blk-mq.c 68.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
48
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49
{
50 51 52
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
53 54
}

55 56 57 58 59 60
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
61 62
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 64 65 66 67
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
68
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 70
}

71
void blk_freeze_queue_start(struct request_queue *q)
72
{
73
	int freeze_depth;
74

75 76
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
77
		percpu_ref_kill(&q->q_usage_counter);
78
		blk_mq_run_hw_queues(q, false);
79
	}
80
}
81
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82

83
void blk_mq_freeze_queue_wait(struct request_queue *q)
84
{
85
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86
}
87
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88

89 90 91 92 93 94 95 96
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111
	blk_freeze_queue_start(q);
112 113
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

165 166 167 168 169 170 171 172
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
173 174 175 176 177 178 179

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
180 181
}

182 183 184 185 186 187
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

188 189
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
190
{
191 192 193
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
194
	rq->mq_ctx = ctx;
195
	rq->cmd_flags = op;
196 197
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
198 199 200 201 202 203
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
204
	rq->start_time = jiffies;
205 206
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
207
	set_start_time_ns(rq);
208 209 210 211 212 213 214 215 216 217 218 219
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
220 221
	rq->timeout = 0;

222 223 224 225
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

226
	ctx->rq_dispatched[op_is_sync(op)]++;
227
}
228
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229

230 231
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
232 233 234 235
{
	struct request *rq;
	unsigned int tag;

236
	tag = blk_mq_get_tag(data);
237
	if (tag != BLK_MQ_TAG_FAIL) {
238 239 240
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
241

242 243 244 245
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
246 247 248 249
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
250 251
			rq->tag = tag;
			rq->internal_tag = -1;
252
			data->hctx->tags->rqs[rq->tag] = rq;
253 254
		}

255
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 257 258 259 260
		return rq;
	}

	return NULL;
}
261
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262

263 264
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
265
{
266
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
267
	struct request *rq;
268
	int ret;
269

270
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 272
	if (ret)
		return ERR_PTR(ret);
273

274
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275

276 277 278 279
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
280
		return ERR_PTR(-EWOULDBLOCK);
281 282 283 284

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288

M
Ming Lin 已提交
289 290 291
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
292
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
293
	struct request *rq;
294
	unsigned int cpu;
M
Ming Lin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

313 314 315 316
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
317 318 319 320
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
321
	}
322 323
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
324

325
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326 327

	blk_queue_exit(q);
328 329 330 331 332

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
333 334 335
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

336 337
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
338
{
339
	const int sched_tag = rq->internal_tag;
340 341
	struct request_queue *q = rq->q;

342
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
343
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
344 345

	wbt_done(q->rq_wb, &rq->issue_stat);
346
	rq->rq_flags = 0;
347

348
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350 351 352 353
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
354
	blk_mq_sched_restart_queues(hctx);
355
	blk_queue_exit(q);
356 357
}

358
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359
				     struct request *rq)
360 361 362 363
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
364 365 366 367 368 369
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370 371 372 373
}

void blk_mq_free_request(struct request *rq)
{
374
	blk_mq_sched_put_request(rq);
375
}
J
Jens Axboe 已提交
376
EXPORT_SYMBOL_GPL(blk_mq_free_request);
377

378
inline void __blk_mq_end_request(struct request *rq, int error)
379
{
M
Ming Lei 已提交
380 381
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
382
	if (rq->end_io) {
J
Jens Axboe 已提交
383
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
384
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
385 386 387
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
388
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
389
	}
390
}
391
EXPORT_SYMBOL(__blk_mq_end_request);
392

393
void blk_mq_end_request(struct request *rq, int error)
394 395 396
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
397
	__blk_mq_end_request(rq, error);
398
}
399
EXPORT_SYMBOL(blk_mq_end_request);
400

401
static void __blk_mq_complete_request_remote(void *data)
402
{
403
	struct request *rq = data;
404

405
	rq->q->softirq_done_fn(rq);
406 407
}

408
static void blk_mq_ipi_complete_request(struct request *rq)
409 410
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
411
	bool shared = false;
412 413
	int cpu;

C
Christoph Hellwig 已提交
414
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
415 416 417
		rq->q->softirq_done_fn(rq);
		return;
	}
418 419

	cpu = get_cpu();
C
Christoph Hellwig 已提交
420 421 422 423
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
424
		rq->csd.func = __blk_mq_complete_request_remote;
425 426
		rq->csd.info = rq;
		rq->csd.flags = 0;
427
		smp_call_function_single_async(ctx->cpu, &rq->csd);
428
	} else {
429
		rq->q->softirq_done_fn(rq);
430
	}
431 432
	put_cpu();
}
433

434 435 436
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
437 438
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
439 440 441
	}
}

442
static void __blk_mq_complete_request(struct request *rq)
443 444 445
{
	struct request_queue *q = rq->q;

446 447
	blk_mq_stat_add(rq);

448
	if (!q->softirq_done_fn)
449
		blk_mq_end_request(rq, rq->errors);
450 451 452 453
	else
		blk_mq_ipi_complete_request(rq);
}

454 455 456 457 458 459 460 461
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
462
void blk_mq_complete_request(struct request *rq, int error)
463
{
464 465 466
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
467
		return;
468 469
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
470
		__blk_mq_complete_request(rq);
471
	}
472 473
}
EXPORT_SYMBOL(blk_mq_complete_request);
474

475 476 477 478 479 480
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

481
void blk_mq_start_request(struct request *rq)
482 483 484
{
	struct request_queue *q = rq->q;

485 486
	blk_mq_sched_started_request(rq);

487 488
	trace_block_rq_issue(q, rq);

489
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
490
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
491
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
492
		wbt_issue(q->rq_wb, &rq->issue_stat);
493 494
	}

495
	blk_add_timer(rq);
496

497 498 499 500 501 502
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

503 504 505 506 507 508
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
509 510 511 512
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
513 514 515 516 517 518 519 520 521

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
522
}
523
EXPORT_SYMBOL(blk_mq_start_request);
524

525 526
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
527
 * flag isn't set yet, so there may be race with timeout handler,
528 529 530 531 532 533
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
534
static void __blk_mq_requeue_request(struct request *rq)
535 536 537 538
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
539
	wbt_requeue(q->rq_wb, &rq->issue_stat);
540
	blk_mq_sched_requeue_request(rq);
541

542 543 544 545
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
546 547
}

548
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
549 550 551 552
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
553
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
554 555 556
}
EXPORT_SYMBOL(blk_mq_requeue_request);

557 558 559
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
560
		container_of(work, struct request_queue, requeue_work.work);
561 562 563 564 565 566 567 568 569
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
570
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
571 572
			continue;

573
		rq->rq_flags &= ~RQF_SOFTBARRIER;
574
		list_del_init(&rq->queuelist);
575
		blk_mq_sched_insert_request(rq, true, false, false, true);
576 577 578 579 580
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
581
		blk_mq_sched_insert_request(rq, false, false, false, true);
582 583
	}

584
	blk_mq_run_hw_queues(q, false);
585 586
}

587 588
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
589 590 591 592 593 594 595 596
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
597
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
598 599 600

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
601
		rq->rq_flags |= RQF_SOFTBARRIER;
602 603 604 605 606
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
607 608 609

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
610 611 612 613 614
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
615
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
616 617 618
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

619 620 621 622 623 624 625 626
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

647 648
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
649 650
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
651
		return tags->rqs[tag];
652
	}
653 654

	return NULL;
655 656 657
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

658
struct blk_mq_timeout_data {
659 660
	unsigned long next;
	unsigned int next_set;
661 662
};

663
void blk_mq_rq_timed_out(struct request *req, bool reserved)
664
{
J
Jens Axboe 已提交
665
	const struct blk_mq_ops *ops = req->q->mq_ops;
666
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
667 668 669 670 671 672 673

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
674
	 * both flags will get cleared. So check here again, and ignore
675 676
	 * a timeout event with a request that isn't active.
	 */
677 678
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
679

680
	if (ops->timeout)
681
		ret = ops->timeout(req, reserved);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
697
}
698

699 700 701 702
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
703

704
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
705
		return;
706

707 708 709 710 711 712 713 714 715 716 717 718 719
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
720 721
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
722
			blk_mq_rq_timed_out(rq, reserved);
723 724 725 726
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
727 728
}

729
static void blk_mq_timeout_work(struct work_struct *work)
730
{
731 732
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
733 734 735 736 737
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
738

739 740 741 742 743 744 745 746 747
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
748
	 * blk_freeze_queue_start, and the moment the last request is
749 750 751 752
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
753 754
		return;

755
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
756

757 758 759
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
760
	} else {
761 762
		struct blk_mq_hw_ctx *hctx;

763 764 765 766 767
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
768
	}
769
	blk_queue_exit(q);
770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
784
		bool merged = false;
785 786 787 788 789 790 791

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

792 793 794 795
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
796
			break;
797 798 799
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
800
			break;
801 802
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
803
			break;
804 805
		default:
			continue;
806
		}
807 808 809 810

		if (merged)
			ctx->rq_merged++;
		return merged;
811 812 813 814 815
	}

	return false;
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

834 835 836 837
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
838
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
839
{
840 841 842 843
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
844

845
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
846
}
847
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
848

849 850 851 852
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
853

854
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
855 856
}

857 858
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
859 860 861 862 863 864 865 866 867 868 869 870 871 872
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

873 874 875
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

876 877
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
878 879 880 881
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
882 883 884 885 886 887 888
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

889 890
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
891 892 893 894 895 896 897 898 899 900
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

983
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
984 985 986
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
987 988
	LIST_HEAD(driver_list);
	struct list_head *dptr;
989
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
990

991 992 993 994 995 996
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

997 998 999
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1000
	errors = queued = 0;
1001
	while (!list_empty(list)) {
1002
		struct blk_mq_queue_data bd;
1003

1004
		rq = list_first_entry(list, struct request, queuelist);
1005 1006 1007
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1008 1009

			/*
1010 1011
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1012
			 */
1013 1014 1015 1016 1017 1018 1019 1020 1021
			if (blk_mq_dispatch_wait_add(hctx)) {
				/*
				 * It's possible that a tag was freed in the
				 * window between the allocation failure and
				 * adding the hardware queue to the wait queue.
				 */
				if (!blk_mq_get_driver_tag(rq, &hctx, false))
					break;
			} else {
1022
				break;
1023
			}
1024
		}
1025

1026 1027
		list_del_init(&rq->queuelist);

1028 1029
		bd.rq = rq;
		bd.list = dptr;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1043 1044

		ret = q->mq_ops->queue_rq(hctx, &bd);
1045 1046 1047
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1048
			break;
1049
		case BLK_MQ_RQ_QUEUE_BUSY:
1050
			blk_mq_put_driver_tag_hctx(hctx, rq);
1051
			list_add(&rq->queuelist, list);
1052
			__blk_mq_requeue_request(rq);
1053 1054 1055 1056
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1057
			errors++;
1058
			rq->errors = -EIO;
1059
			blk_mq_end_request(rq, rq->errors);
1060 1061 1062 1063 1064
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1065 1066 1067 1068 1069

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
1070
		if (!dptr && list->next != list->prev)
1071
			dptr = &driver_list;
1072 1073
	}

1074
	hctx->dispatched[queued_to_index(queued)]++;
1075 1076 1077 1078 1079

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1080
	if (!list_empty(list)) {
1081 1082 1083 1084 1085 1086 1087
		/*
		 * If we got a driver tag for the next request already,
		 * free it again.
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1088
		spin_lock(&hctx->lock);
1089
		list_splice_init(list, &hctx->dispatch);
1090
		spin_unlock(&hctx->lock);
1091

1092 1093 1094 1095 1096 1097 1098 1099
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1100
		 *
1101 1102
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1103
		 */
1104 1105
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1106
			blk_mq_run_hw_queue(hctx, true);
1107
	}
1108

1109
	return (queued + errors) != 0;
1110 1111
}

1112 1113 1114 1115 1116 1117 1118 1119 1120
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1121
		blk_mq_sched_dispatch_requests(hctx);
1122 1123 1124
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1125
		blk_mq_sched_dispatch_requests(hctx);
1126 1127 1128 1129
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1130 1131 1132 1133 1134 1135 1136 1137
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1138 1139
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1140 1141

	if (--hctx->next_cpu_batch <= 0) {
1142
		int next_cpu;
1143 1144 1145 1146 1147 1148 1149 1150 1151

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1152
	return hctx->next_cpu;
1153 1154
}

1155 1156
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1157 1158
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1159 1160
		return;

1161
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1162 1163
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1164
			__blk_mq_run_hw_queue(hctx);
1165
			put_cpu();
1166 1167
			return;
		}
1168

1169
		put_cpu();
1170
	}
1171

1172
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1173 1174
}

1175
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1176 1177 1178 1179 1180
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1181
		if (!blk_mq_hctx_has_pending(hctx) ||
1182
		    blk_mq_hctx_stopped(hctx))
1183 1184
			continue;

1185
		blk_mq_run_hw_queue(hctx, async);
1186 1187
	}
}
1188
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1210 1211
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1212
	cancel_work(&hctx->run_work);
1213
	cancel_delayed_work(&hctx->delay_work);
1214 1215 1216 1217
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1228 1229 1230
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1231

1232
	blk_mq_run_hw_queue(hctx, false);
1233 1234 1235
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1256
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1257 1258 1259 1260
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1261 1262
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1263 1264 1265
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1266
static void blk_mq_run_work_fn(struct work_struct *work)
1267 1268 1269
{
	struct blk_mq_hw_ctx *hctx;

1270
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1271

1272 1273 1274
	__blk_mq_run_hw_queue(hctx);
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1287 1288
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1289

1290
	blk_mq_stop_hw_queue(hctx);
1291 1292
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1293 1294 1295
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1296 1297 1298
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1299
{
J
Jens Axboe 已提交
1300 1301
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1302 1303
	trace_block_rq_insert(hctx->queue, rq);

1304 1305 1306 1307
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1308
}
1309

1310 1311
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1312 1313 1314
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1315
	__blk_mq_insert_req_list(hctx, rq, at_head);
1316 1317 1318
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1319 1320
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1332
		BUG_ON(rq->mq_ctx != ctx);
1333
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1334
		__blk_mq_insert_req_list(hctx, rq, false);
1335
	}
1336
	blk_mq_hctx_mark_pending(hctx, ctx);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1373 1374 1375 1376
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1393 1394 1395
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1396 1397 1398 1399 1400 1401
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1402

1403
	blk_account_io_start(rq, true);
1404 1405
}

1406 1407 1408 1409 1410 1411
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1412 1413 1414
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1415
{
1416
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1417 1418 1419 1420 1421 1422 1423
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1424 1425
		struct request_queue *q = hctx->queue;

1426 1427 1428 1429 1430
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1431

1432
		spin_unlock(&ctx->lock);
1433
		__blk_mq_finish_request(hctx, ctx, rq);
1434
		return true;
1435
	}
1436
}
1437

1438 1439
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1440 1441 1442 1443
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1444 1445
}

1446
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1447
				      bool may_sleep)
1448 1449 1450 1451 1452 1453 1454
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1455 1456 1457
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1458

1459
	if (q->elevator)
1460 1461
		goto insert;

1462 1463 1464 1465 1466
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1467 1468 1469 1470 1471 1472
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1473 1474
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1475
		return;
1476
	}
1477

1478 1479 1480 1481
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1482
		return;
1483
	}
1484

1485
	__blk_mq_requeue_request(rq);
1486
insert:
1487
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1488 1489
}

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
		unsigned int srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1504
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1505
{
1506
	const int is_sync = op_is_sync(bio->bi_opf);
1507
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1508
	struct blk_mq_alloc_data data = { .flags = 0 };
1509
	struct request *rq;
1510
	unsigned int request_count = 0;
1511
	struct blk_plug *plug;
1512
	struct request *same_queue_rq = NULL;
1513
	blk_qc_t cookie;
J
Jens Axboe 已提交
1514
	unsigned int wb_acct;
1515 1516 1517 1518

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1519
		bio_io_error(bio);
1520
		return BLK_QC_T_NONE;
1521 1522
	}

1523 1524
	blk_queue_split(q, &bio, q->bio_split);

1525 1526 1527
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1528

1529 1530 1531
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1532 1533
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1534 1535 1536
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1537 1538
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1539
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1540 1541 1542
	}

	wbt_track(&rq->issue_stat, wb_acct);
1543

1544
	cookie = request_to_qc_t(data.hctx, rq);
1545

1546
	plug = current->plug;
1547 1548
	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1549 1550 1551 1552 1553 1554 1555 1556
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
		} else {
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
		}
	} else if (plug && q->nr_hw_queues == 1) {
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		struct request *last = NULL;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
1582
	} else if (plug && !blk_queue_nomerges(q)) {
1583 1584 1585
		blk_mq_bio_to_request(rq, bio);

		/*
1586
		 * We do limited plugging. If the bio can be merged, do that.
1587 1588
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1589 1590
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1591
		 */
1592 1593 1594 1595 1596 1597 1598 1599 1600
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1601
	} else if (q->nr_hw_queues > 1 && is_sync) {
1602 1603
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1604
	} else if (q->elevator) {
1605
		blk_mq_bio_to_request(rq, bio);
1606 1607 1608
		blk_mq_sched_insert_request(rq, false, true, true, true);
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		blk_mq_run_hw_queue(data.hctx, true);
1609
	}
1610

1611
	blk_mq_put_ctx(data.ctx);
1612
	return cookie;
1613 1614
}

1615 1616
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1617
{
1618
	struct page *page;
1619

1620
	if (tags->rqs && set->ops->exit_request) {
1621
		int i;
1622

1623
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1624 1625 1626
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1627
				continue;
J
Jens Axboe 已提交
1628
			set->ops->exit_request(set->driver_data, rq,
1629
						hctx_idx, i);
J
Jens Axboe 已提交
1630
			tags->static_rqs[i] = NULL;
1631
		}
1632 1633
	}

1634 1635
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1636
		list_del_init(&page->lru);
1637 1638 1639 1640 1641
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1642 1643
		__free_pages(page, page->private);
	}
1644
}
1645

1646 1647
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1648
	kfree(tags->rqs);
1649
	tags->rqs = NULL;
J
Jens Axboe 已提交
1650 1651
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1652

1653
	blk_mq_free_tags(tags);
1654 1655
}

1656 1657 1658 1659
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1660
{
1661
	struct blk_mq_tags *tags;
1662
	int node;
1663

1664 1665 1666 1667 1668
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1669
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1670 1671
	if (!tags)
		return NULL;
1672

1673
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1674
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1675
				 node);
1676 1677 1678 1679
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1680

J
Jens Axboe 已提交
1681 1682
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1683
				 node);
J
Jens Axboe 已提交
1684 1685 1686 1687 1688 1689
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1703 1704 1705 1706 1707
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1708 1709 1710

	INIT_LIST_HEAD(&tags->page_list);

1711 1712 1713 1714
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1715
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1716
				cache_line_size());
1717
	left = rq_size * depth;
1718

1719
	for (i = 0; i < depth; ) {
1720 1721 1722 1723 1724
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1725
		while (this_order && left < order_to_size(this_order - 1))
1726 1727 1728
			this_order--;

		do {
1729
			page = alloc_pages_node(node,
1730
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1731
				this_order);
1732 1733 1734 1735 1736 1737 1738 1739 1740
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1741
			goto fail;
1742 1743

		page->private = this_order;
1744
		list_add_tail(&page->lru, &tags->page_list);
1745 1746

		p = page_address(page);
1747 1748 1749 1750
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1751
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1752
		entries_per_page = order_to_size(this_order) / rq_size;
1753
		to_do = min(entries_per_page, depth - i);
1754 1755
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1756 1757 1758
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1759 1760
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1761
						rq, hctx_idx, i,
1762
						node)) {
J
Jens Axboe 已提交
1763
					tags->static_rqs[i] = NULL;
1764
					goto fail;
1765
				}
1766 1767
			}

1768 1769 1770 1771
			p += rq_size;
			i++;
		}
	}
1772
	return 0;
1773

1774
fail:
1775 1776
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1777 1778
}

J
Jens Axboe 已提交
1779 1780 1781 1782 1783
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1784
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1785
{
1786
	struct blk_mq_hw_ctx *hctx;
1787 1788 1789
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1790
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1791
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1792 1793 1794 1795 1796 1797 1798 1799 1800

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1801
		return 0;
1802

J
Jens Axboe 已提交
1803 1804 1805
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1806 1807

	blk_mq_run_hw_queue(hctx, true);
1808
	return 0;
1809 1810
}

1811
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1812
{
1813 1814
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1815 1816
}

1817
/* hctx->ctxs will be freed in queue's release handler */
1818 1819 1820 1821
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1822 1823
	unsigned flush_start_tag = set->queue_depth;

1824 1825
	blk_mq_tag_idle(hctx);

1826 1827 1828 1829 1830
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1831 1832 1833
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1834 1835 1836
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1837
	blk_mq_remove_cpuhp(hctx);
1838
	blk_free_flush_queue(hctx->fq);
1839
	sbitmap_free(&hctx->ctx_map);
1840 1841
}

M
Ming Lei 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1851
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1852 1853 1854
	}
}

1855 1856 1857
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1858
{
1859
	int node;
1860
	unsigned flush_start_tag = set->queue_depth;
1861 1862 1863 1864 1865

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1866
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1867 1868 1869 1870 1871
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1872
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1873

1874
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1875 1876

	hctx->tags = set->tags[hctx_idx];
1877 1878

	/*
1879 1880
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1881
	 */
1882 1883 1884 1885
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1886

1887 1888
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1889
		goto free_ctxs;
1890

1891
	hctx->nr_ctx = 0;
1892

1893 1894 1895
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1896

1897 1898 1899
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1900

1901 1902 1903 1904 1905
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1906

1907 1908 1909
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1910
	return 0;
1911

1912 1913 1914 1915 1916
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1917
 free_bitmap:
1918
	sbitmap_free(&hctx->ctx_map);
1919 1920 1921
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1922
	blk_mq_remove_cpuhp(hctx);
1923 1924
	return -1;
}
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1944
		hctx = blk_mq_map_queue(q, i);
1945

1946 1947 1948 1949 1950
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1951
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1952 1953 1954
	}
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1977 1978 1979 1980 1981
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1982 1983
}

1984 1985
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1986
{
1987
	unsigned int i, hctx_idx;
1988 1989
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1990
	struct blk_mq_tag_set *set = q->tag_set;
1991

1992 1993 1994 1995 1996
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1997
	queue_for_each_hw_ctx(q, hctx, i) {
1998
		cpumask_clear(hctx->cpumask);
1999 2000 2001 2002 2003 2004
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2005
	for_each_possible_cpu(i) {
2006
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2007
		if (!cpumask_test_cpu(i, online_mask))
2008 2009
			continue;

2010 2011
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2012 2013
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2014 2015 2016 2017 2018 2019
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2020
			q->mq_map[i] = 0;
2021 2022
		}

2023
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2024
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2025

2026
		cpumask_set_cpu(i, hctx->cpumask);
2027 2028 2029
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2030

2031 2032
	mutex_unlock(&q->sysfs_lock);

2033
	queue_for_each_hw_ctx(q, hctx, i) {
2034
		/*
2035 2036
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2037 2038
		 */
		if (!hctx->nr_ctx) {
2039 2040 2041 2042
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2043 2044 2045
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2046
			hctx->tags = NULL;
2047 2048 2049
			continue;
		}

M
Ming Lei 已提交
2050 2051 2052
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2053 2054 2055 2056 2057
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2058
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2059

2060 2061 2062
		/*
		 * Initialize batch roundrobin counts
		 */
2063 2064 2065
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2066 2067
}

2068
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2069 2070 2071 2072
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2084 2085 2086

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2087
		queue_set_hctx_shared(q, shared);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2098 2099 2100 2101 2102 2103
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2104 2105 2106 2107 2108 2109 2110 2111 2112
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2113 2114 2115 2116 2117 2118 2119 2120 2121

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2122
	list_add_tail(&q->tag_set_list, &set->tag_list);
2123

2124 2125 2126
	mutex_unlock(&set->tag_list_lock);
}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2138 2139
	blk_mq_sched_teardown(q);

2140
	/* hctx kobj stays in hctx */
2141 2142 2143
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2144
		kobject_put(&hctx->kobj);
2145
	}
2146

2147 2148
	q->mq_map = NULL;

2149 2150
	kfree(q->queue_hw_ctx);

2151 2152 2153 2154 2155 2156
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2157 2158 2159
	free_percpu(q->queue_ctx);
}

2160
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2176 2177
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2178
{
K
Keith Busch 已提交
2179 2180
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2181

K
Keith Busch 已提交
2182
	blk_mq_sysfs_unregister(q);
2183
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2184
		int node;
2185

K
Keith Busch 已提交
2186 2187 2188 2189
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2190 2191
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2192
		if (!hctxs[i])
K
Keith Busch 已提交
2193
			break;
2194

2195
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2196 2197 2198 2199 2200
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2201

2202
		atomic_set(&hctxs[i]->nr_active, 0);
2203
		hctxs[i]->numa_node = node;
2204
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2205 2206 2207 2208 2209 2210 2211 2212

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2213
	}
K
Keith Busch 已提交
2214 2215 2216 2217
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2218 2219
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2233 2234 2235
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2236 2237 2238 2239 2240
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
					     blk_stat_rq_ddir, 2, q);
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2241 2242
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2243
		goto err_exit;
K
Keith Busch 已提交
2244

2245 2246 2247
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2248 2249 2250 2251 2252
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2253
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2254 2255 2256 2257

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2258

2259
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2260
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2261 2262 2263

	q->nr_queues = nr_cpu_ids;

2264
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2265

2266 2267 2268
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2269 2270
	q->sg_reserved_size = INT_MAX;

2271
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2272 2273 2274
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2275
	blk_queue_make_request(q, blk_mq_make_request);
2276

2277 2278 2279 2280 2281
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2282 2283 2284 2285 2286
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2287 2288
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2289

2290
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2291

2292
	get_online_cpus();
2293 2294
	mutex_lock(&all_q_mutex);

2295
	list_add_tail(&q->all_q_node, &all_q_list);
2296
	blk_mq_add_queue_tag_set(set, q);
2297
	blk_mq_map_swqueue(q, cpu_online_mask);
2298

2299
	mutex_unlock(&all_q_mutex);
2300
	put_online_cpus();
2301

2302 2303 2304 2305 2306 2307 2308 2309
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2310
	return q;
2311

2312
err_hctxs:
K
Keith Busch 已提交
2313
	kfree(q->queue_hw_ctx);
2314
err_percpu:
K
Keith Busch 已提交
2315
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2316 2317
err_exit:
	q->mq_ops = NULL;
2318 2319
	return ERR_PTR(-ENOMEM);
}
2320
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2321 2322 2323

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2324
	struct blk_mq_tag_set	*set = q->tag_set;
2325

2326 2327 2328 2329
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2330 2331
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2332
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2333 2334 2335
}

/* Basically redo blk_mq_init_queue with queue frozen */
2336 2337
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2338
{
2339
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2340

2341 2342
	blk_mq_sysfs_unregister(q);

2343 2344 2345 2346 2347 2348
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2349
	blk_mq_map_swqueue(q, online_mask);
2350

2351
	blk_mq_sysfs_register(q);
2352 2353
}

2354 2355 2356 2357 2358 2359 2360 2361
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2362 2363 2364 2365
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2366 2367 2368 2369 2370 2371 2372 2373
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2374
		blk_freeze_queue_start(q);
2375
	list_for_each_entry(q, &all_q_list, all_q_node)
2376 2377
		blk_mq_freeze_queue_wait(q);

2378
	list_for_each_entry(q, &all_q_list, all_q_node)
2379
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2380 2381 2382 2383

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2384
	mutex_unlock(&all_q_mutex);
2385 2386 2387 2388
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2389
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2405 2406 2407 2408
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2409 2410 2411 2412 2413 2414 2415
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2416 2417
}

2418 2419 2420 2421
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2422 2423
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2424 2425 2426 2427 2428 2429
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2430
		blk_mq_free_rq_map(set->tags[i]);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2470 2471 2472 2473 2474 2475
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2476 2477
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2478 2479
	int ret;

B
Bart Van Assche 已提交
2480 2481
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2482 2483
	if (!set->nr_hw_queues)
		return -EINVAL;
2484
	if (!set->queue_depth)
2485 2486 2487 2488
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2489
	if (!set->ops->queue_rq)
2490 2491
		return -EINVAL;

2492 2493 2494 2495 2496
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2497

2498 2499 2500 2501 2502 2503 2504 2505 2506
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2507 2508 2509 2510 2511
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2512

K
Keith Busch 已提交
2513
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2514 2515
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2516
		return -ENOMEM;
2517

2518 2519 2520
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2521 2522 2523
	if (!set->mq_map)
		goto out_free_tags;

2524 2525 2526 2527 2528 2529 2530 2531 2532
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2533
		goto out_free_mq_map;
2534

2535 2536 2537
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2538
	return 0;
2539 2540 2541 2542 2543

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2544 2545
	kfree(set->tags);
	set->tags = NULL;
2546
	return ret;
2547 2548 2549 2550 2551 2552 2553
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2554 2555
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2556

2557 2558 2559
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2560
	kfree(set->tags);
2561
	set->tags = NULL;
2562 2563 2564
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2565 2566 2567 2568 2569 2570
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2571
	if (!set)
2572 2573
		return -EINVAL;

2574 2575 2576
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2577 2578
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2579 2580
		if (!hctx->tags)
			continue;
2581 2582 2583 2584
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2585 2586 2587 2588 2589 2590 2591 2592
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2593 2594 2595 2596 2597 2598 2599
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2600 2601 2602
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2603 2604 2605
	return ret;
}

K
Keith Busch 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;

	if (cb->stat[READ].nr_samples)
		q->poll_stat[READ] = cb->stat[READ];
	if (cb->stat[WRITE].nr_samples)
		q->poll_stat[WRITE] = cb->stat[WRITE];
}

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2672
	if (!blk_poll_stats_enable(q))
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
2683 2684 2685 2686
	if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
		ret = (q->poll_stat[READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
		ret = (q->poll_stat[WRITE].mean + 1) / 2;
2687 2688 2689 2690

	return ret;
}

2691
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2692
				     struct blk_mq_hw_ctx *hctx,
2693 2694 2695 2696
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2697
	unsigned int nsecs;
2698 2699
	ktime_t kt;

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2718 2719 2720 2721 2722 2723 2724 2725
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2726
	kt = nsecs;
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2749 2750 2751 2752 2753
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2754 2755 2756 2757 2758 2759 2760
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2761
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2762 2763
		return true;

J
Jens Axboe 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2807 2808 2809 2810
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2811 2812 2813 2814 2815

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2826 2827
static int __init blk_mq_init(void)
{
2828 2829
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2830

2831 2832 2833
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2834 2835 2836
	return 0;
}
subsys_initcall(blk_mq_init);