blk-mq.c 68.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66 67
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86
void blk_freeze_queue_start(struct request_queue *q)
87
{
88
	int freeze_depth;
89

90 91
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
92
		percpu_ref_kill(&q->q_usage_counter);
93
		blk_mq_run_hw_queues(q, false);
94
	}
95
}
96
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
97

98
void blk_mq_freeze_queue_wait(struct request_queue *q)
99
{
100
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
101
}
102
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
103

104 105 106 107 108 109 110 111
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
112

113 114 115 116
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
117
void blk_freeze_queue(struct request_queue *q)
118
{
119 120 121 122 123 124 125
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
126
	blk_freeze_queue_start(q);
127 128
	blk_mq_freeze_queue_wait(q);
}
129 130 131 132 133 134 135 136 137

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
139

140
void blk_mq_unfreeze_queue(struct request_queue *q)
141
{
142
	int freeze_depth;
143

144 145 146
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
147
		percpu_ref_reinit(&q->q_usage_counter);
148
		wake_up_all(&q->mq_freeze_wq);
149
	}
150
}
151
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

167
/**
168
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
169 170 171
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
172 173 174
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
175 176 177 178 179 180 181
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

182
	blk_mq_quiesce_queue_nowait(q);
183

184 185
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
186
			synchronize_srcu(hctx->queue_rq_srcu);
187 188 189 190 191 192 193 194
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

195 196 197 198 199 200 201 202 203
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
204 205 206
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
207
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
208
	spin_unlock_irqrestore(q->queue_lock, flags);
209

210 211
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
212 213 214
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

215 216 217 218 219 220 221 222
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
223 224 225 226 227 228 229

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
230 231
}

232 233 234 235 236 237
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

238 239
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
240
{
241 242 243
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

244 245
	rq->rq_flags = 0;

246 247 248 249 250 251 252 253 254 255 256 257 258
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

259 260
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
261 262
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
263
	rq->cmd_flags = op;
264
	if (blk_queue_io_stat(data->q))
265
		rq->rq_flags |= RQF_IO_STAT;
266 267 268 269 270 271
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
272
	rq->start_time = jiffies;
273 274
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
275
	set_start_time_ns(rq);
276 277 278 279 280 281 282 283 284 285 286
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
287 288
	rq->timeout = 0;

289 290 291 292
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

293 294
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
295 296
}

297 298 299 300 301 302
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
303
	unsigned int tag;
304 305 306 307 308 309 310

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
311 312
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
313 314 315 316 317 318 319 320

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
321 322
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
323 324
	}

325 326
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
327 328
		blk_queue_exit(q);
		return NULL;
329 330
	}

331
	rq = blk_mq_rq_ctx_init(data, tag, op);
332 333
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
334
		if (e && e->type->ops.mq.prepare_request) {
335 336 337
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

338 339
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
340
		}
341 342 343
	}
	data->hctx->queued++;
	return rq;
344 345
}

346
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
347
		unsigned int flags)
348
{
349
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
350
	struct request *rq;
351
	int ret;
352

353
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
354 355
	if (ret)
		return ERR_PTR(ret);
356

357
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
358

359 360 361 362
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
363
		return ERR_PTR(-EWOULDBLOCK);
364 365 366 367

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
368 369
	return rq;
}
370
EXPORT_SYMBOL(blk_mq_alloc_request);
371

372 373
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
374
{
375
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
376
	struct request *rq;
377
	unsigned int cpu;
M
Ming Lin 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

396 397 398 399
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
400 401 402 403
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
404
	}
405 406
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
407

408
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409 410

	blk_queue_exit(q);
411 412 413 414 415

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
416 417 418
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

419
void blk_mq_free_request(struct request *rq)
420 421
{
	struct request_queue *q = rq->q;
422 423 424 425 426
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

427
	if (rq->rq_flags & RQF_ELVPRIV) {
428 429 430 431 432 433 434
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
435

436
	ctx->rq_completed[rq_is_sync(rq)]++;
437
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
438
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
439 440

	wbt_done(q->rq_wb, &rq->issue_stat);
441

442
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
444 445 446
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
447
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
448
	blk_mq_sched_restart(hctx);
449
	blk_queue_exit(q);
450
}
J
Jens Axboe 已提交
451
EXPORT_SYMBOL_GPL(blk_mq_free_request);
452

453
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
454
{
M
Ming Lei 已提交
455 456
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
457
	if (rq->end_io) {
J
Jens Axboe 已提交
458
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
459
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
460 461 462
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
463
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
464
	}
465
}
466
EXPORT_SYMBOL(__blk_mq_end_request);
467

468
void blk_mq_end_request(struct request *rq, blk_status_t error)
469 470 471
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
472
	__blk_mq_end_request(rq, error);
473
}
474
EXPORT_SYMBOL(blk_mq_end_request);
475

476
static void __blk_mq_complete_request_remote(void *data)
477
{
478
	struct request *rq = data;
479

480
	rq->q->softirq_done_fn(rq);
481 482
}

483
static void __blk_mq_complete_request(struct request *rq)
484 485
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
486
	bool shared = false;
487 488
	int cpu;

489 490 491 492 493 494 495
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
496
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
497 498 499
		rq->q->softirq_done_fn(rq);
		return;
	}
500 501

	cpu = get_cpu();
C
Christoph Hellwig 已提交
502 503 504 505
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
506
		rq->csd.func = __blk_mq_complete_request_remote;
507 508
		rq->csd.info = rq;
		rq->csd.flags = 0;
509
		smp_call_function_single_async(ctx->cpu, &rq->csd);
510
	} else {
511
		rq->q->softirq_done_fn(rq);
512
	}
513 514
	put_cpu();
}
515 516 517 518 519 520 521 522 523

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
524
void blk_mq_complete_request(struct request *rq)
525
{
526 527 528
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
529
		return;
530
	if (!blk_mark_rq_complete(rq))
531
		__blk_mq_complete_request(rq);
532 533
}
EXPORT_SYMBOL(blk_mq_complete_request);
534

535 536 537 538 539 540
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

541
void blk_mq_start_request(struct request *rq)
542 543 544
{
	struct request_queue *q = rq->q;

545 546
	blk_mq_sched_started_request(rq);

547 548
	trace_block_rq_issue(q, rq);

549
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
550
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
551
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
552
		wbt_issue(q->rq_wb, &rq->issue_stat);
553 554
	}

555
	blk_add_timer(rq);
556

557 558 559 560 561 562
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

563 564 565 566 567 568
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
569 570 571 572
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
573 574 575 576 577 578 579 580 581

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
582
}
583
EXPORT_SYMBOL(blk_mq_start_request);
584

585 586
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
587
 * flag isn't set yet, so there may be race with timeout handler,
588 589 590 591 592 593
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
594
static void __blk_mq_requeue_request(struct request *rq)
595 596 597 598
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
599
	wbt_requeue(q->rq_wb, &rq->issue_stat);
600
	blk_mq_sched_requeue_request(rq);
601

602 603 604 605
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
606 607
}

608
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
609 610 611 612
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
613
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
614 615 616
}
EXPORT_SYMBOL(blk_mq_requeue_request);

617 618 619
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
620
		container_of(work, struct request_queue, requeue_work.work);
621 622 623 624 625 626 627 628 629
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
630
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
631 632
			continue;

633
		rq->rq_flags &= ~RQF_SOFTBARRIER;
634
		list_del_init(&rq->queuelist);
635
		blk_mq_sched_insert_request(rq, true, false, false, true);
636 637 638 639 640
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
641
		blk_mq_sched_insert_request(rq, false, false, false, true);
642 643
	}

644
	blk_mq_run_hw_queues(q, false);
645 646
}

647 648
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
649 650 651 652 653 654 655 656
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
657
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
658 659 660

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
661
		rq->rq_flags |= RQF_SOFTBARRIER;
662 663 664 665 666
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
667 668 669

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
670 671 672 673 674
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
675
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
676 677 678
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

679 680 681 682 683 684 685 686
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

687 688
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
689 690
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
691
		return tags->rqs[tag];
692
	}
693 694

	return NULL;
695 696 697
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

698
struct blk_mq_timeout_data {
699 700
	unsigned long next;
	unsigned int next_set;
701 702
};

703
void blk_mq_rq_timed_out(struct request *req, bool reserved)
704
{
J
Jens Axboe 已提交
705
	const struct blk_mq_ops *ops = req->q->mq_ops;
706
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
707 708 709 710 711 712 713

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
714
	 * both flags will get cleared. So check here again, and ignore
715 716
	 * a timeout event with a request that isn't active.
	 */
717 718
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
719

720
	if (ops->timeout)
721
		ret = ops->timeout(req, reserved);
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
737
}
738

739 740 741 742
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
743

744
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
745
		return;
746

747 748 749 750 751 752 753 754 755 756 757 758 759
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
760 761
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
762
			blk_mq_rq_timed_out(rq, reserved);
763 764 765 766
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
767 768
}

769
static void blk_mq_timeout_work(struct work_struct *work)
770
{
771 772
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
773 774 775 776 777
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
778

779 780 781 782 783 784 785 786 787
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
788
	 * blk_freeze_queue_start, and the moment the last request is
789 790 791 792
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
793 794
		return;

795
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
796

797 798 799
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
800
	} else {
801 802
		struct blk_mq_hw_ctx *hctx;

803 804 805 806 807
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
808
	}
809
	blk_queue_exit(q);
810 811
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

830 831 832 833
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
834
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
835
{
836 837 838 839
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
840

841
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
842
}
843
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
844

845 846 847 848
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
849

850
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
851 852
}

853 854
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
855 856 857 858 859 860 861
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

862 863
	might_sleep_if(wait);

864 865
	if (rq->tag != -1)
		goto done;
866

867 868 869
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

870 871
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
872 873 874 875
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
876 877 878
		data.hctx->tags->rqs[rq->tag] = rq;
	}

879 880 881 882
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
883 884
}

885 886
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
887 888 889 890 891 892 893 894 895 896
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

941
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
942 943 944 945 946 947
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

948
	list_del(&wait->entry);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

979
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
980
{
981
	struct blk_mq_hw_ctx *hctx;
982
	struct request *rq;
983
	int errors, queued;
984

985 986 987
	if (list_empty(list))
		return false;

988 989 990
	/*
	 * Now process all the entries, sending them to the driver.
	 */
991
	errors = queued = 0;
992
	do {
993
		struct blk_mq_queue_data bd;
994
		blk_status_t ret;
995

996
		rq = list_first_entry(list, struct request, queuelist);
997 998 999
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1000 1001

			/*
1002 1003
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1004
			 */
1005 1006 1007 1008 1009 1010 1011 1012 1013
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1014
				break;
1015
		}
1016

1017 1018
		list_del_init(&rq->queuelist);

1019
		bd.rq = rq;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1033 1034

		ret = q->mq_ops->queue_rq(hctx, &bd);
1035
		if (ret == BLK_STS_RESOURCE) {
1036
			blk_mq_put_driver_tag_hctx(hctx, rq);
1037
			list_add(&rq->queuelist, list);
1038
			__blk_mq_requeue_request(rq);
1039
			break;
1040 1041 1042
		}

		if (unlikely(ret != BLK_STS_OK)) {
1043
			errors++;
1044
			blk_mq_end_request(rq, BLK_STS_IOERR);
1045
			continue;
1046 1047
		}

1048
		queued++;
1049
	} while (!list_empty(list));
1050

1051
	hctx->dispatched[queued_to_index(queued)]++;
1052 1053 1054 1055 1056

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1057
	if (!list_empty(list)) {
1058
		/*
1059 1060
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1061 1062 1063 1064
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1065
		spin_lock(&hctx->lock);
1066
		list_splice_init(list, &hctx->dispatch);
1067
		spin_unlock(&hctx->lock);
1068

1069
		/*
1070 1071 1072
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1073
		 *
1074 1075 1076 1077
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1078
		 *
1079 1080 1081 1082 1083 1084 1085
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1086
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1087
		 *   and dm-rq.
1088
		 */
1089 1090
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1091
			blk_mq_run_hw_queue(hctx, true);
1092
	}
1093

1094
	return (queued + errors) != 0;
1095 1096
}

1097 1098 1099 1100 1101 1102 1103 1104 1105
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1106
		blk_mq_sched_dispatch_requests(hctx);
1107 1108
		rcu_read_unlock();
	} else {
1109 1110
		might_sleep();

1111
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1112
		blk_mq_sched_dispatch_requests(hctx);
1113
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1114 1115 1116
	}
}

1117 1118 1119 1120 1121 1122 1123 1124
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1125 1126
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1127 1128

	if (--hctx->next_cpu_batch <= 0) {
1129
		int next_cpu;
1130 1131 1132 1133 1134 1135 1136 1137 1138

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1139
	return hctx->next_cpu;
1140 1141
}

1142 1143
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1144
{
1145 1146 1147 1148
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1149 1150
		return;

1151
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1152 1153
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1154
			__blk_mq_run_hw_queue(hctx);
1155
			put_cpu();
1156 1157
			return;
		}
1158

1159
		put_cpu();
1160
	}
1161

1162 1163 1164
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1176
}
O
Omar Sandoval 已提交
1177
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1178

1179
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1180 1181 1182 1183 1184
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1185
		if (!blk_mq_hctx_has_pending(hctx) ||
1186
		    blk_mq_hctx_stopped(hctx))
1187 1188
			continue;

1189
		blk_mq_run_hw_queue(hctx, async);
1190 1191
	}
}
1192
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1214 1215 1216 1217 1218 1219 1220 1221 1222
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1223 1224
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1225
	cancel_delayed_work(&hctx->run_work);
1226

1227
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1228
}
1229
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1230

1231 1232 1233 1234 1235 1236 1237 1238 1239
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1240 1241
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1242 1243 1244 1245 1246
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1247 1248 1249
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1250 1251 1252
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1253

1254
	blk_mq_run_hw_queue(hctx, false);
1255 1256 1257
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1278
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1279 1280 1281 1282
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1283 1284
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1285 1286 1287
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1288
static void blk_mq_run_work_fn(struct work_struct *work)
1289 1290 1291
{
	struct blk_mq_hw_ctx *hctx;

1292
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1293

1294 1295 1296 1297 1298 1299 1300 1301
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1302

1303 1304 1305
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1306 1307 1308 1309

	__blk_mq_run_hw_queue(hctx);
}

1310 1311 1312

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1313
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1314
		return;
1315

1316 1317 1318 1319 1320
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1321
	blk_mq_stop_hw_queue(hctx);
1322 1323 1324 1325
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1326 1327 1328
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1329 1330 1331
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1332
{
J
Jens Axboe 已提交
1333 1334
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1335 1336
	lockdep_assert_held(&ctx->lock);

1337 1338
	trace_block_rq_insert(hctx->queue, rq);

1339 1340 1341 1342
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1343
}
1344

1345 1346
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1347 1348 1349
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1350 1351
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1352
	__blk_mq_insert_req_list(hctx, rq, at_head);
1353 1354 1355
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1356 1357
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1369
		BUG_ON(rq->mq_ctx != ctx);
1370
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1371
		__blk_mq_insert_req_list(hctx, rq, false);
1372
	}
1373
	blk_mq_hctx_mark_pending(hctx, ctx);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1410 1411 1412 1413
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1430 1431 1432
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1433 1434 1435 1436 1437
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1438
	blk_init_request_from_bio(rq, bio);
1439

1440
	blk_account_io_start(rq, true);
1441 1442
}

1443 1444 1445 1446 1447 1448
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1449 1450 1451 1452 1453 1454 1455
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1456
}
1457

1458 1459
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1460 1461 1462 1463
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1464 1465
}

M
Ming Lei 已提交
1466 1467 1468
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1469 1470 1471 1472
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1473
		.last = true,
1474
	};
1475
	blk_qc_t new_cookie;
1476
	blk_status_t ret;
M
Ming Lei 已提交
1477 1478
	bool run_queue = true;

1479 1480
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1481 1482 1483
		run_queue = false;
		goto insert;
	}
1484

1485
	if (q->elevator)
1486 1487
		goto insert;

M
Ming Lei 已提交
1488
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1489 1490 1491 1492
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1493 1494 1495 1496 1497 1498
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1499 1500
	switch (ret) {
	case BLK_STS_OK:
1501
		*cookie = new_cookie;
1502
		return;
1503 1504 1505 1506
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1507
		*cookie = BLK_QC_T_NONE;
1508
		blk_mq_end_request(rq, ret);
1509
		return;
1510
	}
1511

1512
insert:
M
Ming Lei 已提交
1513
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1514 1515
}

1516 1517 1518 1519 1520
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1521
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1522 1523
		rcu_read_unlock();
	} else {
1524 1525 1526 1527
		unsigned int srcu_idx;

		might_sleep();

1528
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1529
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1530
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1531 1532 1533
	}
}

1534
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1535
{
1536
	const int is_sync = op_is_sync(bio->bi_opf);
1537
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1538
	struct blk_mq_alloc_data data = { .flags = 0 };
1539
	struct request *rq;
1540
	unsigned int request_count = 0;
1541
	struct blk_plug *plug;
1542
	struct request *same_queue_rq = NULL;
1543
	blk_qc_t cookie;
J
Jens Axboe 已提交
1544
	unsigned int wb_acct;
1545 1546 1547

	blk_queue_bounce(q, &bio);

1548
	blk_queue_split(q, &bio);
1549

1550
	if (!bio_integrity_prep(bio))
1551
		return BLK_QC_T_NONE;
1552

1553 1554 1555
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1556

1557 1558 1559
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1560 1561
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1562 1563
	trace_block_getrq(q, bio, bio->bi_opf);

1564
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1565 1566
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1567 1568
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1569
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1570 1571 1572
	}

	wbt_track(&rq->issue_stat, wb_acct);
1573

1574
	cookie = request_to_qc_t(data.hctx, rq);
1575

1576
	plug = current->plug;
1577
	if (unlikely(is_flush_fua)) {
1578
		blk_mq_put_ctx(data.ctx);
1579
		blk_mq_bio_to_request(rq, bio);
1580 1581 1582
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1583
		} else {
1584 1585
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1586
		}
1587
	} else if (plug && q->nr_hw_queues == 1) {
1588 1589
		struct request *last = NULL;

1590
		blk_mq_put_ctx(data.ctx);
1591
		blk_mq_bio_to_request(rq, bio);
1592 1593 1594 1595 1596 1597 1598

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1599 1600 1601
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1602
		if (!request_count)
1603
			trace_block_plug(q);
1604 1605
		else
			last = list_entry_rq(plug->mq_list.prev);
1606

1607 1608
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1609 1610
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1611
		}
1612

1613
		list_add_tail(&rq->queuelist, &plug->mq_list);
1614
	} else if (plug && !blk_queue_nomerges(q)) {
1615
		blk_mq_bio_to_request(rq, bio);
1616 1617

		/*
1618
		 * We do limited plugging. If the bio can be merged, do that.
1619 1620
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1621 1622
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1623
		 */
1624 1625 1626 1627 1628 1629
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1630 1631
		blk_mq_put_ctx(data.ctx);

1632 1633 1634
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1635 1636
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1637
		}
1638
	} else if (q->nr_hw_queues > 1 && is_sync) {
1639
		blk_mq_put_ctx(data.ctx);
1640 1641
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1642
	} else if (q->elevator) {
1643
		blk_mq_put_ctx(data.ctx);
1644
		blk_mq_bio_to_request(rq, bio);
1645
		blk_mq_sched_insert_request(rq, false, true, true, true);
1646
	} else {
1647
		blk_mq_put_ctx(data.ctx);
1648 1649
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1650
		blk_mq_run_hw_queue(data.hctx, true);
1651
	}
1652

1653
	return cookie;
1654 1655
}

1656 1657
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1658
{
1659
	struct page *page;
1660

1661
	if (tags->rqs && set->ops->exit_request) {
1662
		int i;
1663

1664
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1665 1666 1667
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1668
				continue;
1669
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1670
			tags->static_rqs[i] = NULL;
1671
		}
1672 1673
	}

1674 1675
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1676
		list_del_init(&page->lru);
1677 1678 1679 1680 1681
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1682 1683
		__free_pages(page, page->private);
	}
1684
}
1685

1686 1687
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1688
	kfree(tags->rqs);
1689
	tags->rqs = NULL;
J
Jens Axboe 已提交
1690 1691
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1692

1693
	blk_mq_free_tags(tags);
1694 1695
}

1696 1697 1698 1699
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1700
{
1701
	struct blk_mq_tags *tags;
1702
	int node;
1703

1704 1705 1706 1707 1708
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1709
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1710 1711
	if (!tags)
		return NULL;
1712

1713
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1714
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1715
				 node);
1716 1717 1718 1719
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1720

J
Jens Axboe 已提交
1721 1722
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1723
				 node);
J
Jens Axboe 已提交
1724 1725 1726 1727 1728 1729
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1743 1744 1745 1746 1747
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1748 1749 1750

	INIT_LIST_HEAD(&tags->page_list);

1751 1752 1753 1754
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1755
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1756
				cache_line_size());
1757
	left = rq_size * depth;
1758

1759
	for (i = 0; i < depth; ) {
1760 1761 1762 1763 1764
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1765
		while (this_order && left < order_to_size(this_order - 1))
1766 1767 1768
			this_order--;

		do {
1769
			page = alloc_pages_node(node,
1770
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1771
				this_order);
1772 1773 1774 1775 1776 1777 1778 1779 1780
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1781
			goto fail;
1782 1783

		page->private = this_order;
1784
		list_add_tail(&page->lru, &tags->page_list);
1785 1786

		p = page_address(page);
1787 1788 1789 1790
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1791
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1792
		entries_per_page = order_to_size(this_order) / rq_size;
1793
		to_do = min(entries_per_page, depth - i);
1794 1795
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1796 1797 1798
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1799
			if (set->ops->init_request) {
1800
				if (set->ops->init_request(set, rq, hctx_idx,
1801
						node)) {
J
Jens Axboe 已提交
1802
					tags->static_rqs[i] = NULL;
1803
					goto fail;
1804
				}
1805 1806
			}

1807 1808 1809 1810
			p += rq_size;
			i++;
		}
	}
1811
	return 0;
1812

1813
fail:
1814 1815
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1816 1817
}

J
Jens Axboe 已提交
1818 1819 1820 1821 1822
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1823
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1824
{
1825
	struct blk_mq_hw_ctx *hctx;
1826 1827 1828
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1829
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1830
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1831 1832 1833 1834 1835 1836 1837 1838 1839

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1840
		return 0;
1841

J
Jens Axboe 已提交
1842 1843 1844
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1845 1846

	blk_mq_run_hw_queue(hctx, true);
1847
	return 0;
1848 1849
}

1850
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1851
{
1852 1853
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1854 1855
}

1856
/* hctx->ctxs will be freed in queue's release handler */
1857 1858 1859 1860
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1861 1862
	blk_mq_debugfs_unregister_hctx(hctx);

1863 1864
	blk_mq_tag_idle(hctx);

1865
	if (set->ops->exit_request)
1866
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1867

1868 1869
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1870 1871 1872
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1873
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1874
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1875

1876
	blk_mq_remove_cpuhp(hctx);
1877
	blk_free_flush_queue(hctx->fq);
1878
	sbitmap_free(&hctx->ctx_map);
1879 1880
}

M
Ming Lei 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1890
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1891 1892 1893
	}
}

1894 1895 1896
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1897
{
1898 1899 1900 1901 1902 1903
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1904
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1905 1906 1907
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
1908
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1909

1910
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1911 1912

	hctx->tags = set->tags[hctx_idx];
1913 1914

	/*
1915 1916
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1917
	 */
1918 1919 1920 1921
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1922

1923 1924
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1925
		goto free_ctxs;
1926

1927
	hctx->nr_ctx = 0;
1928

1929 1930 1931
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1932

1933 1934 1935
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1936 1937
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1938
		goto sched_exit_hctx;
1939

1940
	if (set->ops->init_request &&
1941 1942
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1943
		goto free_fq;
1944

1945
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1946
		init_srcu_struct(hctx->queue_rq_srcu);
1947

1948 1949
	blk_mq_debugfs_register_hctx(q, hctx);

1950
	return 0;
1951

1952 1953
 free_fq:
	kfree(hctx->fq);
1954 1955
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1956 1957 1958
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1959
 free_bitmap:
1960
	sbitmap_free(&hctx->ctx_map);
1961 1962 1963
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1964
	blk_mq_remove_cpuhp(hctx);
1965 1966
	return -1;
}
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

1982 1983
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
1984 1985
			continue;

C
Christoph Hellwig 已提交
1986
		hctx = blk_mq_map_queue(q, i);
1987

1988 1989 1990 1991 1992
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1993
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1994 1995 1996
	}
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2019 2020 2021 2022 2023
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2024 2025
}

2026
static void blk_mq_map_swqueue(struct request_queue *q)
2027
{
2028
	unsigned int i, hctx_idx;
2029 2030
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2031
	struct blk_mq_tag_set *set = q->tag_set;
2032

2033 2034 2035 2036 2037
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2038
	queue_for_each_hw_ctx(q, hctx, i) {
2039
		cpumask_clear(hctx->cpumask);
2040 2041 2042 2043
		hctx->nr_ctx = 0;
	}

	/*
2044 2045 2046
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2047
	 */
2048
	for_each_present_cpu(i) {
2049 2050
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2051 2052
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2053 2054 2055 2056 2057 2058
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2059
			q->mq_map[i] = 0;
2060 2061
		}

2062
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2063
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2064

2065
		cpumask_set_cpu(i, hctx->cpumask);
2066 2067 2068
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2069

2070 2071
	mutex_unlock(&q->sysfs_lock);

2072
	queue_for_each_hw_ctx(q, hctx, i) {
2073
		/*
2074 2075
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2076 2077
		 */
		if (!hctx->nr_ctx) {
2078 2079 2080 2081
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2082 2083 2084
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2085
			hctx->tags = NULL;
2086 2087 2088
			continue;
		}

M
Ming Lei 已提交
2089 2090 2091
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2092 2093 2094 2095 2096
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2097
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2098

2099 2100 2101
		/*
		 * Initialize batch roundrobin counts
		 */
2102 2103 2104
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2105 2106
}

2107 2108 2109 2110
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2111
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2112 2113 2114 2115
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2116
	queue_for_each_hw_ctx(q, hctx, i) {
2117 2118 2119
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2120
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2121 2122 2123
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2124
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2125
		}
2126 2127 2128
	}
}

2129 2130
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2131 2132
{
	struct request_queue *q;
2133

2134 2135
	lockdep_assert_held(&set->tag_list_lock);

2136 2137
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2138
		queue_set_hctx_shared(q, shared);
2139 2140 2141 2142 2143 2144 2145 2146 2147
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2148 2149
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2150 2151 2152 2153 2154 2155
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2156
	mutex_unlock(&set->tag_list_lock);
2157 2158

	synchronize_rcu();
2159 2160 2161 2162 2163 2164 2165 2166
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2167 2168 2169 2170 2171 2172 2173 2174 2175

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2176
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2177

2178 2179 2180
	mutex_unlock(&set->tag_list_lock);
}

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2193 2194 2195
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2196
		kobject_put(&hctx->kobj);
2197
	}
2198

2199 2200
	q->mq_map = NULL;

2201 2202
	kfree(q->queue_hw_ctx);

2203 2204 2205 2206 2207 2208
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2209 2210 2211
	free_percpu(q->queue_ctx);
}

2212
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2242 2243
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2244
{
K
Keith Busch 已提交
2245 2246
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2247

K
Keith Busch 已提交
2248
	blk_mq_sysfs_unregister(q);
2249
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2250
		int node;
2251

K
Keith Busch 已提交
2252 2253 2254 2255
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2256
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2257
					GFP_KERNEL, node);
2258
		if (!hctxs[i])
K
Keith Busch 已提交
2259
			break;
2260

2261
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2262 2263 2264 2265 2266
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2267

2268
		atomic_set(&hctxs[i]->nr_active, 0);
2269
		hctxs[i]->numa_node = node;
2270
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2271 2272 2273 2274 2275 2276 2277 2278

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2279
	}
K
Keith Busch 已提交
2280 2281 2282 2283
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2284 2285
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2299 2300 2301
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2302
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2303 2304
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2305 2306 2307
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2308 2309
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2310
		goto err_exit;
K
Keith Busch 已提交
2311

2312 2313 2314
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2315 2316 2317 2318 2319
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2320
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2321 2322 2323 2324

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2325

2326
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2327
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2328 2329 2330

	q->nr_queues = nr_cpu_ids;

2331
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2332

2333 2334 2335
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2336 2337
	q->sg_reserved_size = INT_MAX;

2338
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2339 2340 2341
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2342
	blk_queue_make_request(q, blk_mq_make_request);
2343

2344 2345 2346 2347 2348
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2349 2350 2351 2352 2353
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2354 2355
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2356

2357
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2358
	blk_mq_add_queue_tag_set(set, q);
2359
	blk_mq_map_swqueue(q);
2360

2361 2362 2363 2364 2365 2366 2367 2368
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2369
	return q;
2370

2371
err_hctxs:
K
Keith Busch 已提交
2372
	kfree(q->queue_hw_ctx);
2373
err_percpu:
K
Keith Busch 已提交
2374
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2375 2376
err_exit:
	q->mq_ops = NULL;
2377 2378
	return ERR_PTR(-ENOMEM);
}
2379
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2380 2381 2382

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2383
	struct blk_mq_tag_set	*set = q->tag_set;
2384

2385
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2386
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2387 2388 2389
}

/* Basically redo blk_mq_init_queue with queue frozen */
2390
static void blk_mq_queue_reinit(struct request_queue *q)
2391
{
2392
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2393

2394
	blk_mq_debugfs_unregister_hctxs(q);
2395 2396
	blk_mq_sysfs_unregister(q);

2397 2398 2399 2400 2401 2402
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2403
	blk_mq_map_swqueue(q);
2404

2405
	blk_mq_sysfs_register(q);
2406
	blk_mq_debugfs_register_hctxs(q);
2407 2408
}

2409 2410 2411 2412
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2413 2414
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2415 2416 2417 2418 2419 2420
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2421
		blk_mq_free_rq_map(set->tags[i]);
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2461 2462 2463 2464 2465 2466 2467 2468
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2469 2470 2471 2472 2473 2474
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2475 2476
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2477 2478
	int ret;

B
Bart Van Assche 已提交
2479 2480
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2481 2482
	if (!set->nr_hw_queues)
		return -EINVAL;
2483
	if (!set->queue_depth)
2484 2485 2486 2487
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2488
	if (!set->ops->queue_rq)
2489 2490
		return -EINVAL;

2491 2492 2493 2494 2495
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2496

2497 2498 2499 2500 2501 2502 2503 2504 2505
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2506 2507 2508 2509 2510
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2511

K
Keith Busch 已提交
2512
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2513 2514
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2515
		return -ENOMEM;
2516

2517 2518 2519
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2520 2521 2522
	if (!set->mq_map)
		goto out_free_tags;

2523
	ret = blk_mq_update_queue_map(set);
2524 2525 2526 2527 2528
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2529
		goto out_free_mq_map;
2530

2531 2532 2533
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2534
	return 0;
2535 2536 2537 2538 2539

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2540 2541
	kfree(set->tags);
	set->tags = NULL;
2542
	return ret;
2543 2544 2545 2546 2547 2548 2549
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2550 2551
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2552

2553 2554 2555
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2556
	kfree(set->tags);
2557
	set->tags = NULL;
2558 2559 2560
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2561 2562 2563 2564 2565 2566
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2567
	if (!set)
2568 2569
		return -EINVAL;

2570 2571
	blk_mq_freeze_queue(q);

2572 2573
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2574 2575
		if (!hctx->tags)
			continue;
2576 2577 2578 2579
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2580 2581 2582 2583 2584 2585 2586 2587
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2588 2589 2590 2591 2592 2593 2594
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2595 2596
	blk_mq_unfreeze_queue(q);

2597 2598 2599
	return ret;
}

2600 2601
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2602 2603 2604
{
	struct request_queue *q;

2605 2606
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2616
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2617 2618
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2619
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2620 2621 2622 2623 2624
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2625 2626 2627 2628 2629 2630 2631

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2632 2633
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2660
	int bucket;
2661

2662 2663 2664 2665
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2666 2667
}

2668 2669 2670 2671 2672
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2673
	int bucket;
2674 2675 2676 2677 2678

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2679
	if (!blk_poll_stats_enable(q))
2680 2681 2682 2683 2684 2685 2686 2687
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2688 2689
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2690
	 */
2691 2692 2693 2694 2695 2696
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2697 2698 2699 2700

	return ret;
}

2701
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2702
				     struct blk_mq_hw_ctx *hctx,
2703 2704 2705 2706
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2707
	unsigned int nsecs;
2708 2709
	ktime_t kt;

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2728 2729 2730 2731 2732 2733 2734 2735
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2736
	kt = nsecs;
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2759 2760 2761 2762 2763
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2764 2765 2766 2767 2768 2769 2770
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2771
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2772 2773
		return true;

J
Jens Axboe 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2817 2818
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2819
	else {
2820
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2821 2822 2823 2824 2825 2826 2827 2828 2829
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2830 2831 2832 2833 2834

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2835 2836
static int __init blk_mq_init(void)
{
2837 2838
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2839 2840 2841
	return 0;
}
subsys_initcall(blk_mq_init);