blk-mq.c 58.2 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

46
	for (i = 0; i < hctx->ctx_map.size; i++)
47
		if (hctx->ctx_map.map[i].word)
48 49 50 51 52
			return true;

	return false;
}

53 54 55 56 57 58 59 60 61
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

62 63 64 65 66 67
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
68 69 70 71 72 73 74 75 76 77 78 79
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 81
}

82
void blk_mq_freeze_queue_start(struct request_queue *q)
83
{
84
	int freeze_depth;
85

86 87
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
88
		percpu_ref_kill(&q->q_usage_counter);
89
		blk_mq_run_hw_queues(q, false);
90
	}
91
}
92
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
93 94 95

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
96
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
97 98
}

99 100 101 102
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
103
void blk_freeze_queue(struct request_queue *q)
104
{
105 106 107 108 109 110 111
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
112 113 114
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
115 116 117 118 119 120 121 122 123

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
124
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
125

126
void blk_mq_unfreeze_queue(struct request_queue *q)
127
{
128
	int freeze_depth;
129

130 131 132
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
133
		percpu_ref_reinit(&q->q_usage_counter);
134
		wake_up_all(&q->mq_freeze_wq);
135
	}
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
138

139 140 141 142 143 144 145 146
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
147 148 149 150 151 152 153

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
154 155
}

156 157 158 159 160 161
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

162
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
163 164
			       struct request *rq, int op,
			       unsigned int op_flags)
165
{
166
	if (blk_queue_io_stat(q))
167
		op_flags |= REQ_IO_STAT;
168

169 170 171
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
172
	rq->mq_ctx = ctx;
173
	req_set_op_attrs(rq, op, op_flags);
174 175 176 177 178 179
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
180
	rq->start_time = jiffies;
181 182
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
183
	set_start_time_ns(rq);
184 185 186 187 188 189 190 191 192 193
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

194 195
	rq->cmd = rq->__cmd;

196 197 198 199 200 201
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
202 203
	rq->timeout = 0;

204 205 206 207
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

208
	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
209 210
}

211
static struct request *
212
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
213 214 215 216
{
	struct request *rq;
	unsigned int tag;

217
	tag = blk_mq_get_tag(data);
218
	if (tag != BLK_MQ_TAG_FAIL) {
219
		rq = data->hctx->tags->rqs[tag];
220

221
		if (blk_mq_tag_busy(data->hctx)) {
222
			rq->cmd_flags = REQ_MQ_INFLIGHT;
223
			atomic_inc(&data->hctx->nr_active);
224 225 226
		}

		rq->tag = tag;
227
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
228 229 230 231 232 233
		return rq;
	}

	return NULL;
}

234 235
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
236
{
237 238
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
239
	struct request *rq;
240
	struct blk_mq_alloc_data alloc_data;
241
	int ret;
242

243
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
244 245
	if (ret)
		return ERR_PTR(ret);
246

247 248
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
249
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
250

251
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
252
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
253 254 255 256 257
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
258
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
259
		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
260
		ctx = alloc_data.ctx;
261 262
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
263
	if (!rq) {
264
		blk_queue_exit(q);
265
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
266
	}
267 268 269 270

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
271 272
	return rq;
}
273
EXPORT_SYMBOL(blk_mq_alloc_request);
274

M
Ming Lin 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

	hctx = q->queue_hw_ctx[hctx_idx];
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
	if (!rq) {
		blk_queue_exit(q);
		return ERR_PTR(-EWOULDBLOCK);
	}

	return rq;
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

314 315 316 317 318 319
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

320 321
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
322
	rq->cmd_flags = 0;
323

324
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
325
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
326
	blk_queue_exit(q);
327 328
}

329
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
330 331 332 333 334
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
335 336 337 338 339 340 341 342 343 344 345

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
346
}
J
Jens Axboe 已提交
347
EXPORT_SYMBOL_GPL(blk_mq_free_request);
348

349
inline void __blk_mq_end_request(struct request *rq, int error)
350
{
M
Ming Lei 已提交
351 352
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
353
	if (rq->end_io) {
354
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
355 356 357
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
358
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
359
	}
360
}
361
EXPORT_SYMBOL(__blk_mq_end_request);
362

363
void blk_mq_end_request(struct request *rq, int error)
364 365 366
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
367
	__blk_mq_end_request(rq, error);
368
}
369
EXPORT_SYMBOL(blk_mq_end_request);
370

371
static void __blk_mq_complete_request_remote(void *data)
372
{
373
	struct request *rq = data;
374

375
	rq->q->softirq_done_fn(rq);
376 377
}

378
static void blk_mq_ipi_complete_request(struct request *rq)
379 380
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
381
	bool shared = false;
382 383
	int cpu;

C
Christoph Hellwig 已提交
384
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
385 386 387
		rq->q->softirq_done_fn(rq);
		return;
	}
388 389

	cpu = get_cpu();
C
Christoph Hellwig 已提交
390 391 392 393
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
394
		rq->csd.func = __blk_mq_complete_request_remote;
395 396
		rq->csd.info = rq;
		rq->csd.flags = 0;
397
		smp_call_function_single_async(ctx->cpu, &rq->csd);
398
	} else {
399
		rq->q->softirq_done_fn(rq);
400
	}
401 402
	put_cpu();
}
403

404
static void __blk_mq_complete_request(struct request *rq)
405 406 407 408
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
409
		blk_mq_end_request(rq, rq->errors);
410 411 412 413
	else
		blk_mq_ipi_complete_request(rq);
}

414 415 416 417 418 419 420 421
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
422
void blk_mq_complete_request(struct request *rq, int error)
423
{
424 425 426
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
427
		return;
428 429
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
430
		__blk_mq_complete_request(rq);
431
	}
432 433
}
EXPORT_SYMBOL(blk_mq_complete_request);
434

435 436 437 438 439 440
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

441
void blk_mq_start_request(struct request *rq)
442 443 444 445 446
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
447
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
448 449
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
450

451
	blk_add_timer(rq);
452

453 454 455 456 457 458
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

459 460 461 462 463 464
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
465 466 467 468
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
469 470 471 472 473 474 475 476 477

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
478
}
479
EXPORT_SYMBOL(blk_mq_start_request);
480

481
static void __blk_mq_requeue_request(struct request *rq)
482 483 484 485
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
486

487 488 489 490
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
491 492
}

493 494 495 496 497
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
498
	blk_mq_add_to_requeue_list(rq, true);
499 500 501
}
EXPORT_SYMBOL(blk_mq_requeue_request);

502 503 504
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
505
		container_of(work, struct request_queue, requeue_work.work);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

529 530 531 532 533
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

558 559
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
560
	cancel_delayed_work_sync(&q->requeue_work);
561 562 563
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

564 565
void blk_mq_kick_requeue_list(struct request_queue *q)
{
566
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
567 568 569
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

570 571 572 573 574 575 576 577
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

598 599
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
600 601
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
602
		return tags->rqs[tag];
603
	}
604 605

	return NULL;
606 607 608
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

609
struct blk_mq_timeout_data {
610 611
	unsigned long next;
	unsigned int next_set;
612 613
};

614
void blk_mq_rq_timed_out(struct request *req, bool reserved)
615
{
616 617
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
618 619 620 621 622 623 624 625 626 627

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
628 629
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
630

631
	if (ops->timeout)
632
		ret = ops->timeout(req, reserved);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
648
}
649

650 651 652 653
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
654

655 656 657 658 659
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
660 661 662 663
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
664
		return;
665
	}
666

667 668
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
669
			blk_mq_rq_timed_out(rq, reserved);
670 671 672 673
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
674 675
}

676
static void blk_mq_timeout_work(struct work_struct *work)
677
{
678 679
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
680 681 682 683 684
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
700 701
		return;

702
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
703

704 705 706
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
707
	} else {
708 709
		struct blk_mq_hw_ctx *hctx;

710 711 712 713 714
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
715
	}
716
	blk_queue_exit(q);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

758 759 760 761 762 763 764 765 766
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

767
	for (i = 0; i < hctx->ctx_map.size; i++) {
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

792 793 794 795 796 797 798 799 800 801 802
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
803 804
	LIST_HEAD(driver_list);
	struct list_head *dptr;
805
	int queued;
806

807
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
808 809
		return;

810 811 812
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

813 814 815 816 817
	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
818
	flush_busy_ctxs(hctx, &rq_list);
819 820 821 822 823 824 825 826 827 828 829 830

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

831 832 833 834 835 836
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

837 838 839
	/*
	 * Now process all the entries, sending them to the driver.
	 */
840
	queued = 0;
841
	while (!list_empty(&rq_list)) {
842
		struct blk_mq_queue_data bd;
843 844 845 846 847
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

848 849 850 851 852
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
853 854 855
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
856
			break;
857 858
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
859
			__blk_mq_requeue_request(rq);
860 861 862 863
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
864
			rq->errors = -EIO;
865
			blk_mq_end_request(rq, rq->errors);
866 867 868 869 870
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
871 872 873 874 875 876 877

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
893 894 895 896 897 898 899 900 901 902
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
903 904 905
	}
}

906 907 908 909 910 911 912 913
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
914 915
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
916 917

	if (--hctx->next_cpu_batch <= 0) {
918
		int cpu = hctx->next_cpu, next_cpu;
919 920 921 922 923 924 925

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
926 927

		return cpu;
928 929
	}

930
	return hctx->next_cpu;
931 932
}

933 934
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
935 936
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
937 938
		return;

939
	if (!async) {
940 941
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
942
			__blk_mq_run_hw_queue(hctx);
943
			put_cpu();
944 945
			return;
		}
946

947
		put_cpu();
948
	}
949

950
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
951 952
}

953
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
954 955 956 957 958 959 960
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
961
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
962 963
			continue;

964
		blk_mq_run_hw_queue(hctx, async);
965 966
	}
}
967
EXPORT_SYMBOL(blk_mq_run_hw_queues);
968 969 970

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
971
	cancel_work(&hctx->run_work);
972
	cancel_delayed_work(&hctx->delay_work);
973 974 975 976
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

977 978 979 980 981 982 983 984 985 986
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

987 988 989
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
990

991
	blk_mq_run_hw_queue(hctx, false);
992 993 994
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

995 996 997 998 999 1000 1001 1002 1003 1004
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1005
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1006 1007 1008 1009 1010 1011 1012 1013 1014
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1015
		blk_mq_run_hw_queue(hctx, async);
1016 1017 1018 1019
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1020
static void blk_mq_run_work_fn(struct work_struct *work)
1021 1022 1023
{
	struct blk_mq_hw_ctx *hctx;

1024
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1025

1026 1027 1028
	__blk_mq_run_hw_queue(hctx);
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1041 1042
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1043

1044 1045
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1046 1047 1048
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1049 1050 1051
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1052
{
J
Jens Axboe 已提交
1053 1054
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1055 1056
	trace_block_rq_insert(hctx->queue, rq);

1057 1058 1059 1060
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1061
}
1062

1063 1064 1065 1066 1067
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1068
	__blk_mq_insert_req_list(hctx, rq, at_head);
1069 1070 1071
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1072
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1073
			   bool async)
1074
{
J
Jens Axboe 已提交
1075
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1076
	struct request_queue *q = rq->q;
1077 1078 1079 1080
	struct blk_mq_hw_ctx *hctx;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1081 1082 1083
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;

	trace_block_unplug(q, depth, !from_schedule);

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1111
		BUG_ON(rq->mq_ctx != ctx);
1112
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1113
		__blk_mq_insert_req_list(hctx, rq, false);
1114
	}
1115
	blk_mq_hctx_mark_pending(hctx, ctx);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1181

1182
	blk_account_io_start(rq, 1);
1183 1184
}

1185 1186 1187 1188 1189 1190
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1191 1192 1193
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1194
{
1195
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1196 1197 1198 1199 1200 1201 1202
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1203 1204
		struct request_queue *q = hctx->queue;

1205 1206 1207 1208 1209
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1210

1211 1212 1213
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1214
	}
1215
}
1216

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1229 1230
	int op = bio_data_dir(bio);
	int op_flags = 0;
1231
	struct blk_mq_alloc_data alloc_data;
1232

1233
	blk_queue_enter_live(q);
1234 1235 1236
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

J
Jens Axboe 已提交
1237
	if (rw_is_sync(bio_op(bio), bio->bi_opf))
1238
		op_flags |= REQ_SYNC;
1239

1240
	trace_block_getrq(q, bio, op);
1241
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1242
	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1243
	if (unlikely(!rq)) {
1244
		__blk_mq_run_hw_queue(hctx);
1245
		blk_mq_put_ctx(ctx);
1246
		trace_block_sleeprq(q, bio, op);
1247 1248

		ctx = blk_mq_get_ctx(q);
1249
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1250
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1251
		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1252 1253
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1254 1255 1256
	}

	hctx->queued++;
1257 1258 1259 1260 1261
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1262
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1273
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1274 1275 1276 1277 1278 1279 1280

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1281 1282
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1283
		return 0;
1284
	}
1285

1286 1287 1288 1289 1290 1291 1292
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1293
	}
1294 1295

	return -1;
1296 1297
}

1298 1299 1300 1301 1302
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1303
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1304
{
J
Jens Axboe 已提交
1305 1306
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1307 1308
	struct blk_map_ctx data;
	struct request *rq;
1309 1310
	unsigned int request_count = 0;
	struct blk_plug *plug;
1311
	struct request *same_queue_rq = NULL;
1312
	blk_qc_t cookie;
1313 1314 1315 1316

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1317
		bio_io_error(bio);
1318
		return BLK_QC_T_NONE;
1319 1320
	}

1321 1322
	blk_queue_split(q, &bio, q->bio_split);

1323 1324 1325
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1326

1327 1328
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1329
		return BLK_QC_T_NONE;
1330

1331
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1332 1333 1334 1335 1336 1337 1338

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1339
	plug = current->plug;
1340 1341 1342 1343 1344
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1345 1346 1347
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1348 1349 1350 1351

		blk_mq_bio_to_request(rq, bio);

		/*
1352
		 * We do limited pluging. If the bio can be merged, do that.
1353 1354
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1355
		 */
1356
		if (plug) {
1357 1358
			/*
			 * The plug list might get flushed before this. If that
1359 1360 1361
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1362 1363
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1364
				list_del_init(&old_rq->queuelist);
1365
			}
1366 1367 1368 1369 1370
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1371 1372 1373
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1374
		blk_mq_insert_request(old_rq, false, true, true);
1375
		goto done;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1389 1390
done:
	return cookie;
1391 1392 1393 1394 1395 1396
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1397
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1398
{
J
Jens Axboe 已提交
1399 1400
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1401 1402
	struct blk_plug *plug;
	unsigned int request_count = 0;
1403 1404
	struct blk_map_ctx data;
	struct request *rq;
1405
	blk_qc_t cookie;
1406 1407 1408 1409

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1410
		bio_io_error(bio);
1411
		return BLK_QC_T_NONE;
1412 1413
	}

1414 1415
	blk_queue_split(q, &bio, q->bio_split);

1416 1417 1418 1419 1420
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1421 1422

	rq = blk_mq_map_request(q, bio, &data);
1423
	if (unlikely(!rq))
1424
		return BLK_QC_T_NONE;
1425

1426
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1439 1440 1441
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1442
		if (!request_count)
1443
			trace_block_plug(q);
1444 1445 1446 1447

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1448 1449
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1450
		}
1451

1452
		list_add_tail(&rq->queuelist, &plug->mq_list);
1453
		return cookie;
1454 1455
	}

1456 1457 1458 1459 1460 1461 1462 1463 1464
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1465 1466
	}

1467
	blk_mq_put_ctx(data.ctx);
1468
	return cookie;
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1480 1481
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1482
{
1483
	struct page *page;
1484

1485
	if (tags->rqs && set->ops->exit_request) {
1486
		int i;
1487

1488 1489
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1490
				continue;
1491 1492
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1493
			tags->rqs[i] = NULL;
1494
		}
1495 1496
	}

1497 1498
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1499
		list_del_init(&page->lru);
1500 1501 1502 1503 1504
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1505 1506 1507
		__free_pages(page, page->private);
	}

1508
	kfree(tags->rqs);
1509

1510
	blk_mq_free_tags(tags);
1511 1512 1513 1514
}

static size_t order_to_size(unsigned int order)
{
1515
	return (size_t)PAGE_SIZE << order;
1516 1517
}

1518 1519
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1520
{
1521
	struct blk_mq_tags *tags;
1522 1523 1524
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1525
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1526 1527
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1528 1529
	if (!tags)
		return NULL;
1530

1531 1532
	INIT_LIST_HEAD(&tags->page_list);

1533 1534 1535
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1536 1537 1538 1539
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1540 1541 1542 1543 1544

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1545
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1546
				cache_line_size());
1547
	left = rq_size * set->queue_depth;
1548

1549
	for (i = 0; i < set->queue_depth; ) {
1550 1551 1552 1553 1554
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1555
		while (this_order && left < order_to_size(this_order - 1))
1556 1557 1558
			this_order--;

		do {
1559
			page = alloc_pages_node(set->numa_node,
1560
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1561
				this_order);
1562 1563 1564 1565 1566 1567 1568 1569 1570
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1571
			goto fail;
1572 1573

		page->private = this_order;
1574
		list_add_tail(&page->lru, &tags->page_list);
1575 1576

		p = page_address(page);
1577 1578 1579 1580 1581
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1582
		entries_per_page = order_to_size(this_order) / rq_size;
1583
		to_do = min(entries_per_page, set->queue_depth - i);
1584 1585
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1586 1587 1588 1589
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1590 1591
						set->numa_node)) {
					tags->rqs[i] = NULL;
1592
					goto fail;
1593
				}
1594 1595
			}

1596 1597 1598 1599
			p += rq_size;
			i++;
		}
	}
1600
	return tags;
1601

1602 1603 1604
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

J
Jens Axboe 已提交
1633 1634 1635 1636 1637
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1638 1639 1640 1641 1642
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

J
Jens Axboe 已提交
1643
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

J
Jens Axboe 已提交
1655 1656 1657
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

	blk_mq_run_hw_queue(hctx, true);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1670 1671 1672 1673 1674

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1675 1676 1677 1678

	return NOTIFY_OK;
}

1679
/* hctx->ctxs will be freed in queue's release handler */
1680 1681 1682 1683
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1684 1685
	unsigned flush_start_tag = set->queue_depth;

1686 1687
	blk_mq_tag_idle(hctx);

1688 1689 1690 1691 1692
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1693 1694 1695 1696
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1697
	blk_free_flush_queue(hctx->fq);
1698 1699 1700
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1710
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1720
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1721 1722 1723
		free_cpumask_var(hctx->cpumask);
}

1724 1725 1726
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1727
{
1728
	int node;
1729
	unsigned flush_start_tag = set->queue_depth;
1730 1731 1732 1733 1734

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1735
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1736 1737 1738 1739 1740
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1741
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1742 1743 1744 1745 1746 1747

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1748 1749

	/*
1750 1751
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1752
	 */
1753 1754 1755 1756
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1757

1758 1759
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1760

1761
	hctx->nr_ctx = 0;
1762

1763 1764 1765
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1766

1767 1768 1769
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1770

1771 1772 1773 1774 1775
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1776

1777
	return 0;
1778

1779 1780 1781 1782 1783
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1784 1785 1786 1787 1788 1789
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1790

1791 1792
	return -1;
}
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1813 1814
		hctx = q->mq_ops->map_queue(q, i);

1815 1816 1817 1818 1819
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1820
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1821 1822 1823
	}
}

1824 1825
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1826 1827 1828 1829
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1830
	struct blk_mq_tag_set *set = q->tag_set;
1831

1832 1833 1834 1835 1836
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1837
	queue_for_each_hw_ctx(q, hctx, i) {
1838
		cpumask_clear(hctx->cpumask);
1839 1840 1841 1842 1843 1844
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1845
	for_each_possible_cpu(i) {
1846
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1847
		if (!cpumask_test_cpu(i, online_mask))
1848 1849
			continue;

1850
		ctx = per_cpu_ptr(q->queue_ctx, i);
1851
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1852

1853
		cpumask_set_cpu(i, hctx->cpumask);
1854 1855 1856
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1857

1858 1859
	mutex_unlock(&q->sysfs_lock);

1860
	queue_for_each_hw_ctx(q, hctx, i) {
1861 1862
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1863
		/*
1864 1865
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1866 1867 1868 1869 1870 1871
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1872
			hctx->tags = NULL;
1873 1874 1875
			continue;
		}

M
Ming Lei 已提交
1876 1877 1878 1879 1880 1881
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1882
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1883 1884 1885 1886 1887
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1888
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1889

1890 1891 1892
		/*
		 * Initialize batch roundrobin counts
		 */
1893 1894 1895
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1896 1897
}

1898
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1899 1900 1901 1902
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1914 1915 1916

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1917
		queue_set_hctx_shared(q, shared);
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1928 1929 1930 1931 1932 1933
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1934 1935 1936 1937 1938 1939 1940 1941 1942
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1943 1944 1945 1946 1947 1948 1949 1950 1951

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1952
	list_add_tail(&q->tag_set_list, &set->tag_list);
1953

1954 1955 1956
	mutex_unlock(&set->tag_list_lock);
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1969 1970 1971 1972
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1973
		kfree(hctx);
1974
	}
1975

1976 1977 1978
	kfree(q->mq_map);
	q->mq_map = NULL;

1979 1980 1981 1982 1983 1984
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1985
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2001 2002
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2003
{
K
Keith Busch 已提交
2004 2005
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2006

K
Keith Busch 已提交
2007
	blk_mq_sysfs_unregister(q);
2008
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2009
		int node;
2010

K
Keith Busch 已提交
2011 2012 2013 2014
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2015 2016
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2017
		if (!hctxs[i])
K
Keith Busch 已提交
2018
			break;
2019

2020
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2021 2022 2023 2024 2025
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2026

2027
		atomic_set(&hctxs[i]->nr_active, 0);
2028
		hctxs[i]->numa_node = node;
2029
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2030 2031 2032 2033 2034 2035 2036 2037

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2038
	}
K
Keith Busch 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2063 2064 2065
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2066 2067
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2068
		goto err_exit;
K
Keith Busch 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2082

2083
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2084
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2085 2086 2087

	q->nr_queues = nr_cpu_ids;

2088
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2089

2090 2091 2092
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2093 2094
	q->sg_reserved_size = INT_MAX;

2095
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2096 2097 2098
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2099 2100 2101 2102 2103
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2104 2105 2106 2107 2108
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2109 2110
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2111

2112
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2113

2114
	get_online_cpus();
2115 2116
	mutex_lock(&all_q_mutex);

2117
	list_add_tail(&q->all_q_node, &all_q_list);
2118
	blk_mq_add_queue_tag_set(set, q);
2119
	blk_mq_map_swqueue(q, cpu_online_mask);
2120

2121
	mutex_unlock(&all_q_mutex);
2122
	put_online_cpus();
2123

2124
	return q;
2125

2126
err_hctxs:
K
Keith Busch 已提交
2127
	kfree(q->mq_map);
2128
err_map:
K
Keith Busch 已提交
2129
	kfree(q->queue_hw_ctx);
2130
err_percpu:
K
Keith Busch 已提交
2131
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2132 2133
err_exit:
	q->mq_ops = NULL;
2134 2135
	return ERR_PTR(-ENOMEM);
}
2136
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2137 2138 2139

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2140
	struct blk_mq_tag_set	*set = q->tag_set;
2141

2142 2143 2144 2145
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2146 2147
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2148 2149
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2150 2151 2152
}

/* Basically redo blk_mq_init_queue with queue frozen */
2153 2154
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2155
{
2156
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2157

2158 2159
	blk_mq_sysfs_unregister(q);

2160
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2161 2162 2163 2164 2165 2166 2167

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2168
	blk_mq_map_swqueue(q, online_mask);
2169

2170
	blk_mq_sysfs_register(q);
2171 2172
}

2173 2174
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2175 2176
{
	struct request_queue *q;
2177 2178 2179 2180 2181 2182 2183
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2184 2185

	/*
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2201
	 */
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2212
		return NOTIFY_OK;
2213
	}
2214 2215

	mutex_lock(&all_q_mutex);
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2226
	list_for_each_entry(q, &all_q_list, all_q_node) {
2227 2228
		blk_mq_freeze_queue_wait(q);

2229 2230 2231 2232 2233 2234 2235
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2236
	list_for_each_entry(q, &all_q_list, all_q_node)
2237
		blk_mq_queue_reinit(q, &online_new);
2238 2239 2240 2241

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2242 2243 2244 2245
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2300 2301 2302 2303 2304 2305
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2306 2307 2308 2309 2310 2311
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2312 2313
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2314 2315
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2316 2317
	if (!set->nr_hw_queues)
		return -EINVAL;
2318
	if (!set->queue_depth)
2319 2320 2321 2322
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2323
	if (!set->ops->queue_rq || !set->ops->map_queue)
2324 2325
		return -EINVAL;

2326 2327 2328 2329 2330
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2331

2332 2333 2334 2335 2336 2337 2338 2339 2340
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2341 2342 2343 2344 2345
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2346

K
Keith Busch 已提交
2347
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2348 2349
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2350
		return -ENOMEM;
2351

2352 2353
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2354

2355 2356 2357
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2358
	return 0;
2359
enomem:
2360 2361
	kfree(set->tags);
	set->tags = NULL;
2362 2363 2364 2365 2366 2367 2368 2369
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2370
	for (i = 0; i < nr_cpu_ids; i++) {
2371
		if (set->tags[i])
2372 2373 2374
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2375
	kfree(set->tags);
2376
	set->tags = NULL;
2377 2378 2379
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2391 2392
		if (!hctx->tags)
			continue;
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2443 2444 2445 2446
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2447
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2448 2449 2450 2451

	return 0;
}
subsys_initcall(blk_mq_init);