blk-mq.c 55.1 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
82
{
83 84
	while (true) {
		int ret;
85

86 87
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
88

89 90 91
		if (!(gfp & __GFP_WAIT))
			return -EBUSY;

92
		ret = wait_event_interruptible(q->mq_freeze_wq,
93 94
				!atomic_read(&q->mq_freeze_depth) ||
				blk_queue_dying(q));
95 96 97 98 99
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
100 101 102 103
}

static void blk_mq_queue_exit(struct request_queue *q)
{
104 105 106 107 108 109 110 111 112
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
113 114
}

115
void blk_mq_freeze_queue_start(struct request_queue *q)
116
{
117
	int freeze_depth;
118

119 120
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
121
		percpu_ref_kill(&q->mq_usage_counter);
122
		blk_mq_run_hw_queues(q, false);
123
	}
124
}
125
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
126 127 128

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
129
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
130 131
}

132 133 134 135 136 137 138 139 140
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
{
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
141
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142

143
void blk_mq_unfreeze_queue(struct request_queue *q)
144
{
145
	int freeze_depth;
146

147 148 149
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
150
		percpu_ref_reinit(&q->mq_usage_counter);
151
		wake_up_all(&q->mq_freeze_wq);
152
	}
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155

156 157 158 159 160 161 162 163
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
164 165 166 167 168 169 170

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
171 172
}

173 174 175 176 177 178
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

179 180
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
181
{
182 183 184
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

185 186 187
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
188
	rq->mq_ctx = ctx;
189
	rq->cmd_flags |= rw_flags;
190 191 192 193 194 195
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
196
	rq->start_time = jiffies;
197 198
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
199
	set_start_time_ns(rq);
200 201 202 203 204 205 206 207 208 209
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

210 211
	rq->cmd = rq->__cmd;

212 213 214 215 216 217
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
218 219
	rq->timeout = 0;

220 221 222 223
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

224 225 226
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

227
static struct request *
228
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
229 230 231 232
{
	struct request *rq;
	unsigned int tag;

233
	tag = blk_mq_get_tag(data);
234
	if (tag != BLK_MQ_TAG_FAIL) {
235
		rq = data->hctx->tags->rqs[tag];
236

237
		if (blk_mq_tag_busy(data->hctx)) {
238
			rq->cmd_flags = REQ_MQ_INFLIGHT;
239
			atomic_inc(&data->hctx->nr_active);
240 241 242
		}

		rq->tag = tag;
243
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
244 245 246 247 248 249
		return rq;
	}

	return NULL;
}

250 251
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
252
{
253 254
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
255
	struct request *rq;
256
	struct blk_mq_alloc_data alloc_data;
257
	int ret;
258

259
	ret = blk_mq_queue_enter(q, gfp);
260 261
	if (ret)
		return ERR_PTR(ret);
262

263 264
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
265 266
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
267

268
	rq = __blk_mq_alloc_request(&alloc_data, rw);
269 270 271 272 273 274
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
275 276 277 278
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
279 280
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
281 282
	if (!rq) {
		blk_mq_queue_exit(q);
283
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
284
	}
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288 289 290 291 292 293 294

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

295 296
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
297
	rq->cmd_flags = 0;
298

299
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
300
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
301 302 303
	blk_mq_queue_exit(q);
}

304
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
305 306 307 308 309
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
310 311 312 313 314 315 316 317 318 319 320

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
321
}
J
Jens Axboe 已提交
322
EXPORT_SYMBOL_GPL(blk_mq_free_request);
323

324
inline void __blk_mq_end_request(struct request *rq, int error)
325
{
M
Ming Lei 已提交
326 327
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
328
	if (rq->end_io) {
329
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
330 331 332
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
333
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
334
	}
335
}
336
EXPORT_SYMBOL(__blk_mq_end_request);
337

338
void blk_mq_end_request(struct request *rq, int error)
339 340 341
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
342
	__blk_mq_end_request(rq, error);
343
}
344
EXPORT_SYMBOL(blk_mq_end_request);
345

346
static void __blk_mq_complete_request_remote(void *data)
347
{
348
	struct request *rq = data;
349

350
	rq->q->softirq_done_fn(rq);
351 352
}

353
static void blk_mq_ipi_complete_request(struct request *rq)
354 355
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
356
	bool shared = false;
357 358
	int cpu;

C
Christoph Hellwig 已提交
359
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
360 361 362
		rq->q->softirq_done_fn(rq);
		return;
	}
363 364

	cpu = get_cpu();
C
Christoph Hellwig 已提交
365 366 367 368
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
369
		rq->csd.func = __blk_mq_complete_request_remote;
370 371
		rq->csd.info = rq;
		rq->csd.flags = 0;
372
		smp_call_function_single_async(ctx->cpu, &rq->csd);
373
	} else {
374
		rq->q->softirq_done_fn(rq);
375
	}
376 377
	put_cpu();
}
378

379 380 381 382 383
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
384
		blk_mq_end_request(rq, rq->errors);
385 386 387 388
	else
		blk_mq_ipi_complete_request(rq);
}

389 390 391 392 393 394 395 396
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
397
void blk_mq_complete_request(struct request *rq, int error)
398
{
399 400 401
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
402
		return;
403 404
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
405
		__blk_mq_complete_request(rq);
406
	}
407 408
}
EXPORT_SYMBOL(blk_mq_complete_request);
409

410 411 412 413 414 415
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

416
void blk_mq_start_request(struct request *rq)
417 418 419 420 421
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
422
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
423 424
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
425

426
	blk_add_timer(rq);
427

428 429 430 431 432 433
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

434 435 436 437 438 439
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
440 441 442 443
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
444 445 446 447 448 449 450 451 452

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
453
}
454
EXPORT_SYMBOL(blk_mq_start_request);
455

456
static void __blk_mq_requeue_request(struct request *rq)
457 458 459 460
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
461

462 463 464 465
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
466 467
}

468 469 470 471 472
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
473
	blk_mq_add_to_requeue_list(rq, true);
474 475 476
}
EXPORT_SYMBOL(blk_mq_requeue_request);

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

504 505 506 507 508
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

533 534 535 536 537 538
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

539 540 541 542 543 544
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

565 566
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
567
	return tags->rqs[tag];
568 569 570
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

571
struct blk_mq_timeout_data {
572 573
	unsigned long next;
	unsigned int next_set;
574 575
};

576
void blk_mq_rq_timed_out(struct request *req, bool reserved)
577
{
578 579
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
580 581 582 583 584 585 586 587 588 589

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
590 591
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
592

593
	if (ops->timeout)
594
		ret = ops->timeout(req, reserved);
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
610
}
611

612 613 614 615
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
616

617 618 619 620 621
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
622 623
		if (unlikely(blk_queue_dying(rq->q)))
			blk_mq_complete_request(rq, -EIO);
624
		return;
625
	}
626 627
	if (rq->cmd_flags & REQ_NO_TIMEOUT)
		return;
628

629 630
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
631
			blk_mq_rq_timed_out(rq, reserved);
632 633 634 635
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
636 637
}

638
static void blk_mq_rq_timer(unsigned long priv)
639
{
640 641 642 643 644 645
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
646

647
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
648

649 650 651
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
652
	} else {
653 654
		struct blk_mq_hw_ctx *hctx;

655 656 657 658 659
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
660
	}
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

702 703 704 705 706 707 708 709 710
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

711
	for (i = 0; i < hctx->ctx_map.size; i++) {
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

736 737 738 739 740 741 742 743 744 745 746
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
747 748
	LIST_HEAD(driver_list);
	struct list_head *dptr;
749
	int queued;
750

751
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
752

753
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
754 755 756 757 758 759 760
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
761
	flush_busy_ctxs(hctx, &rq_list);
762 763 764 765 766 767 768 769 770 771 772 773

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

774 775 776 777 778 779
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

780 781 782
	/*
	 * Now process all the entries, sending them to the driver.
	 */
783
	queued = 0;
784
	while (!list_empty(&rq_list)) {
785
		struct blk_mq_queue_data bd;
786 787 788 789 790
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

791 792 793 794 795
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
796 797 798 799 800 801
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
802
			__blk_mq_requeue_request(rq);
803 804 805 806
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
807
			rq->errors = -EIO;
808
			blk_mq_end_request(rq, rq->errors);
809 810 811 812 813
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
814 815 816 817 818 819 820

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
836 837 838 839 840 841 842 843 844 845
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
846 847 848
	}
}

849 850 851 852 853 854 855 856
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
857 858
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
859 860

	if (--hctx->next_cpu_batch <= 0) {
861
		int cpu = hctx->next_cpu, next_cpu;
862 863 864 865 866 867 868

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
869 870

		return cpu;
871 872
	}

873
	return hctx->next_cpu;
874 875
}

876 877
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
878 879
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
880 881
		return;

882
	if (!async) {
883 884
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
885
			__blk_mq_run_hw_queue(hctx);
886
			put_cpu();
887 888
			return;
		}
889

890
		put_cpu();
891
	}
892

893 894
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
895 896
}

897
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
898 899 900 901 902 903 904
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
905
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
906 907
			continue;

908
		blk_mq_run_hw_queue(hctx, async);
909 910
	}
}
911
EXPORT_SYMBOL(blk_mq_run_hw_queues);
912 913 914

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
915 916
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
917 918 919 920
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

921 922 923 924 925 926 927 928 929 930
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

931 932 933
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
934

935
	blk_mq_run_hw_queue(hctx, false);
936 937 938
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

939 940 941 942 943 944 945 946 947 948
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

949
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
950 951 952 953 954 955 956 957 958
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
959
		blk_mq_run_hw_queue(hctx, async);
960 961 962 963
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

964
static void blk_mq_run_work_fn(struct work_struct *work)
965 966 967
{
	struct blk_mq_hw_ctx *hctx;

968
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
969

970 971 972
	__blk_mq_run_hw_queue(hctx);
}

973 974 975 976 977 978 979 980 981 982 983 984
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
985 986
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
987

988 989
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
990 991 992
}
EXPORT_SYMBOL(blk_mq_delay_queue);

993 994 995 996
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct blk_mq_ctx *ctx,
					    struct request *rq,
					    bool at_head)
997
{
998 999
	trace_block_rq_insert(hctx->queue, rq);

1000 1001 1002 1003
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1004
}
1005

1006 1007 1008 1009 1010 1011
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1012 1013 1014
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1015 1016
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1017
{
1018
	struct request_queue *q = rq->q;
1019
	struct blk_mq_hw_ctx *hctx;
1020 1021 1022 1023 1024
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1025 1026 1027

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1028 1029 1030
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1031 1032 1033

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1034 1035

	blk_mq_put_ctx(current_ctx);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1067
		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1068
	}
1069
	blk_mq_hctx_mark_pending(hctx, ctx);
1070 1071 1072
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1073
	blk_mq_put_ctx(current_ctx);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1136

1137
	if (blk_do_io_stat(rq))
1138
		blk_account_io_start(rq, 1);
1139 1140
}

1141 1142 1143 1144 1145 1146
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1147 1148 1149
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1150
{
1151
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1152 1153 1154 1155 1156 1157 1158
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1159 1160
		struct request_queue *q = hctx->queue;

1161 1162 1163 1164 1165
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1166

1167 1168 1169
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1170
	}
1171
}
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1186
	struct blk_mq_alloc_data alloc_data;
1187

1188
	if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1189
		bio_io_error(bio);
1190
		return NULL;
1191 1192 1193 1194 1195
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1196
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1197
		rw |= REQ_SYNC;
1198

1199
	trace_block_getrq(q, bio, rw);
1200 1201 1202
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1203
	if (unlikely(!rq)) {
1204
		__blk_mq_run_hw_queue(hctx);
1205 1206
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1207 1208

		ctx = blk_mq_get_ctx(q);
1209
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1210 1211 1212 1213 1214
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1215 1216 1217
	}

	hctx->queued++;
1218 1219 1220 1221 1222
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
static int blk_mq_direct_issue_request(struct request *rq)
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	if (ret == BLK_MQ_RQ_QUEUE_OK)
		return 0;
	else {
		__blk_mq_requeue_request(rq);

		if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
			return 0;
		}
		return -1;
	}
}

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1266 1267
	unsigned int request_count = 0;
	struct blk_plug *plug;
1268
	struct request *same_queue_rq = NULL;
1269 1270 1271 1272

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1273
		bio_io_error(bio);
1274 1275 1276
		return;
	}

1277 1278
	blk_queue_split(q, &bio, q->bio_split);

1279 1280 1281 1282 1283 1284
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count,
					   &same_queue_rq))
			return;
	} else
		request_count = blk_plug_queued_count(q);
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1296
	plug = current->plug;
1297 1298 1299 1300 1301
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1302 1303 1304
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1305 1306 1307 1308

		blk_mq_bio_to_request(rq, bio);

		/*
1309 1310 1311
		 * we do limited pluging. If bio can be merged, do merge.
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1312
		 */
1313
		if (plug) {
1314 1315 1316 1317 1318 1319
			/*
			 * The plug list might get flushed before this. If that
			 * happens, same_queue_rq is invalid and plug list is empty
			 **/
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1320
				list_del_init(&old_rq->queuelist);
1321
			}
1322 1323 1324 1325 1326
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1327
			return;
1328 1329 1330 1331
		if (!blk_mq_direct_issue_request(old_rq))
			return;
		blk_mq_insert_request(old_rq, false, true, true);
		return;
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1355 1356
	struct blk_plug *plug;
	unsigned int request_count = 0;
1357 1358 1359 1360 1361 1362
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1363
		bio_io_error(bio);
1364 1365 1366
		return;
	}

1367 1368
	blk_queue_split(q, &bio, q->bio_split);

1369
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1370
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1371 1372 1373
		return;

	rq = blk_mq_map_request(q, bio, &data);
1374 1375
	if (unlikely(!rq))
		return;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1388 1389 1390
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1391
		if (!request_count)
1392 1393 1394 1395
			trace_block_plug(q);
		else if (request_count >= BLK_MAX_REQUEST_COUNT) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1396
		}
1397 1398 1399
		list_add_tail(&rq->queuelist, &plug->mq_list);
		blk_mq_put_ctx(data.ctx);
		return;
1400 1401
	}

1402 1403 1404 1405 1406 1407 1408 1409 1410
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1411 1412
	}

1413
	blk_mq_put_ctx(data.ctx);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1425 1426
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1427
{
1428
	struct page *page;
1429

1430
	if (tags->rqs && set->ops->exit_request) {
1431
		int i;
1432

1433 1434
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1435
				continue;
1436 1437
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1438
			tags->rqs[i] = NULL;
1439
		}
1440 1441
	}

1442 1443
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1444
		list_del_init(&page->lru);
1445 1446 1447 1448 1449
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1450 1451 1452
		__free_pages(page, page->private);
	}

1453
	kfree(tags->rqs);
1454

1455
	blk_mq_free_tags(tags);
1456 1457 1458 1459
}

static size_t order_to_size(unsigned int order)
{
1460
	return (size_t)PAGE_SIZE << order;
1461 1462
}

1463 1464
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1465
{
1466
	struct blk_mq_tags *tags;
1467 1468 1469
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1470
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1471 1472
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1473 1474
	if (!tags)
		return NULL;
1475

1476 1477
	INIT_LIST_HEAD(&tags->page_list);

1478 1479 1480
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1481 1482 1483 1484
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1485 1486 1487 1488 1489

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1490
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1491
				cache_line_size());
1492
	left = rq_size * set->queue_depth;
1493

1494
	for (i = 0; i < set->queue_depth; ) {
1495 1496 1497 1498 1499 1500 1501 1502 1503
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1504
			page = alloc_pages_node(set->numa_node,
1505
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1506
				this_order);
1507 1508 1509 1510 1511 1512 1513 1514 1515
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1516
			goto fail;
1517 1518

		page->private = this_order;
1519
		list_add_tail(&page->lru, &tags->page_list);
1520 1521

		p = page_address(page);
1522 1523 1524 1525 1526
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1527
		entries_per_page = order_to_size(this_order) / rq_size;
1528
		to_do = min(entries_per_page, set->queue_depth - i);
1529 1530
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1531 1532 1533 1534
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1535 1536
						set->numa_node)) {
					tags->rqs[i] = NULL;
1537
					goto fail;
1538
				}
1539 1540
			}

1541 1542 1543 1544
			p += rq_size;
			i++;
		}
	}
1545
	return tags;
1546

1547 1548 1549
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1550 1551
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1627 1628 1629 1630 1631

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1632 1633 1634 1635

	return NOTIFY_OK;
}

1636
/* hctx->ctxs will be freed in queue's release handler */
1637 1638 1639 1640
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1641 1642
	unsigned flush_start_tag = set->queue_depth;

1643 1644
	blk_mq_tag_idle(hctx);

1645 1646 1647 1648 1649
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1650 1651 1652 1653
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1654
	blk_free_flush_queue(hctx->fq);
1655 1656 1657
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1667
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1677
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1678 1679 1680
		free_cpumask_var(hctx->cpumask);
}

1681 1682 1683
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1684
{
1685
	int node;
1686
	unsigned flush_start_tag = set->queue_depth;
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags;

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1705 1706

	/*
1707 1708
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1709
	 */
1710 1711 1712 1713
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1714

1715 1716
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1717

1718
	hctx->nr_ctx = 0;
1719

1720 1721 1722
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1723

1724 1725 1726
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1727

1728 1729 1730 1731 1732
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1733

1734
	return 0;
1735

1736 1737 1738 1739 1740
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1741 1742 1743 1744 1745 1746
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1747

1748 1749
	return -1;
}
1750

1751 1752 1753 1754 1755
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1756

1757 1758 1759 1760 1761
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1762 1763 1764 1765 1766 1767 1768 1769 1770
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1771
	blk_mq_exit_hw_queues(q, set, i);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1795 1796
		hctx = q->mq_ops->map_queue(q, i);

1797 1798 1799 1800 1801 1802 1803 1804 1805
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

1806 1807
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1808 1809 1810 1811
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1812
	struct blk_mq_tag_set *set = q->tag_set;
1813

1814 1815 1816 1817 1818
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1819
	queue_for_each_hw_ctx(q, hctx, i) {
1820
		cpumask_clear(hctx->cpumask);
1821 1822 1823 1824 1825 1826 1827 1828
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1829
		if (!cpumask_test_cpu(i, online_mask))
1830 1831
			continue;

1832
		hctx = q->mq_ops->map_queue(q, i);
1833
		cpumask_set_cpu(i, hctx->cpumask);
1834 1835 1836
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1837

1838 1839
	mutex_unlock(&q->sysfs_lock);

1840
	queue_for_each_hw_ctx(q, hctx, i) {
1841 1842
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1843
		/*
1844 1845
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1846 1847 1848 1849 1850 1851
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1852
			hctx->tags = NULL;
1853 1854 1855
			continue;
		}

M
Ming Lei 已提交
1856 1857 1858 1859 1860 1861
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1862 1863 1864 1865 1866
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1867
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1868

1869 1870 1871
		/*
		 * Initialize batch roundrobin counts
		 */
1872 1873 1874
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1875 1876

	queue_for_each_ctx(q, ctx, i) {
1877
		if (!cpumask_test_cpu(i, online_mask))
1878 1879 1880 1881 1882
			continue;

		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->tags->cpumask);
	}
1883 1884
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1943 1944 1945 1946
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1947
		kfree(hctx);
1948
	}
1949

1950 1951 1952
	kfree(q->mq_map);
	q->mq_map = NULL;

1953 1954 1955 1956 1957 1958
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1959
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
1977 1978
{
	struct blk_mq_hw_ctx **hctxs;
1979
	struct blk_mq_ctx __percpu *ctx;
1980
	unsigned int *map;
1981 1982 1983 1984 1985 1986
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1987 1988
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1989 1990 1991 1992

	if (!hctxs)
		goto err_percpu;

1993 1994 1995 1996
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1997
	for (i = 0; i < set->nr_hw_queues; i++) {
1998 1999
		int node = blk_mq_hw_queue_to_node(map, i);

2000 2001
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2002 2003 2004
		if (!hctxs[i])
			goto err_hctxs;

2005 2006
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
2007 2008
			goto err_hctxs;

2009
		atomic_set(&hctxs[i]->nr_active, 0);
2010
		hctxs[i]->numa_node = node;
2011 2012 2013
		hctxs[i]->queue_num = i;
	}

2014 2015 2016 2017
	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
2018
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
2019
			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
2020
		goto err_hctxs;
2021

2022
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2023
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2024 2025

	q->nr_queues = nr_cpu_ids;
2026
	q->nr_hw_queues = set->nr_hw_queues;
2027
	q->mq_map = map;
2028 2029 2030 2031

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

2032
	q->mq_ops = set->ops;
2033
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2034

2035 2036 2037
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2038 2039
	q->sg_reserved_size = INT_MAX;

2040 2041 2042 2043
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2044 2045 2046 2047 2048
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2049 2050 2051 2052 2053
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2054 2055
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2056

2057
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2058

2059
	if (blk_mq_init_hw_queues(q, set))
2060
		goto err_hctxs;
2061

2062
	get_online_cpus();
2063 2064
	mutex_lock(&all_q_mutex);

2065
	list_add_tail(&q->all_q_node, &all_q_list);
2066
	blk_mq_add_queue_tag_set(set, q);
2067
	blk_mq_map_swqueue(q, cpu_online_mask);
2068

2069
	mutex_unlock(&all_q_mutex);
2070
	put_online_cpus();
2071

2072
	return q;
2073

2074
err_hctxs:
2075
	kfree(map);
2076
	for (i = 0; i < set->nr_hw_queues; i++) {
2077 2078
		if (!hctxs[i])
			break;
2079
		free_cpumask_var(hctxs[i]->cpumask);
2080
		kfree(hctxs[i]);
2081
	}
2082
err_map:
2083 2084 2085 2086 2087
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
2088
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2089 2090 2091

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2092
	struct blk_mq_tag_set	*set = q->tag_set;
2093

2094 2095 2096 2097
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2098 2099
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2100 2101
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2102

2103
	percpu_ref_exit(&q->mq_usage_counter);
2104 2105 2106
}

/* Basically redo blk_mq_init_queue with queue frozen */
2107 2108
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2109
{
2110
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2111

2112 2113
	blk_mq_sysfs_unregister(q);

2114
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2115 2116 2117 2118 2119 2120 2121

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2122
	blk_mq_map_swqueue(q, online_mask);
2123

2124
	blk_mq_sysfs_register(q);
2125 2126
}

2127 2128
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2129 2130
{
	struct request_queue *q;
2131 2132 2133 2134 2135 2136 2137
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2138 2139

	/*
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2155
	 */
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2166
		return NOTIFY_OK;
2167
	}
2168 2169

	mutex_lock(&all_q_mutex);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2180
	list_for_each_entry(q, &all_q_list, all_q_node) {
2181 2182
		blk_mq_freeze_queue_wait(q);

2183 2184 2185 2186 2187 2188 2189
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2190
	list_for_each_entry(q, &all_q_list, all_q_node)
2191
		blk_mq_queue_reinit(q, &online_new);
2192 2193 2194 2195

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2196 2197 2198 2199
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2254 2255 2256 2257 2258 2259
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2260 2261 2262 2263 2264 2265
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2266 2267
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2268 2269
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2270 2271
	if (!set->nr_hw_queues)
		return -EINVAL;
2272
	if (!set->queue_depth)
2273 2274 2275 2276
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2277
	if (!set->ops->queue_rq || !set->ops->map_queue)
2278 2279
		return -EINVAL;

2280 2281 2282 2283 2284
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2285

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

M
Ming Lei 已提交
2296 2297
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2298 2299
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2300
		return -ENOMEM;
2301

2302 2303
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2304

2305 2306 2307
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2308
	return 0;
2309
enomem:
2310 2311
	kfree(set->tags);
	set->tags = NULL;
2312 2313 2314 2315 2316 2317 2318 2319
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2320
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2321
		if (set->tags[i]) {
2322
			blk_mq_free_rq_map(set, set->tags[i], i);
K
Keith Busch 已提交
2323 2324
			free_cpumask_var(set->tags[i]->cpumask);
		}
2325 2326
	}

M
Ming Lei 已提交
2327
	kfree(set->tags);
2328
	set->tags = NULL;
2329 2330 2331
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2364 2365 2366 2367
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2368
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2369 2370 2371 2372

	return 0;
}
subsys_initcall(blk_mq_init);