blk-mq.c 69.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46

47 48 49 50
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
51
	ddir = rq_data_dir(rq);
52 53 54 55 56 57 58 59 60 61 62 63
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

64 65 66
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
67
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68
{
69 70 71
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
72 73
}

74 75 76 77 78 79
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
80 81
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 83 84 85 86
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
87
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 89
}

90
void blk_freeze_queue_start(struct request_queue *q)
91
{
92
	int freeze_depth;
93

94 95
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
96
		percpu_ref_kill(&q->q_usage_counter);
97
		blk_mq_run_hw_queues(q, false);
98
	}
99
}
100
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101

102
void blk_mq_freeze_queue_wait(struct request_queue *q)
103
{
104
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105
}
106
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107

108 109 110 111 112 113 114 115
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116

117 118 119 120
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
121
void blk_freeze_queue(struct request_queue *q)
122
{
123 124 125 126 127 128 129
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
130
	blk_freeze_queue_start(q);
131 132
	blk_mq_freeze_queue_wait(q);
}
133 134 135 136 137 138 139 140 141

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
142
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143

144
void blk_mq_unfreeze_queue(struct request_queue *q)
145
{
146
	int freeze_depth;
147

148 149 150
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
151
		percpu_ref_reinit(&q->q_usage_counter);
152
		wake_up_all(&q->mq_freeze_wq);
153
	}
154
}
155
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156

157
/**
158
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
159 160 161
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
162 163 164
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
165 166 167 168 169 170 171
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

172
	blk_mq_quiesce_queue_nowait(q);
173

174 175 176 177 178 179 180 181 182 183 184
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

185 186 187 188 189 190 191 192 193
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
194 195 196 197
	spin_lock_irq(q->queue_lock);
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irq(q->queue_lock);

198 199
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
200 201 202
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

203 204 205 206 207 208 209 210
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
211 212 213 214 215 216 217

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
218 219
}

220 221 222 223 224 225
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

226 227
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
228
{
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

245 246
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
247 248
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
249
	rq->cmd_flags = op;
250
	if (blk_queue_io_stat(data->q))
251
		rq->rq_flags |= RQF_IO_STAT;
252 253 254 255 256 257
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
258
	rq->start_time = jiffies;
259 260
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
261
	set_start_time_ns(rq);
262 263 264 265 266 267 268 269 270 271 272
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
273 274
	rq->timeout = 0;

275 276 277 278
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

279 280
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
281 282
}

283 284 285 286 287 288
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
289
	unsigned int tag;
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
305 306
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
307 308
	}

309 310
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
311 312
		blk_queue_exit(q);
		return NULL;
313 314
	}

315
	rq = blk_mq_rq_ctx_init(data, tag, op);
316 317
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
318
		if (e && e->type->ops.mq.prepare_request) {
319 320 321
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

322 323
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
324
		}
325 326 327
	}
	data->hctx->queued++;
	return rq;
328 329
}

330 331
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
332
{
333
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
334
	struct request *rq;
335
	int ret;
336

337
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
338 339
	if (ret)
		return ERR_PTR(ret);
340

341
	rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
342

343 344 345 346
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
347
		return ERR_PTR(-EWOULDBLOCK);
348 349 350 351

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
352 353
	return rq;
}
354
EXPORT_SYMBOL(blk_mq_alloc_request);
355

M
Ming Lin 已提交
356 357 358
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
359
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
360
	struct request *rq;
361
	unsigned int cpu;
M
Ming Lin 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

380 381 382 383
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
384 385 386 387
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
388
	}
389 390
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
391

392
	rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
393 394

	blk_queue_exit(q);
395 396 397 398 399

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
400 401 402
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

403
void blk_mq_free_request(struct request *rq)
404 405
{
	struct request_queue *q = rq->q;
406 407 408 409 410
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

411
	if (rq->rq_flags & RQF_ELVPRIV) {
412 413 414 415 416 417 418
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
419

420
	ctx->rq_completed[rq_is_sync(rq)]++;
421
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
422
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
423 424

	wbt_done(q->rq_wb, &rq->issue_stat);
425
	rq->rq_flags = 0;
426

427
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
428
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
429 430 431
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
432
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
433
	blk_mq_sched_restart(hctx);
434
	blk_queue_exit(q);
435
}
J
Jens Axboe 已提交
436
EXPORT_SYMBOL_GPL(blk_mq_free_request);
437

438
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
439
{
M
Ming Lei 已提交
440 441
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
442
	if (rq->end_io) {
J
Jens Axboe 已提交
443
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
444
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
445 446 447
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
448
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
449
	}
450
}
451
EXPORT_SYMBOL(__blk_mq_end_request);
452

453
void blk_mq_end_request(struct request *rq, blk_status_t error)
454 455 456
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
457
	__blk_mq_end_request(rq, error);
458
}
459
EXPORT_SYMBOL(blk_mq_end_request);
460

461
static void __blk_mq_complete_request_remote(void *data)
462
{
463
	struct request *rq = data;
464

465
	rq->q->softirq_done_fn(rq);
466 467
}

468
static void __blk_mq_complete_request(struct request *rq)
469 470
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
471
	bool shared = false;
472 473
	int cpu;

474 475 476 477 478 479 480
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
481
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
482 483 484
		rq->q->softirq_done_fn(rq);
		return;
	}
485 486

	cpu = get_cpu();
C
Christoph Hellwig 已提交
487 488 489 490
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
491
		rq->csd.func = __blk_mq_complete_request_remote;
492 493
		rq->csd.info = rq;
		rq->csd.flags = 0;
494
		smp_call_function_single_async(ctx->cpu, &rq->csd);
495
	} else {
496
		rq->q->softirq_done_fn(rq);
497
	}
498 499
	put_cpu();
}
500 501 502 503 504 505 506 507 508

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
509
void blk_mq_complete_request(struct request *rq)
510
{
511 512 513
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
514
		return;
515
	if (!blk_mark_rq_complete(rq))
516
		__blk_mq_complete_request(rq);
517 518
}
EXPORT_SYMBOL(blk_mq_complete_request);
519

520 521 522 523 524 525
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

526
void blk_mq_start_request(struct request *rq)
527 528 529
{
	struct request_queue *q = rq->q;

530 531
	blk_mq_sched_started_request(rq);

532 533
	trace_block_rq_issue(q, rq);

534
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
535
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
536
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
537
		wbt_issue(q->rq_wb, &rq->issue_stat);
538 539
	}

540
	blk_add_timer(rq);
541

542 543 544 545 546 547
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

548 549 550 551 552 553
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
554 555 556 557
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
558 559 560 561 562 563 564 565 566

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
567
}
568
EXPORT_SYMBOL(blk_mq_start_request);
569

570 571
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
572
 * flag isn't set yet, so there may be race with timeout handler,
573 574 575 576 577 578
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
579
static void __blk_mq_requeue_request(struct request *rq)
580 581 582 583
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
584
	wbt_requeue(q->rq_wb, &rq->issue_stat);
585
	blk_mq_sched_requeue_request(rq);
586

587 588 589 590
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
591 592
}

593
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
594 595 596 597
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
598
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
599 600 601
}
EXPORT_SYMBOL(blk_mq_requeue_request);

602 603 604
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
605
		container_of(work, struct request_queue, requeue_work.work);
606 607 608 609 610 611 612 613 614
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
615
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
616 617
			continue;

618
		rq->rq_flags &= ~RQF_SOFTBARRIER;
619
		list_del_init(&rq->queuelist);
620
		blk_mq_sched_insert_request(rq, true, false, false, true);
621 622 623 624 625
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
626
		blk_mq_sched_insert_request(rq, false, false, false, true);
627 628
	}

629
	blk_mq_run_hw_queues(q, false);
630 631
}

632 633
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
634 635 636 637 638 639 640 641
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
642
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
643 644 645

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
646
		rq->rq_flags |= RQF_SOFTBARRIER;
647 648 649 650 651
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
652 653 654

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
655 656 657 658 659
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
660
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
661 662 663
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

664 665 666 667 668 669 670 671
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

672 673
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
674 675
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
676
		return tags->rqs[tag];
677
	}
678 679

	return NULL;
680 681 682
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

683
struct blk_mq_timeout_data {
684 685
	unsigned long next;
	unsigned int next_set;
686 687
};

688
void blk_mq_rq_timed_out(struct request *req, bool reserved)
689
{
J
Jens Axboe 已提交
690
	const struct blk_mq_ops *ops = req->q->mq_ops;
691
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
692 693 694 695 696 697 698

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
699
	 * both flags will get cleared. So check here again, and ignore
700 701
	 * a timeout event with a request that isn't active.
	 */
702 703
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
704

705
	if (ops->timeout)
706
		ret = ops->timeout(req, reserved);
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
722
}
723

724 725 726 727
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
728

729
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
730
		return;
731

732 733 734 735 736 737 738 739 740 741 742 743 744
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
745 746
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
747
			blk_mq_rq_timed_out(rq, reserved);
748 749 750 751
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
752 753
}

754
static void blk_mq_timeout_work(struct work_struct *work)
755
{
756 757
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
758 759 760 761 762
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
763

764 765 766 767 768 769 770 771 772
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
773
	 * blk_freeze_queue_start, and the moment the last request is
774 775 776 777
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
778 779
		return;

780
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
781

782 783 784
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
785
	} else {
786 787
		struct blk_mq_hw_ctx *hctx;

788 789 790 791 792
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
793
	}
794
	blk_queue_exit(q);
795 796
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

815 816 817 818
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
819
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
820
{
821 822 823 824
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
825

826
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
827
}
828
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
829

830 831 832 833
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
834

835
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
836 837
}

838 839
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
840 841 842 843 844 845 846
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

847 848
	might_sleep_if(wait);

849 850
	if (rq->tag != -1)
		goto done;
851

852 853 854
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

855 856
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
857 858 859 860
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
861 862 863
		data.hctx->tags->rqs[rq->tag] = rq;
	}

864 865 866 867
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
868 869
}

870 871
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
872 873 874 875 876 877 878 879 880 881
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

964
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
965
{
966
	struct blk_mq_hw_ctx *hctx;
967
	struct request *rq;
968
	int errors, queued;
969

970 971 972
	if (list_empty(list))
		return false;

973 974 975
	/*
	 * Now process all the entries, sending them to the driver.
	 */
976
	errors = queued = 0;
977
	do {
978
		struct blk_mq_queue_data bd;
979
		blk_status_t ret;
980

981
		rq = list_first_entry(list, struct request, queuelist);
982 983 984
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
985 986

			/*
987 988
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
989
			 */
990 991 992 993 994 995 996 997 998
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
999
				break;
1000
		}
1001

1002 1003
		list_del_init(&rq->queuelist);

1004
		bd.rq = rq;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1018 1019

		ret = q->mq_ops->queue_rq(hctx, &bd);
1020
		if (ret == BLK_STS_RESOURCE) {
1021
			blk_mq_put_driver_tag_hctx(hctx, rq);
1022
			list_add(&rq->queuelist, list);
1023
			__blk_mq_requeue_request(rq);
1024
			break;
1025 1026 1027
		}

		if (unlikely(ret != BLK_STS_OK)) {
1028
			errors++;
1029
			blk_mq_end_request(rq, BLK_STS_IOERR);
1030
			continue;
1031 1032
		}

1033
		queued++;
1034
	} while (!list_empty(list));
1035

1036
	hctx->dispatched[queued_to_index(queued)]++;
1037 1038 1039 1040 1041

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1042
	if (!list_empty(list)) {
1043
		/*
1044 1045
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1046 1047 1048 1049
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1050
		spin_lock(&hctx->lock);
1051
		list_splice_init(list, &hctx->dispatch);
1052
		spin_unlock(&hctx->lock);
1053

1054
		/*
1055 1056 1057
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1058
		 *
1059 1060 1061 1062
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1063
		 *
1064 1065 1066 1067 1068 1069 1070
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1071
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1072
		 *   and dm-rq.
1073
		 */
1074 1075
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1076
			blk_mq_run_hw_queue(hctx, true);
1077
	}
1078

1079
	return (queued + errors) != 0;
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1091
		blk_mq_sched_dispatch_requests(hctx);
1092 1093
		rcu_read_unlock();
	} else {
1094 1095
		might_sleep();

1096
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1097
		blk_mq_sched_dispatch_requests(hctx);
1098 1099 1100 1101
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1102 1103 1104 1105 1106 1107 1108 1109
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1110 1111
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1112 1113

	if (--hctx->next_cpu_batch <= 0) {
1114
		int next_cpu;
1115 1116 1117 1118 1119 1120 1121 1122 1123

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1124
	return hctx->next_cpu;
1125 1126
}

1127 1128
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1129
{
1130 1131
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1132 1133
		return;

1134
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1135 1136
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1137
			__blk_mq_run_hw_queue(hctx);
1138
			put_cpu();
1139 1140
			return;
		}
1141

1142
		put_cpu();
1143
	}
1144

1145 1146 1147
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1159
}
O
Omar Sandoval 已提交
1160
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1161

1162
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1163 1164 1165 1166 1167
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1168
		if (!blk_mq_hctx_has_pending(hctx) ||
1169
		    blk_mq_hctx_stopped(hctx))
1170 1171
			continue;

1172
		blk_mq_run_hw_queue(hctx, async);
1173 1174
	}
}
1175
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1197
static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1198
{
1199 1200 1201 1202 1203
	if (sync)
		cancel_delayed_work_sync(&hctx->run_work);
	else
		cancel_delayed_work(&hctx->run_work);

1204 1205
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
1206 1207 1208 1209 1210

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	__blk_mq_stop_hw_queue(hctx, false);
}
1211 1212
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1213
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1214 1215 1216 1217 1218
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
1219 1220 1221 1222 1223 1224
		__blk_mq_stop_hw_queue(hctx, sync);
}

void blk_mq_stop_hw_queues(struct request_queue *q)
{
	__blk_mq_stop_hw_queues(q, false);
1225 1226 1227
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1228 1229 1230
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1231

1232
	blk_mq_run_hw_queue(hctx, false);
1233 1234 1235
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1256
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1257 1258 1259 1260
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1261 1262
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1263 1264 1265
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1266
static void blk_mq_run_work_fn(struct work_struct *work)
1267 1268 1269
{
	struct blk_mq_hw_ctx *hctx;

1270
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1271

1272 1273 1274 1275 1276 1277 1278 1279
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1280

1281 1282 1283
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1284 1285 1286 1287

	__blk_mq_run_hw_queue(hctx);
}

1288 1289 1290

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1291 1292
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1293

1294 1295 1296 1297 1298
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1299
	blk_mq_stop_hw_queue(hctx);
1300 1301 1302 1303
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1304 1305 1306
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1307 1308 1309
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1310
{
J
Jens Axboe 已提交
1311 1312
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1313 1314
	trace_block_rq_insert(hctx->queue, rq);

1315 1316 1317 1318
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1319
}
1320

1321 1322
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1323 1324 1325
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1326
	__blk_mq_insert_req_list(hctx, rq, at_head);
1327 1328 1329
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1330 1331
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1343
		BUG_ON(rq->mq_ctx != ctx);
1344
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1345
		__blk_mq_insert_req_list(hctx, rq, false);
1346
	}
1347
	blk_mq_hctx_mark_pending(hctx, ctx);
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1384 1385 1386 1387
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1404 1405 1406
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1407 1408 1409 1410 1411
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1412
	blk_init_request_from_bio(rq, bio);
1413

1414
	blk_account_io_start(rq, true);
1415 1416
}

1417 1418 1419 1420 1421 1422
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1423 1424 1425 1426 1427 1428 1429
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1430
}
1431

1432 1433
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1434 1435 1436 1437
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1438 1439
}

M
Ming Lei 已提交
1440 1441 1442
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1443 1444 1445 1446
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1447
		.last = true,
1448
	};
1449
	blk_qc_t new_cookie;
1450
	blk_status_t ret;
M
Ming Lei 已提交
1451 1452
	bool run_queue = true;

1453 1454
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1455 1456 1457
		run_queue = false;
		goto insert;
	}
1458

1459
	if (q->elevator)
1460 1461
		goto insert;

M
Ming Lei 已提交
1462
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1463 1464 1465 1466
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1467 1468 1469 1470 1471 1472
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1473 1474
	switch (ret) {
	case BLK_STS_OK:
1475
		*cookie = new_cookie;
1476
		return;
1477 1478 1479 1480
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1481
		*cookie = BLK_QC_T_NONE;
1482
		blk_mq_end_request(rq, ret);
1483
		return;
1484
	}
1485

1486
insert:
M
Ming Lei 已提交
1487
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1488 1489
}

1490 1491 1492 1493 1494
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1495
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1496 1497
		rcu_read_unlock();
	} else {
1498 1499 1500 1501 1502
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
M
Ming Lei 已提交
1503
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1504 1505 1506 1507
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1508
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1509
{
1510
	const int is_sync = op_is_sync(bio->bi_opf);
1511
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1512
	struct blk_mq_alloc_data data = { .flags = 0 };
1513
	struct request *rq;
1514
	unsigned int request_count = 0;
1515
	struct blk_plug *plug;
1516
	struct request *same_queue_rq = NULL;
1517
	blk_qc_t cookie;
J
Jens Axboe 已提交
1518
	unsigned int wb_acct;
1519 1520 1521

	blk_queue_bounce(q, &bio);

1522
	blk_queue_split(q, &bio);
1523

1524
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1525
		bio_io_error(bio);
1526
		return BLK_QC_T_NONE;
1527 1528
	}

1529 1530 1531
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1532

1533 1534 1535
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1536 1537
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1538 1539
	trace_block_getrq(q, bio, bio->bi_opf);

1540
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1541 1542
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1543
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1544 1545 1546
	}

	wbt_track(&rq->issue_stat, wb_acct);
1547

1548
	cookie = request_to_qc_t(data.hctx, rq);
1549

1550
	plug = current->plug;
1551
	if (unlikely(is_flush_fua)) {
1552
		blk_mq_put_ctx(data.ctx);
1553
		blk_mq_bio_to_request(rq, bio);
1554 1555 1556
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1557
		} else {
1558 1559
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1560
		}
1561
	} else if (plug && q->nr_hw_queues == 1) {
1562 1563
		struct request *last = NULL;

1564
		blk_mq_put_ctx(data.ctx);
1565
		blk_mq_bio_to_request(rq, bio);
1566 1567 1568 1569 1570 1571 1572

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1573 1574 1575
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1576
		if (!request_count)
1577
			trace_block_plug(q);
1578 1579
		else
			last = list_entry_rq(plug->mq_list.prev);
1580

1581 1582
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1583 1584
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1585
		}
1586

1587
		list_add_tail(&rq->queuelist, &plug->mq_list);
1588
	} else if (plug && !blk_queue_nomerges(q)) {
1589
		blk_mq_bio_to_request(rq, bio);
1590 1591

		/*
1592
		 * We do limited plugging. If the bio can be merged, do that.
1593 1594
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1595 1596
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1597
		 */
1598 1599 1600 1601 1602 1603
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1604 1605
		blk_mq_put_ctx(data.ctx);

1606 1607 1608
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1609 1610
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1611
		}
1612
	} else if (q->nr_hw_queues > 1 && is_sync) {
1613
		blk_mq_put_ctx(data.ctx);
1614 1615
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1616
	} else if (q->elevator) {
1617
		blk_mq_put_ctx(data.ctx);
1618
		blk_mq_bio_to_request(rq, bio);
1619
		blk_mq_sched_insert_request(rq, false, true, true, true);
1620
	} else {
1621
		blk_mq_put_ctx(data.ctx);
1622 1623
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1624
		blk_mq_run_hw_queue(data.hctx, true);
1625
	}
1626

1627
	return cookie;
1628 1629
}

1630 1631
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1632
{
1633
	struct page *page;
1634

1635
	if (tags->rqs && set->ops->exit_request) {
1636
		int i;
1637

1638
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1639 1640 1641
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1642
				continue;
1643
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1644
			tags->static_rqs[i] = NULL;
1645
		}
1646 1647
	}

1648 1649
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1650
		list_del_init(&page->lru);
1651 1652 1653 1654 1655
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1656 1657
		__free_pages(page, page->private);
	}
1658
}
1659

1660 1661
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1662
	kfree(tags->rqs);
1663
	tags->rqs = NULL;
J
Jens Axboe 已提交
1664 1665
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1666

1667
	blk_mq_free_tags(tags);
1668 1669
}

1670 1671 1672 1673
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1674
{
1675
	struct blk_mq_tags *tags;
1676
	int node;
1677

1678 1679 1680 1681 1682
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1683
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1684 1685
	if (!tags)
		return NULL;
1686

1687
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1688
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1689
				 node);
1690 1691 1692 1693
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1694

J
Jens Axboe 已提交
1695 1696
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1697
				 node);
J
Jens Axboe 已提交
1698 1699 1700 1701 1702 1703
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1717 1718 1719 1720 1721
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1722 1723 1724

	INIT_LIST_HEAD(&tags->page_list);

1725 1726 1727 1728
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1729
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1730
				cache_line_size());
1731
	left = rq_size * depth;
1732

1733
	for (i = 0; i < depth; ) {
1734 1735 1736 1737 1738
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1739
		while (this_order && left < order_to_size(this_order - 1))
1740 1741 1742
			this_order--;

		do {
1743
			page = alloc_pages_node(node,
1744
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1745
				this_order);
1746 1747 1748 1749 1750 1751 1752 1753 1754
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1755
			goto fail;
1756 1757

		page->private = this_order;
1758
		list_add_tail(&page->lru, &tags->page_list);
1759 1760

		p = page_address(page);
1761 1762 1763 1764
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1765
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1766
		entries_per_page = order_to_size(this_order) / rq_size;
1767
		to_do = min(entries_per_page, depth - i);
1768 1769
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1770 1771 1772
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1773
			if (set->ops->init_request) {
1774
				if (set->ops->init_request(set, rq, hctx_idx,
1775
						node)) {
J
Jens Axboe 已提交
1776
					tags->static_rqs[i] = NULL;
1777
					goto fail;
1778
				}
1779 1780
			}

1781 1782 1783 1784
			p += rq_size;
			i++;
		}
	}
1785
	return 0;
1786

1787
fail:
1788 1789
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1790 1791
}

J
Jens Axboe 已提交
1792 1793 1794 1795 1796
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1797
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1798
{
1799
	struct blk_mq_hw_ctx *hctx;
1800 1801 1802
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1803
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1804
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1805 1806 1807 1808 1809 1810 1811 1812 1813

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1814
		return 0;
1815

J
Jens Axboe 已提交
1816 1817 1818
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1819 1820

	blk_mq_run_hw_queue(hctx, true);
1821
	return 0;
1822 1823
}

1824
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1825
{
1826 1827
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1828 1829
}

1830
/* hctx->ctxs will be freed in queue's release handler */
1831 1832 1833 1834
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1835 1836
	blk_mq_debugfs_unregister_hctx(hctx);

1837 1838
	blk_mq_tag_idle(hctx);

1839
	if (set->ops->exit_request)
1840
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1841

1842 1843
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1844 1845 1846
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1847 1848 1849
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1850
	blk_mq_remove_cpuhp(hctx);
1851
	blk_free_flush_queue(hctx->fq);
1852
	sbitmap_free(&hctx->ctx_map);
1853 1854
}

M
Ming Lei 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1864
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1865 1866 1867
	}
}

1868 1869 1870
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1871
{
1872 1873 1874 1875 1876 1877
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1878
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1879 1880 1881 1882
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1883
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1884

1885
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1886 1887

	hctx->tags = set->tags[hctx_idx];
1888 1889

	/*
1890 1891
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1892
	 */
1893 1894 1895 1896
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1897

1898 1899
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1900
		goto free_ctxs;
1901

1902
	hctx->nr_ctx = 0;
1903

1904 1905 1906
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1907

1908 1909 1910
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1911 1912
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1913
		goto sched_exit_hctx;
1914

1915
	if (set->ops->init_request &&
1916 1917
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1918
		goto free_fq;
1919

1920 1921 1922
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1923 1924
	blk_mq_debugfs_register_hctx(q, hctx);

1925
	return 0;
1926

1927 1928
 free_fq:
	kfree(hctx->fq);
1929 1930
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1931 1932 1933
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1934
 free_bitmap:
1935
	sbitmap_free(&hctx->ctx_map);
1936 1937 1938
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1939
	blk_mq_remove_cpuhp(hctx);
1940 1941
	return -1;
}
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1961
		hctx = blk_mq_map_queue(q, i);
1962

1963 1964 1965 1966 1967
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1968
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1969 1970 1971
	}
}

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1994 1995 1996 1997 1998
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1999 2000
}

2001 2002
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2003
{
2004
	unsigned int i, hctx_idx;
2005 2006
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2007
	struct blk_mq_tag_set *set = q->tag_set;
2008

2009 2010 2011 2012 2013
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2014
	queue_for_each_hw_ctx(q, hctx, i) {
2015
		cpumask_clear(hctx->cpumask);
2016 2017 2018 2019 2020 2021
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2022
	for_each_possible_cpu(i) {
2023
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2024
		if (!cpumask_test_cpu(i, online_mask))
2025 2026
			continue;

2027 2028
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2029 2030
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2031 2032 2033 2034 2035 2036
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2037
			q->mq_map[i] = 0;
2038 2039
		}

2040
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2041
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2042

2043
		cpumask_set_cpu(i, hctx->cpumask);
2044 2045 2046
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2047

2048 2049
	mutex_unlock(&q->sysfs_lock);

2050
	queue_for_each_hw_ctx(q, hctx, i) {
2051
		/*
2052 2053
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2054 2055
		 */
		if (!hctx->nr_ctx) {
2056 2057 2058 2059
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2060 2061 2062
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2063
			hctx->tags = NULL;
2064 2065 2066
			continue;
		}

M
Ming Lei 已提交
2067 2068 2069
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2070 2071 2072 2073 2074
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2075
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2076

2077 2078 2079
		/*
		 * Initialize batch roundrobin counts
		 */
2080 2081 2082
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2083 2084
}

2085
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2086 2087 2088 2089
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2101

2102 2103
	lockdep_assert_held(&set->tag_list_lock);

2104 2105
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2106
		queue_set_hctx_shared(q, shared);
2107 2108 2109 2110 2111 2112 2113 2114 2115
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2116 2117
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2118 2119 2120 2121 2122 2123
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2124
	mutex_unlock(&set->tag_list_lock);
2125 2126

	synchronize_rcu();
2127 2128 2129 2130 2131 2132 2133 2134
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2135 2136 2137 2138 2139 2140 2141 2142 2143

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2144
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2145

2146 2147 2148
	mutex_unlock(&set->tag_list_lock);
}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2161 2162 2163
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2164
		kobject_put(&hctx->kobj);
2165
	}
2166

2167 2168
	q->mq_map = NULL;

2169 2170
	kfree(q->queue_hw_ctx);

2171 2172 2173 2174 2175 2176
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2177 2178 2179
	free_percpu(q->queue_ctx);
}

2180
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2196 2197
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2198
{
K
Keith Busch 已提交
2199 2200
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2201

K
Keith Busch 已提交
2202
	blk_mq_sysfs_unregister(q);
2203
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2204
		int node;
2205

K
Keith Busch 已提交
2206 2207 2208 2209
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2210 2211
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2212
		if (!hctxs[i])
K
Keith Busch 已提交
2213
			break;
2214

2215
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2216 2217 2218 2219 2220
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2221

2222
		atomic_set(&hctxs[i]->nr_active, 0);
2223
		hctxs[i]->numa_node = node;
2224
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2225 2226 2227 2228 2229 2230 2231 2232

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2233
	}
K
Keith Busch 已提交
2234 2235 2236 2237
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2238 2239
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2253 2254 2255
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2256
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2257 2258
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2259 2260 2261
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2262 2263
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2264
		goto err_exit;
K
Keith Busch 已提交
2265

2266 2267 2268
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2269 2270 2271 2272 2273
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2274
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2275 2276 2277 2278

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2279

2280
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2281
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2282 2283 2284

	q->nr_queues = nr_cpu_ids;

2285
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2286

2287 2288 2289
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2290 2291
	q->sg_reserved_size = INT_MAX;

2292
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2293 2294 2295
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2296
	blk_queue_make_request(q, blk_mq_make_request);
2297

2298 2299 2300 2301 2302
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2303 2304 2305 2306 2307
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2308 2309
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2310

2311
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2312

2313
	get_online_cpus();
2314
	mutex_lock(&all_q_mutex);
2315

2316
	list_add_tail(&q->all_q_node, &all_q_list);
2317
	blk_mq_add_queue_tag_set(set, q);
2318
	blk_mq_map_swqueue(q, cpu_online_mask);
2319

2320
	mutex_unlock(&all_q_mutex);
2321
	put_online_cpus();
2322

2323 2324 2325 2326 2327 2328 2329 2330
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2331
	return q;
2332

2333
err_hctxs:
K
Keith Busch 已提交
2334
	kfree(q->queue_hw_ctx);
2335
err_percpu:
K
Keith Busch 已提交
2336
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2337 2338
err_exit:
	q->mq_ops = NULL;
2339 2340
	return ERR_PTR(-ENOMEM);
}
2341
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2342 2343 2344

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2345
	struct blk_mq_tag_set	*set = q->tag_set;
2346

2347 2348 2349 2350
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2351 2352
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2353
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2354 2355 2356
}

/* Basically redo blk_mq_init_queue with queue frozen */
2357 2358
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2359
{
2360
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2361

2362
	blk_mq_debugfs_unregister_hctxs(q);
2363 2364
	blk_mq_sysfs_unregister(q);

2365 2366 2367 2368 2369 2370
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2371
	blk_mq_map_swqueue(q, online_mask);
2372

2373
	blk_mq_sysfs_register(q);
2374
	blk_mq_debugfs_register_hctxs(q);
2375 2376
}

2377 2378 2379 2380 2381 2382 2383 2384
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2385 2386 2387 2388
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2389 2390 2391 2392 2393 2394 2395 2396
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2397
		blk_freeze_queue_start(q);
2398
	list_for_each_entry(q, &all_q_list, all_q_node)
2399 2400
		blk_mq_freeze_queue_wait(q);

2401
	list_for_each_entry(q, &all_q_list, all_q_node)
2402
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2403 2404 2405 2406

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2407
	mutex_unlock(&all_q_mutex);
2408 2409 2410 2411
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2412
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2428 2429 2430 2431
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2432 2433 2434 2435 2436 2437 2438
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2439 2440
}

2441 2442 2443 2444
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2445 2446
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2447 2448 2449 2450 2451 2452
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2453
		blk_mq_free_rq_map(set->tags[i]);
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2493 2494 2495 2496 2497 2498 2499 2500
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2501 2502 2503 2504 2505 2506
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2507 2508
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2509 2510
	int ret;

B
Bart Van Assche 已提交
2511 2512
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2513 2514
	if (!set->nr_hw_queues)
		return -EINVAL;
2515
	if (!set->queue_depth)
2516 2517 2518 2519
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2520
	if (!set->ops->queue_rq)
2521 2522
		return -EINVAL;

2523 2524 2525 2526 2527
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2528

2529 2530 2531 2532 2533 2534 2535 2536 2537
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2538 2539 2540 2541 2542
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2543

K
Keith Busch 已提交
2544
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2545 2546
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2547
		return -ENOMEM;
2548

2549 2550 2551
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2552 2553 2554
	if (!set->mq_map)
		goto out_free_tags;

2555
	ret = blk_mq_update_queue_map(set);
2556 2557 2558 2559 2560
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2561
		goto out_free_mq_map;
2562

2563 2564 2565
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2566
	return 0;
2567 2568 2569 2570 2571

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2572 2573
	kfree(set->tags);
	set->tags = NULL;
2574
	return ret;
2575 2576 2577 2578 2579 2580 2581
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2582 2583
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2584

2585 2586 2587
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2588
	kfree(set->tags);
2589
	set->tags = NULL;
2590 2591 2592
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2593 2594 2595 2596 2597 2598
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2599
	if (!set)
2600 2601
		return -EINVAL;

2602 2603
	blk_mq_freeze_queue(q);

2604 2605
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2606 2607
		if (!hctx->tags)
			continue;
2608 2609 2610 2611
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2612 2613 2614 2615 2616 2617 2618 2619
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2620 2621 2622 2623 2624 2625 2626
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2627 2628
	blk_mq_unfreeze_queue(q);

2629 2630 2631
	return ret;
}

2632 2633
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2634 2635 2636
{
	struct request_queue *q;

2637 2638
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2639 2640 2641 2642 2643 2644 2645 2646 2647
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2648
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2649 2650 2651 2652 2653 2654 2655 2656
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2657 2658 2659 2660 2661 2662 2663

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2664 2665
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2692
	int bucket;
2693

2694 2695 2696 2697
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2698 2699
}

2700 2701 2702 2703 2704
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2705
	int bucket;
2706 2707 2708 2709 2710

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2711
	if (!blk_poll_stats_enable(q))
2712 2713 2714 2715 2716 2717 2718 2719
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2720 2721
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2722
	 */
2723 2724 2725 2726 2727 2728
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2729 2730 2731 2732

	return ret;
}

2733
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2734
				     struct blk_mq_hw_ctx *hctx,
2735 2736 2737 2738
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2739
	unsigned int nsecs;
2740 2741
	ktime_t kt;

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2760 2761 2762 2763 2764 2765 2766 2767
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2768
	kt = nsecs;
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2791 2792 2793 2794 2795
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2796 2797 2798 2799 2800 2801 2802
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2803
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2804 2805
		return true;

J
Jens Axboe 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2849 2850
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2851
	else {
2852
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2853 2854 2855 2856 2857 2858 2859 2860 2861
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2862 2863 2864 2865 2866

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2877 2878
static int __init blk_mq_init(void)
{
2879 2880
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2881

2882 2883 2884
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2885 2886 2887
	return 0;
}
subsys_initcall(blk_mq_init);