, true);
1686
	} else {
1687
		blk_mq_put_ctx(data.ctx);
1688 1689
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1690
		blk_mq_run_hw_queue(data.hctx, true);
1691
	}
1692

1693
	return cookie;
1694 1695
}

1696 1697
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1698
{
1699
	struct page *page;
1700

1701
	if (tags->rqs && set->ops->exit_request) {
1702
		int i;
1703

1704
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1705 1706 1707
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1708
				continue;
1709
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1710
			tags->static_rqs[i] = NULL;
1711
		}
1712 1713
	}

1714 1715
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1716
		list_del_init(&page->lru);
1717 1718 1719 1720 1721
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1722 1723
		__free_pages(page, page->private);
	}
1724
}
1725

1726 1727
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1728
	kfree(tags->rqs);
1729
	tags->rqs = NULL;
J
Jens Axboe 已提交
1730 1731
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1732

1733
	blk_mq_free_tags(tags);
1734 1735
}

1736 1737 1738 1739
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1740
{
1741
	struct blk_mq_tags *tags;
1742
	int node;
1743

1744 1745 1746 1747 1748
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1749
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1750 1751
	if (!tags)
		return NULL;
1752

1753
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1754
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1755
				 node);
1756 1757 1758 1759
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1760

J
Jens Axboe 已提交
1761 1762
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1763
				 node);
J
Jens Axboe 已提交
1764 1765 1766 1767 1768 1769
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1783 1784 1785 1786 1787
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1788 1789 1790

	INIT_LIST_HEAD(&tags->page_list);

1791 1792 1793 1794
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1795
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1796
				cache_line_size());
1797
	left = rq_size * depth;
1798

1799
	for (i = 0; i < depth; ) {
1800 1801 1802 1803 1804
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1805
		while (this_order && left < order_to_size(this_order - 1))
1806 1807 1808
			this_order--;

		do {
1809
			page = alloc_pages_node(node,
1810
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1811
				this_order);
1812 1813 1814 1815 1816 1817 1818 1819 1820
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1821
			goto fail;
1822 1823

		page->private = this_order;
1824
		list_add_tail(&page->lru, &tags->page_list);
1825 1826

		p = page_address(page);
1827 1828 1829 1830
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1831
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1832
		entries_per_page = order_to_size(this_order) / rq_size;
1833
		to_do = min(entries_per_page, depth - i);
1834 1835
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1836 1837 1838
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1839
			if (set->ops->init_request) {
1840
				if (set->ops->init_request(set, rq, hctx_idx,
1841
						node)) {
J
Jens Axboe 已提交
1842
					tags->static_rqs[i] = NULL;
1843
					goto fail;
1844
				}
1845 1846
			}

1847 1848 1849 1850
			p += rq_size;
			i++;
		}
	}
1851
	return 0;
1852

1853
fail:
1854 1855
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1856 1857
}

J
Jens Axboe 已提交
1858 1859 1860 1861 1862
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1863
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1864
{
1865
	struct blk_mq_hw_ctx *hctx;
1866 1867 1868
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1869
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1870
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1871 1872 1873 1874 1875 1876 1877 1878 1879

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1880
		return 0;
1881

J
Jens Axboe 已提交
1882 1883 1884
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1885 1886

	blk_mq_run_hw_queue(hctx, true);
1887
	return 0;
1888 1889
}

1890
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1891
{
1892 1893
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1894 1895
}

1896
/* hctx->ctxs will be freed in queue's release handler */
1897 1898 1899 1900
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1901 1902
	blk_mq_debugfs_unregister_hctx(hctx);

1903 1904
	blk_mq_tag_idle(hctx);

1905
	if (set->ops->exit_request)
1906
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1907

1908 1909
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1910 1911 1912
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1913
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1914
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1915

1916
	blk_mq_remove_cpuhp(hctx);
1917
	blk_free_flush_queue(hctx->fq);
1918
	sbitmap_free(&hctx->ctx_map);
1919 1920
}

M
Ming Lei 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1930
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1931 1932 1933
	}
}

1934 1935 1936
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1937
{
1938 1939 1940 1941 1942 1943
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1944
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1945 1946 1947
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
1948
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1949

1950
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1951 1952

	hctx->tags = set->tags[hctx_idx];
1953 1954

	/*
1955 1956
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1957
	 */
1958 1959 1960 1961
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1962

1963 1964
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1965
		goto free_ctxs;
1966

1967
	hctx->nr_ctx = 0;
1968

1969 1970 1971
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1972

1973 1974 1975
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1976 1977
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1978
		goto sched_exit_hctx;
1979

1980
	if (set->ops->init_request &&
1981 1982
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1983
		goto free_fq;
1984

1985
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1986
		init_srcu_struct(hctx->queue_rq_srcu);
1987

1988 1989
	blk_mq_debugfs_register_hctx(q, hctx);

1990
	return 0;
1991

1992 1993
 free_fq:
	kfree(hctx->fq);
1994 1995
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1996 1997 1998
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1999
 free_bitmap:
2000
	sbitmap_free(&hctx->ctx_map);
2001 2002 2003
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2004
	blk_mq_remove_cpuhp(hctx);
2005 2006
	return -1;
}
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2022 2023
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2024 2025
			continue;

C
Christoph Hellwig 已提交
2026
		hctx = blk_mq_map_queue(q, i);
2027

2028 2029 2030 2031 2032
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2033
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2034 2035 2036
	}
}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2059 2060 2061 2062 2063
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2064 2065
}

2066
static void blk_mq_map_swqueue(struct request_queue *q)
2067
{
2068
	unsigned int i, hctx_idx;
2069 2070
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2071
	struct blk_mq_tag_set *set = q->tag_set;
2072

2073 2074 2075 2076 2077
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2078
	queue_for_each_hw_ctx(q, hctx, i) {
2079
		cpumask_clear(hctx->cpumask);
2080 2081 2082 2083
		hctx->nr_ctx = 0;
	}

	/*
2084 2085 2086
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2087
	 */
2088
	for_each_present_cpu(i) {
2089 2090
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2091 2092
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2093 2094 2095 2096 2097 2098
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2099
			q->mq_map[i] = 0;
2100 2101
		}

2102
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2103
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2104

2105
		cpumask_set_cpu(i, hctx->cpumask);
2106 2107 2108
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2109

2110 2111
	mutex_unlock(&q->sysfs_lock);

2112
	queue_for_each_hw_ctx(q, hctx, i) {
2113
		/*
2114 2115
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2116 2117
		 */
		if (!hctx->nr_ctx) {
2118 2119 2120 2121
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2122 2123 2124
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2125
			hctx->tags = NULL;
2126 2127 2128
			continue;
		}

M
Ming Lei 已提交
2129 2130 2131
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2132 2133 2134 2135 2136
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2137
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2138

2139 2140 2141
		/*
		 * Initialize batch roundrobin counts
		 */
2142 2143 2144
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2145 2146
}

2147 2148 2149 2150
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2151
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2152 2153 2154 2155
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2156
	queue_for_each_hw_ctx(q, hctx, i) {
2157 2158 2159
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2160
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2161 2162 2163
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2164
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2165
		}
2166 2167 2168
	}
}

2169 2170
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2171 2172
{
	struct request_queue *q;
2173

2174 2175
	lockdep_assert_held(&set->tag_list_lock);

2176 2177
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2178
		queue_set_hctx_shared(q, shared);
2179 2180 2181 2182 2183 2184 2185 2186 2187
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2188 2189
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2190 2191 2192 2193 2194 2195
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2196
	mutex_unlock(&set->tag_list_lock);
2197 2198

	synchronize_rcu();
2199 2200 2201 2202 2203 2204 2205 2206
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2207 2208 2209 2210 2211 2212 2213 2214 2215

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2216
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2217

2218 2219 2220
	mutex_unlock(&set->tag_list_lock);
}

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2233 2234 2235
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2236
		kobject_put(&hctx->kobj);
2237
	}
2238

2239 2240
	q->mq_map = NULL;

2241 2242
	kfree(q->queue_hw_ctx);

2243 2244 2245 2246 2247 2248
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2249 2250 2251
	free_percpu(q->queue_ctx);
}

2252
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2282 2283
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2284
{
K
Keith Busch 已提交
2285 2286
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2287

K
Keith Busch 已提交
2288
	blk_mq_sysfs_unregister(q);
2289
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2290
		int node;
2291

K
Keith Busch 已提交
2292 2293 2294 2295
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2296
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2297
					GFP_KERNEL, node);
2298
		if (!hctxs[i])
K
Keith Busch 已提交
2299
			break;
2300

2301
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2302 2303 2304 2305 2306
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2307

2308
		atomic_set(&hctxs[i]->nr_active, 0);
2309
		hctxs[i]->numa_node = node;
2310
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2311 2312 2313 2314 2315 2316 2317 2318

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2319
	}
K
Keith Busch 已提交
2320 2321 2322 2323
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2324 2325
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2339 2340 2341
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2342
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2343 2344
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2345 2346 2347
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2348 2349
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2350
		goto err_exit;
K
Keith Busch 已提交
2351

2352 2353 2354
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2355 2356 2357 2358 2359
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2360
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2361 2362 2363 2364

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2365

2366
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2367
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2368 2369 2370

	q->nr_queues = nr_cpu_ids;

2371
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2372

2373 2374 2375
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2376 2377
	q->sg_reserved_size = INT_MAX;

2378
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2379 2380 2381
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2382
	blk_queue_make_request(q, blk_mq_make_request);
2383

2384 2385 2386 2387 2388
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2389 2390 2391 2392 2393
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2394 2395
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2396

2397
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2398
	blk_mq_add_queue_tag_set(set, q);
2399
	blk_mq_map_swqueue(q);
2400

2401 2402 2403 2404 2405 2406 2407 2408
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2409
	return q;
2410

2411
err_hctxs:
K
Keith Busch 已提交
2412
	kfree(q->queue_hw_ctx);
2413
err_percpu:
K
Keith Busch 已提交
2414
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2415 2416
err_exit:
	q->mq_ops = NULL;
2417 2418
	return ERR_PTR(-ENOMEM);
}
2419
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2420 2421 2422

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2423
	struct blk_mq_tag_set	*set = q->tag_set;
2424

2425
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2426
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2427 2428 2429
}

/* Basically redo blk_mq_init_queue with queue frozen */
2430
static void blk_mq_queue_reinit(struct request_queue *q)
2431
{
2432
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2433

2434
	blk_mq_debugfs_unregister_hctxs(q);
2435 2436
	blk_mq_sysfs_unregister(q);

2437 2438 2439 2440 2441 2442
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2443
	blk_mq_map_swqueue(q);
2444

2445
	blk_mq_sysfs_register(q);
2446
	blk_mq_debugfs_register_hctxs(q);
2447 2448
}

2449 2450 2451 2452
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2453 2454
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2455 2456 2457 2458 2459 2460
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2461
		blk_mq_free_rq_map(set->tags[i]);
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2501 2502 2503 2504 2505 2506 2507 2508
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2509 2510 2511 2512 2513 2514
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2515 2516
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2517 2518
	int ret;

B
Bart Van Assche 已提交
2519 2520
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2521 2522
	if (!set->nr_hw_queues)
		return -EINVAL;
2523
	if (!set->queue_depth)
2524 2525 2526 2527
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2528
	if (!set->ops->queue_rq)
2529 2530
		return -EINVAL;

2531 2532 2533 2534 2535
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2536

2537 2538 2539 2540 2541 2542 2543 2544 2545
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2546 2547 2548 2549 2550
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2551

K
Keith Busch 已提交
2552
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2553 2554
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2555
		return -ENOMEM;
2556

2557 2558 2559
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2560 2561 2562
	if (!set->mq_map)
		goto out_free_tags;

2563
	ret = blk_mq_update_queue_map(set);
2564 2565 2566 2567 2568
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2569
		goto out_free_mq_map;
2570

2571 2572 2573
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2574
	return 0;
2575 2576 2577 2578 2579

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2580 2581
	kfree(set->tags);
	set->tags = NULL;
2582
	return ret;
2583 2584 2585 2586 2587 2588 2589
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2590 2591
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2592

2593 2594 2595
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2596
	kfree(set->tags);
2597
	set->tags = NULL;
2598 2599 2600
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2601 2602 2603 2604 2605 2606
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2607
	if (!set)
2608 2609
		return -EINVAL;

2610 2611
	blk_mq_freeze_queue(q);

2612 2613
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2614 2615
		if (!hctx->tags)
			continue;
2616 2617 2618 2619
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2620 2621 2622 2623 2624 2625 2626 2627
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2628 2629 2630 2631 2632 2633 2634
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2635 2636
	blk_mq_unfreeze_queue(q);

2637 2638 2639
	return ret;
}

2640 2641
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2642 2643 2644
{
	struct request_queue *q;

2645 2646
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2656
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2657 2658
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2659
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2660 2661 2662 2663 2664
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2665 2666 2667 2668 2669 2670 2671

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2672 2673
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2700
	int bucket;
2701

2702 2703 2704 2705
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2706 2707
}

2708 2709 2710 2711 2712
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2713
	int bucket;
2714 2715 2716 2717 2718

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2719
	if (!blk_poll_stats_enable(q))
2720 2721 2722 2723 2724 2725 2726 2727
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2728 2729
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2730
	 */
2731 2732 2733 2734 2735 2736
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2737 2738 2739 2740

	return ret;
}

2741
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2742
				     struct blk_mq_hw_ctx *hctx,
2743 2744 2745 2746
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2747
	unsigned int nsecs;
2748 2749
	ktime_t kt;

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2768 2769 2770 2771 2772 2773 2774 2775
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2776
	kt = nsecs;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2799 2800 2801 2802 2803
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2804 2805 2806 2807 2808 2809 2810
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2811
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2812 2813
		return true;

J
Jens Axboe 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2857 2858
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2859
	else {
2860
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2861 2862 2863 2864 2865 2866 2867 2868 2869
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2870 2871 2872 2873 2874

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2875 2876
static int __init blk_mq_init(void)
{
2877 2878
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2879 2880 2881
	return 0;
}
subsys_initcall(blk_mq_init);