blk-mq.c 33.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

DEFINE_PER_CPU(struct llist_head, ipi_lists);

static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
					   unsigned int cpu)
{
	return per_cpu_ptr(q->queue_ctx, cpu);
}

/*
 * This assumes per-cpu software queueing queues. They could be per-node
 * as well, for instance. For now this is hardcoded as-is. Note that we don't
 * care about preemption, since we know the ctx's are persistent. This does
 * mean that we can't rely on ctx always matching the currently running CPU.
 */
static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
{
	return __blk_mq_get_ctx(q, get_cpu());
}

static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
{
	put_cpu();
}

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

	for (i = 0; i < hctx->nr_ctx_map; i++)
		if (hctx->ctx_map[i])
			return true;

	return false;
}

/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
	if (!test_bit(ctx->index_hw, hctx->ctx_map))
		set_bit(ctx->index_hw, hctx->ctx_map);
}

static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
				       bool reserved)
{
	struct request *rq;
	unsigned int tag;

	tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
	if (tag != BLK_MQ_TAG_FAIL) {
		rq = hctx->rqs[tag];
		rq->tag = tag;

		return rq;
	}

	return NULL;
}

static int blk_mq_queue_enter(struct request_queue *q)
{
	int ret;

	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
	smp_wmb();
	/* we have problems to freeze the queue if it's initializing */
	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
		return 0;

	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);

	spin_lock_irq(q->queue_lock);
	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
		!blk_queue_bypass(q), *q->queue_lock);
	/* inc usage with lock hold to avoid freeze_queue runs here */
	if (!ret)
		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
	spin_unlock_irq(q->queue_lock);

	return ret;
}

static void blk_mq_queue_exit(struct request_queue *q)
{
	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
}

/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
static void blk_mq_freeze_queue(struct request_queue *q)
{
	bool drain;

	spin_lock_irq(q->queue_lock);
	drain = !q->bypass_depth++;
	queue_flag_set(QUEUE_FLAG_BYPASS, q);
	spin_unlock_irq(q->queue_lock);

	if (!drain)
		return;

	while (true) {
		s64 count;

		spin_lock_irq(q->queue_lock);
		count = percpu_counter_sum(&q->mq_usage_counter);
		spin_unlock_irq(q->queue_lock);

		if (count == 0)
			break;
		blk_mq_run_queues(q, false);
		msleep(10);
	}
}

static void blk_mq_unfreeze_queue(struct request_queue *q)
{
	bool wake = false;

	spin_lock_irq(q->queue_lock);
	if (!--q->bypass_depth) {
		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
		wake = true;
	}
	WARN_ON_ONCE(q->bypass_depth < 0);
	spin_unlock_irq(q->queue_lock);
	if (wake)
		wake_up_all(&q->mq_freeze_wq);
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

174 175
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
176
{
177 178 179
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	rq->mq_ctx = ctx;
	rq->cmd_flags = rw_flags;
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
					      gfp_t gfp, bool reserved)
{
	return blk_mq_alloc_rq(hctx, gfp, reserved);
}

static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
						   int rw, gfp_t gfp,
						   bool reserved)
{
	struct request *rq;

	do {
		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);

		rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
		if (rq) {
203
			blk_mq_rq_ctx_init(q, ctx, rq, rw);
204
			break;
205
		}
206 207

		blk_mq_put_ctx(ctx);
208 209 210
		if (!(gfp & __GFP_WAIT))
			break;

211 212 213 214 215 216 217
		__blk_mq_run_hw_queue(hctx);
		blk_mq_wait_for_tags(hctx->tags);
	} while (1);

	return rq;
}

C
Christoph Hellwig 已提交
218 219
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		gfp_t gfp, bool reserved)
220 221 222 223 224 225
{
	struct request *rq;

	if (blk_mq_queue_enter(q))
		return NULL;

C
Christoph Hellwig 已提交
226
	rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
227 228
	if (rq)
		blk_mq_put_ctx(rq->mq_ctx);
229 230 231 232 233 234 235 236 237 238 239 240
	return rq;
}

struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
					      gfp_t gfp)
{
	struct request *rq;

	if (blk_mq_queue_enter(q))
		return NULL;

	rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
241 242
	if (rq)
		blk_mq_put_ctx(rq->mq_ctx);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	return rq;
}
EXPORT_SYMBOL(blk_mq_alloc_reserved_request);

/*
 * Re-init and set pdu, if we have it
 */
static void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	blk_rq_init(hctx->queue, rq);

	if (hctx->cmd_size)
		rq->special = blk_mq_rq_to_pdu(rq);
}

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

	blk_mq_rq_init(hctx, rq);
	blk_mq_put_tag(hctx->tags, tag);

	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
{
	if (error)
		clear_bit(BIO_UPTODATE, &bio->bi_flags);
	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
		error = -EIO;

	if (unlikely(rq->cmd_flags & REQ_QUIET))
		set_bit(BIO_QUIET, &bio->bi_flags);

	/* don't actually finish bio if it's part of flush sequence */
	if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
		bio_endio(bio, error);
}

void blk_mq_complete_request(struct request *rq, int error)
{
	struct bio *bio = rq->bio;
	unsigned int bytes = 0;

	trace_block_rq_complete(rq->q, rq);

	while (bio) {
		struct bio *next = bio->bi_next;

		bio->bi_next = NULL;
		bytes += bio->bi_size;
		blk_mq_bio_endio(rq, bio, error);
		bio = next;
	}

	blk_account_io_completion(rq, bytes);

	if (rq->end_io)
		rq->end_io(rq, error);
	else
		blk_mq_free_request(rq);

	blk_account_io_done(rq);
}

void __blk_mq_end_io(struct request *rq, int error)
{
	if (!blk_mark_rq_complete(rq))
		blk_mq_complete_request(rq, error);
}

329
#if defined(CONFIG_SMP)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

/*
 * Called with interrupts disabled.
 */
static void ipi_end_io(void *data)
{
	struct llist_head *list = &per_cpu(ipi_lists, smp_processor_id());
	struct llist_node *entry, *next;
	struct request *rq;

	entry = llist_del_all(list);

	while (entry) {
		next = entry->next;
		rq = llist_entry(entry, struct request, ll_list);
		__blk_mq_end_io(rq, rq->errors);
		entry = next;
	}
}

static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
			  struct request *rq, const int error)
{
	struct call_single_data *data = &rq->csd;

	rq->errors = error;
	rq->ll_list.next = NULL;

	/*
	 * If the list is non-empty, an existing IPI must already
	 * be "in flight". If that is the case, we need not schedule
	 * a new one.
	 */
	if (llist_add(&rq->ll_list, &per_cpu(ipi_lists, ctx->cpu))) {
		data->func = ipi_end_io;
		data->flags = 0;
		__smp_call_function_single(ctx->cpu, data, 0);
	}

	return true;
}
371
#else /* CONFIG_SMP */
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
			  struct request *rq, const int error)
{
	return false;
}
#endif

/*
 * End IO on this request on a multiqueue enabled driver. We'll either do
 * it directly inline, or punt to a local IPI handler on the matching
 * remote CPU.
 */
void blk_mq_end_io(struct request *rq, int error)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	int cpu;

	if (!ctx->ipi_redirect)
		return __blk_mq_end_io(rq, error);

	cpu = get_cpu();

	if (cpu == ctx->cpu || !cpu_online(ctx->cpu) ||
	    !ipi_remote_cpu(ctx, cpu, rq, error))
		__blk_mq_end_io(rq, error);

	put_cpu();
}
EXPORT_SYMBOL(blk_mq_end_io);

static void blk_mq_start_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

	/*
	 * Just mark start time and set the started bit. Due to memory
	 * ordering, we know we'll see the correct deadline as long as
	 * REQ_ATOMIC_STARTED is seen.
	 */
	rq->deadline = jiffies + q->rq_timeout;
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}

static void blk_mq_requeue_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}

struct blk_mq_timeout_data {
	struct blk_mq_hw_ctx *hctx;
	unsigned long *next;
	unsigned int *next_set;
};

static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
{
	struct blk_mq_timeout_data *data = __data;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	unsigned int tag;

	 /* It may not be in flight yet (this is where
	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
	 * statically allocated, so we know it's always safe to access the
	 * memory associated with a bit offset into ->rqs[].
	 */
	tag = 0;
	do {
		struct request *rq;

		tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
		if (tag >= hctx->queue_depth)
			break;

		rq = hctx->rqs[tag++];

		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
			continue;

		blk_rq_check_expired(rq, data->next, data->next_set);
	} while (1);
}

static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
					unsigned long *next,
					unsigned int *next_set)
{
	struct blk_mq_timeout_data data = {
		.hctx		= hctx,
		.next		= next,
		.next_set	= next_set,
	};

	/*
	 * Ask the tagging code to iterate busy requests, so we can
	 * check them for timeout.
	 */
	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
}

static void blk_mq_rq_timer(unsigned long data)
{
	struct request_queue *q = (struct request_queue *) data;
	struct blk_mq_hw_ctx *hctx;
	unsigned long next = 0;
	int i, next_set = 0;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);

	if (next_set)
		mod_timer(&q->timeout, round_jiffies_up(next));
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

void blk_mq_add_timer(struct request *rq)
{
	__blk_add_timer(rq, NULL);
}

/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	LIST_HEAD(rq_list);
	int bit, queued;

	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
	for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
		clear_bit(bit, hctx->ctx_map);
		ctx = hctx->ctxs[bit];
		BUG_ON(bit != ctx->index_hw);

		spin_lock(&ctx->lock);
		list_splice_tail_init(&ctx->rq_list, &rq_list);
		spin_unlock(&ctx->lock);
	}

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Delete and return all entries from our dispatch list
	 */
	queued = 0;

	/*
	 * Now process all the entries, sending them to the driver.
	 */
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_start_request(rq);

		/*
		 * Last request in the series. Flag it as such, this
		 * enables drivers to know when IO should be kicked off,
		 * if they don't do it on a per-request basis.
		 *
		 * Note: the flag isn't the only condition drivers
		 * should do kick off. If drive is busy, the last
		 * request might not have the bit set.
		 */
		if (list_empty(&rq_list))
			rq->cmd_flags |= REQ_END;

		ret = q->mq_ops->queue_rq(hctx, rq);
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			/*
			 * FIXME: we should have a mechanism to stop the queue
			 * like blk_stop_queue, otherwise we will waste cpu
			 * time
			 */
			list_add(&rq->queuelist, &rq_list);
			blk_mq_requeue_request(rq);
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
			rq->errors = -EIO;
		case BLK_MQ_RQ_QUEUE_ERROR:
			blk_mq_end_io(rq, rq->errors);
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
		return;

	if (!async)
		__blk_mq_run_hw_queue(hctx);
	else {
		struct request_queue *q = hctx->queue;

		kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
	}
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
		    test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
			continue;

		blk_mq_run_hw_queue(hctx, async);
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	cancel_delayed_work(&hctx->delayed_work);
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

683 684 685 686 687 688 689 690 691 692
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	__blk_mq_run_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

void blk_mq_start_stopped_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
		blk_mq_run_hw_queue(hctx, true);
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

static void blk_mq_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
	__blk_mq_run_hw_queue(hctx);
}

static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

728 729
	trace_block_rq_insert(hctx->queue, rq);

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
	list_add_tail(&rq->queuelist, &ctx->rq_list);
	blk_mq_hctx_mark_pending(hctx, ctx);

	/*
	 * We do this early, to ensure we are on the right CPU.
	 */
	blk_mq_add_timer(rq);
}

void blk_mq_insert_request(struct request_queue *q, struct request *rq,
			   bool run_queue)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx, *current_ctx;

	ctx = rq->mq_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
		blk_insert_flush(rq);
	} else {
		current_ctx = blk_mq_get_ctx(q);

		if (!cpu_online(ctx->cpu)) {
			ctx = current_ctx;
			hctx = q->mq_ops->map_queue(q, ctx->cpu);
			rq->mq_ctx = ctx;
		}
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq);
		spin_unlock(&ctx->lock);

		blk_mq_put_ctx(current_ctx);
	}

	if (run_queue)
		__blk_mq_run_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_insert_request);

/*
 * This is a special version of blk_mq_insert_request to bypass FLUSH request
 * check. Should only be used internally.
 */
void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
{
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);

	ctx = rq->mq_ctx;
	if (!cpu_online(ctx->cpu)) {
		ctx = current_ctx;
		rq->mq_ctx = ctx;
	}
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/* ctx->cpu might be offline */
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq);
	spin_unlock(&ctx->lock);

	blk_mq_put_ctx(current_ctx);

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
		__blk_mq_insert_request(hctx, rq);
	}
	spin_unlock(&ctx->lock);

	blk_mq_put_ctx(current_ctx);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
	blk_account_io_start(rq, 1);
}

static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	int rw = bio_data_dir(bio);
	struct request *rq;
	unsigned int use_plug, request_count = 0;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);

	blk_queue_bounce(q, &bio);

	if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
		return;

	if (blk_mq_queue_enter(q)) {
		bio_endio(bio, -EIO);
		return;
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	trace_block_getrq(q, bio, rw);
	rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
	if (likely(rq))
933
		blk_mq_rq_ctx_init(q, ctx, rq, rw);
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
	else {
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
		rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
							false);
		ctx = rq->mq_ctx;
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
	}

	hctx->queued++;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_mq_put_ctx(ctx);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
962
			if (list_empty(&plug->mq_list))
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
			blk_mq_put_ctx(ctx);
			return;
		}
	}

	spin_lock(&ctx->lock);

	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
	    blk_mq_attempt_merge(q, ctx, bio))
		__blk_mq_free_request(hctx, ctx, rq);
	else {
		blk_mq_bio_to_request(rq, bio);
		__blk_mq_insert_request(hctx, rq);
	}

	spin_unlock(&ctx->lock);
	blk_mq_put_ctx(ctx);

	/*
	 * For a SYNC request, send it to the hardware immediately. For an
	 * ASYNC request, just ensure that we run it later on. The latter
	 * allows for merging opportunities and more efficient dispatching.
	 */
run_queue:
	blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
						   unsigned int hctx_index)
{
	return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
				GFP_KERNEL | __GFP_ZERO, reg->numa_node);
}
EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);

void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
				 unsigned int hctx_index)
{
	kfree(hctx);
}
EXPORT_SYMBOL(blk_mq_free_single_hw_queue);

static void blk_mq_hctx_notify(void *data, unsigned long action,
			       unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
		return;

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		clear_bit(ctx->index_hw, hctx->ctx_map);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return;

	ctx = blk_mq_get_ctx(hctx->queue);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);
	blk_mq_put_ctx(ctx);
}

static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
				    void (*init)(void *, struct blk_mq_hw_ctx *,
					struct request *, unsigned int),
				    void *data)
{
	unsigned int i;

	for (i = 0; i < hctx->queue_depth; i++) {
		struct request *rq = hctx->rqs[i];

		init(data, hctx, rq, i);
	}
}

void blk_mq_init_commands(struct request_queue *q,
			  void (*init)(void *, struct blk_mq_hw_ctx *,
					struct request *, unsigned int),
			  void *data)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_init_hw_commands(hctx, init, data);
}
EXPORT_SYMBOL(blk_mq_init_commands);

static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
{
	struct page *page;

	while (!list_empty(&hctx->page_list)) {
		page = list_first_entry(&hctx->page_list, struct page, list);
		list_del_init(&page->list);
		__free_pages(page, page->private);
	}

	kfree(hctx->rqs);

	if (hctx->tags)
		blk_mq_free_tags(hctx->tags);
}

static size_t order_to_size(unsigned int order)
{
	size_t ret = PAGE_SIZE;

	while (order--)
		ret *= 2;

	return ret;
}

static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
			      unsigned int reserved_tags, int node)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

	INIT_LIST_HEAD(&hctx->page_list);

	hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
					GFP_KERNEL, node);
	if (!hctx->rqs)
		return -ENOMEM;

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
	rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
				cache_line_size());
	left = rq_size * hctx->queue_depth;

	for (i = 0; i < hctx->queue_depth;) {
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
			page = alloc_pages_node(node, GFP_KERNEL, this_order);
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
			break;

		page->private = this_order;
		list_add_tail(&page->list, &hctx->page_list);

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
		to_do = min(entries_per_page, hctx->queue_depth - i);
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
			hctx->rqs[i] = p;
			blk_mq_rq_init(hctx, hctx->rqs[i]);
			p += rq_size;
			i++;
		}
	}

	if (i < (reserved_tags + BLK_MQ_TAG_MIN))
		goto err_rq_map;
	else if (i != hctx->queue_depth) {
		hctx->queue_depth = i;
		pr_warn("%s: queue depth set to %u because of low memory\n",
					__func__, i);
	}

	hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
	if (!hctx->tags) {
err_rq_map:
		blk_mq_free_rq_map(hctx);
		return -ENOMEM;
	}

	return 0;
}

static int blk_mq_init_hw_queues(struct request_queue *q,
				 struct blk_mq_reg *reg, void *driver_data)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i, j;

	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		unsigned int num_maps;
		int node;

		node = hctx->numa_node;
		if (node == NUMA_NO_NODE)
			node = hctx->numa_node = reg->numa_node;

		INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
		spin_lock_init(&hctx->lock);
		INIT_LIST_HEAD(&hctx->dispatch);
		hctx->queue = q;
		hctx->queue_num = i;
		hctx->flags = reg->flags;
		hctx->queue_depth = reg->queue_depth;
		hctx->cmd_size = reg->cmd_size;

		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
						blk_mq_hctx_notify, hctx);
		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

		if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
			break;

		/*
		 * Allocate space for all possible cpus to avoid allocation in
		 * runtime
		 */
		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
						GFP_KERNEL, node);
		if (!hctx->ctxs)
			break;

		num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
		hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
						GFP_KERNEL, node);
		if (!hctx->ctx_map)
			break;

		hctx->nr_ctx_map = num_maps;
		hctx->nr_ctx = 0;

		if (reg->ops->init_hctx &&
		    reg->ops->init_hctx(hctx, driver_data, i))
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
	queue_for_each_hw_ctx(q, hctx, j) {
		if (i == j)
			break;

		if (reg->ops->exit_hctx)
			reg->ops->exit_hctx(hctx, j);

		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		blk_mq_free_rq_map(hctx);
		kfree(hctx->ctxs);
	}

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		hctx = q->mq_ops->map_queue(q, i);
		hctx->nr_ctx++;

		if (!cpu_online(i))
			continue;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
		hctx = q->mq_ops->map_queue(q, i);
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
}

struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
					void *driver_data)
{
	struct blk_mq_hw_ctx **hctxs;
	struct blk_mq_ctx *ctx;
	struct request_queue *q;
	int i;

	if (!reg->nr_hw_queues ||
	    !reg->ops->queue_rq || !reg->ops->map_queue ||
	    !reg->ops->alloc_hctx || !reg->ops->free_hctx)
		return ERR_PTR(-EINVAL);

	if (!reg->queue_depth)
		reg->queue_depth = BLK_MQ_MAX_DEPTH;
	else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
		reg->queue_depth = BLK_MQ_MAX_DEPTH;
	}

C
Christoph Hellwig 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348
	/*
	 * Set aside a tag for flush requests.  It will only be used while
	 * another flush request is in progress but outside the driver.
	 *
	 * TODO: only allocate if flushes are supported
	 */
	reg->queue_depth++;
	reg->reserved_tags++;

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
		return ERR_PTR(-EINVAL);

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

	hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			reg->numa_node);

	if (!hctxs)
		goto err_percpu;

	for (i = 0; i < reg->nr_hw_queues; i++) {
		hctxs[i] = reg->ops->alloc_hctx(reg, i);
		if (!hctxs[i])
			goto err_hctxs;

		hctxs[i]->numa_node = NUMA_NO_NODE;
		hctxs[i]->queue_num = i;
	}

	q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
	if (!q)
		goto err_hctxs;

	q->mq_map = blk_mq_make_queue_map(reg);
	if (!q->mq_map)
		goto err_map;

	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
	q->nr_hw_queues = reg->nr_hw_queues;

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

	q->mq_ops = reg->ops;
1389
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

	blk_queue_make_request(q, blk_mq_make_request);
	blk_queue_rq_timed_out(q, reg->ops->timeout);
	if (reg->timeout)
		blk_queue_rq_timeout(q, reg->timeout);

	blk_mq_init_flush(q);
	blk_mq_init_cpu_queues(q, reg->nr_hw_queues);

	if (blk_mq_init_hw_queues(q, reg, driver_data))
		goto err_hw;

	blk_mq_map_swqueue(q);

	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

	return q;
err_hw:
	kfree(q->mq_map);
err_map:
	blk_cleanup_queue(q);
err_hctxs:
	for (i = 0; i < reg->nr_hw_queues; i++) {
		if (!hctxs[i])
			break;
		reg->ops->free_hctx(hctxs[i], i);
	}
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		cancel_delayed_work_sync(&hctx->delayed_work);
		kfree(hctx->ctx_map);
		kfree(hctx->ctxs);
		blk_mq_free_rq_map(hctx);
		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		if (q->mq_ops->exit_hctx)
			q->mq_ops->exit_hctx(hctx, i);
		q->mq_ops->free_hctx(hctx, i);
	}

	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}
EXPORT_SYMBOL(blk_mq_free_queue);

/* Basically redo blk_mq_init_queue with queue frozen */
1457
static void blk_mq_queue_reinit(struct request_queue *q)
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
{
	blk_mq_freeze_queue(q);

	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

	blk_mq_unfreeze_queue(q);
}

1474 1475
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
{
	struct request_queue *q;

	/*
	 * Before new mapping is established, hotadded cpu might already start
	 * handling requests. This doesn't break anything as we map offline
	 * CPUs to first hardware queue. We will re-init queue below to get
	 * optimal settings.
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

static int __init blk_mq_init(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
		init_llist_head(&per_cpu(ipi_lists, i));

	blk_mq_cpu_init();

	/* Must be called after percpu_counter_hotcpu_callback() */
	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);

	return 0;
}
subsys_initcall(blk_mq_init);