blk-mq.c 69.1 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
48
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49
{
50 51 52
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
53 54
}

55 56 57 58 59 60
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
61 62
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 64 65 66 67
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
68
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 70
}

71
void blk_freeze_queue_start(struct request_queue *q)
72
{
73
	int freeze_depth;
74

75 76
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
77
		percpu_ref_kill(&q->q_usage_counter);
78
		blk_mq_run_hw_queues(q, false);
79
	}
80
}
81
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82

83
void blk_mq_freeze_queue_wait(struct request_queue *q)
84
{
85
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86
}
87
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88

89 90 91 92 93 94 95 96
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111
	blk_freeze_queue_start(q);
112 113
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

165 166 167 168 169 170 171 172
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
173 174 175 176 177 178 179

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
180 181
}

182 183 184 185 186 187
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

188 189
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
190
{
191 192 193
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
194
	rq->mq_ctx = ctx;
195
	rq->cmd_flags = op;
196 197
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
198 199 200 201 202 203
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
204
	rq->start_time = jiffies;
205 206
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
207
	set_start_time_ns(rq);
208 209 210 211 212 213 214 215 216 217 218 219
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
220 221
	rq->timeout = 0;

222 223 224 225
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

226
	ctx->rq_dispatched[op_is_sync(op)]++;
227
}
228
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229

230 231
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
232 233 234 235
{
	struct request *rq;
	unsigned int tag;

236
	tag = blk_mq_get_tag(data);
237
	if (tag != BLK_MQ_TAG_FAIL) {
238 239 240
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
241

242 243 244 245
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
246 247 248 249
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
250 251
			rq->tag = tag;
			rq->internal_tag = -1;
252
			data->hctx->tags->rqs[rq->tag] = rq;
253 254
		}

255
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 257 258 259 260
		return rq;
	}

	return NULL;
}
261
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262

263 264
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
265
{
266
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
267
	struct request *rq;
268
	int ret;
269

270
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 272
	if (ret)
		return ERR_PTR(ret);
273

274
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275

276 277 278 279
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
280
		return ERR_PTR(-EWOULDBLOCK);
281 282 283 284

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288

M
Ming Lin 已提交
289 290 291
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
292
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
293
	struct request *rq;
294
	unsigned int cpu;
M
Ming Lin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

313 314 315 316
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
317 318 319 320
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
321
	}
322 323
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
324

325
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326 327

	blk_queue_exit(q);
328 329 330 331 332

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
333 334 335
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

336 337
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
338
{
339
	const int sched_tag = rq->internal_tag;
340 341
	struct request_queue *q = rq->q;

342
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
343
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
344 345

	wbt_done(q->rq_wb, &rq->issue_stat);
346
	rq->rq_flags = 0;
347

348
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350 351 352 353
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
354
	blk_mq_sched_restart(hctx);
355
	blk_queue_exit(q);
356 357
}

358
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359
				     struct request *rq)
360 361 362 363
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
364 365 366 367 368 369
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370 371 372 373
}

void blk_mq_free_request(struct request *rq)
{
374
	blk_mq_sched_put_request(rq);
375
}
J
Jens Axboe 已提交
376
EXPORT_SYMBOL_GPL(blk_mq_free_request);
377

378
inline void __blk_mq_end_request(struct request *rq, int error)
379
{
M
Ming Lei 已提交
380 381
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
382
	if (rq->end_io) {
J
Jens Axboe 已提交
383
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
384
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
385 386 387
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
388
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
389
	}
390
}
391
EXPORT_SYMBOL(__blk_mq_end_request);
392

393
void blk_mq_end_request(struct request *rq, int error)
394 395 396
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
397
	__blk_mq_end_request(rq, error);
398
}
399
EXPORT_SYMBOL(blk_mq_end_request);
400

401
static void __blk_mq_complete_request_remote(void *data)
402
{
403
	struct request *rq = data;
404

405
	rq->q->softirq_done_fn(rq);
406 407
}

408
static void blk_mq_ipi_complete_request(struct request *rq)
409 410
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
411
	bool shared = false;
412 413
	int cpu;

C
Christoph Hellwig 已提交
414
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
415 416 417
		rq->q->softirq_done_fn(rq);
		return;
	}
418 419

	cpu = get_cpu();
C
Christoph Hellwig 已提交
420 421 422 423
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
424
		rq->csd.func = __blk_mq_complete_request_remote;
425 426
		rq->csd.info = rq;
		rq->csd.flags = 0;
427
		smp_call_function_single_async(ctx->cpu, &rq->csd);
428
	} else {
429
		rq->q->softirq_done_fn(rq);
430
	}
431 432
	put_cpu();
}
433

434 435 436
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
437 438
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
439 440 441
	}
}

442
static void __blk_mq_complete_request(struct request *rq)
443 444 445
{
	struct request_queue *q = rq->q;

446 447
	blk_mq_stat_add(rq);

448
	if (!q->softirq_done_fn)
449
		blk_mq_end_request(rq, rq->errors);
450 451 452 453
	else
		blk_mq_ipi_complete_request(rq);
}

454 455 456 457 458 459 460 461
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
462
void blk_mq_complete_request(struct request *rq, int error)
463
{
464 465 466
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
467
		return;
468 469
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
470
		__blk_mq_complete_request(rq);
471
	}
472 473
}
EXPORT_SYMBOL(blk_mq_complete_request);
474

475 476 477 478 479 480
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

481
void blk_mq_start_request(struct request *rq)
482 483 484
{
	struct request_queue *q = rq->q;

485 486
	blk_mq_sched_started_request(rq);

487 488
	trace_block_rq_issue(q, rq);

489
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
490
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
491
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
492
		wbt_issue(q->rq_wb, &rq->issue_stat);
493 494
	}

495
	blk_add_timer(rq);
496

497 498 499 500 501 502
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

503 504 505 506 507 508
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
509 510 511 512
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
513 514 515 516 517 518 519 520 521

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
522
}
523
EXPORT_SYMBOL(blk_mq_start_request);
524

525 526
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
527
 * flag isn't set yet, so there may be race with timeout handler,
528 529 530 531 532 533
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
534
static void __blk_mq_requeue_request(struct request *rq)
535 536 537 538
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
539
	wbt_requeue(q->rq_wb, &rq->issue_stat);
540
	blk_mq_sched_requeue_request(rq);
541

542 543 544 545
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
546 547
}

548
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
549 550 551 552
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
553
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
554 555 556
}
EXPORT_SYMBOL(blk_mq_requeue_request);

557 558 559
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
560
		container_of(work, struct request_queue, requeue_work.work);
561 562 563 564 565 566 567 568 569
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
570
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
571 572
			continue;

573
		rq->rq_flags &= ~RQF_SOFTBARRIER;
574
		list_del_init(&rq->queuelist);
575
		blk_mq_sched_insert_request(rq, true, false, false, true);
576 577 578 579 580
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
581
		blk_mq_sched_insert_request(rq, false, false, false, true);
582 583
	}

584
	blk_mq_run_hw_queues(q, false);
585 586
}

587 588
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
589 590 591 592 593 594 595 596
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
597
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
598 599 600

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
601
		rq->rq_flags |= RQF_SOFTBARRIER;
602 603 604 605 606
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
607 608 609

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
610 611 612 613 614
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
615
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
616 617 618
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

619 620 621 622 623 624 625 626
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

647 648
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
649 650
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
651
		return tags->rqs[tag];
652
	}
653 654

	return NULL;
655 656 657
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

658
struct blk_mq_timeout_data {
659 660
	unsigned long next;
	unsigned int next_set;
661 662
};

663
void blk_mq_rq_timed_out(struct request *req, bool reserved)
664
{
J
Jens Axboe 已提交
665
	const struct blk_mq_ops *ops = req->q->mq_ops;
666
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
667 668 669 670 671 672 673

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
674
	 * both flags will get cleared. So check here again, and ignore
675 676
	 * a timeout event with a request that isn't active.
	 */
677 678
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
679

680
	if (ops->timeout)
681
		ret = ops->timeout(req, reserved);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
697
}
698

699 700 701 702
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
703

704
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
705
		return;
706

707 708 709 710 711 712 713 714 715 716 717 718 719
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
720 721
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
722
			blk_mq_rq_timed_out(rq, reserved);
723 724 725 726
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
727 728
}

729
static void blk_mq_timeout_work(struct work_struct *work)
730
{
731 732
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
733 734 735 736 737
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
738

739 740 741 742 743 744 745 746 747
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
748
	 * blk_freeze_queue_start, and the moment the last request is
749 750 751 752
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
753 754
		return;

755
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
756

757 758 759
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
760
	} else {
761 762
		struct blk_mq_hw_ctx *hctx;

763 764 765 766 767
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
768
	}
769
	blk_queue_exit(q);
770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
784
		bool merged = false;
785 786 787 788 789 790 791

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

792 793 794 795
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
796
			break;
797 798 799
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
800
			break;
801 802
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
803
			break;
804 805
		default:
			continue;
806
		}
807 808 809 810

		if (merged)
			ctx->rq_merged++;
		return merged;
811 812 813 814 815
	}

	return false;
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

834 835 836 837
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
838
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
839
{
840 841 842 843
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
844

845
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
846
}
847
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
848

849 850 851 852
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
853

854
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
855 856
}

857 858
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
859 860 861 862 863 864 865
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

866 867
	if (rq->tag != -1)
		goto done;
868

869 870 871
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

872 873
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
874 875 876 877
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
878 879 880
		data.hctx->tags->rqs[rq->tag] = rq;
	}

881 882 883 884
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
885 886
}

887 888
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
889 890 891 892 893 894 895 896 897 898
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

981
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
982
{
983
	struct blk_mq_hw_ctx *hctx;
984
	struct request *rq;
985
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
986

987 988 989
	if (list_empty(list))
		return false;

990 991 992
	/*
	 * Now process all the entries, sending them to the driver.
	 */
993
	errors = queued = 0;
994
	do {
995
		struct blk_mq_queue_data bd;
996

997
		rq = list_first_entry(list, struct request, queuelist);
998 999 1000
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1001 1002

			/*
1003 1004
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1005
			 */
1006 1007 1008 1009 1010 1011 1012 1013 1014
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1015
				break;
1016
		}
1017

1018 1019
		list_del_init(&rq->queuelist);

1020
		bd.rq = rq;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1034 1035

		ret = q->mq_ops->queue_rq(hctx, &bd);
1036 1037 1038
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1039
			break;
1040
		case BLK_MQ_RQ_QUEUE_BUSY:
1041
			blk_mq_put_driver_tag_hctx(hctx, rq);
1042
			list_add(&rq->queuelist, list);
1043
			__blk_mq_requeue_request(rq);
1044 1045 1046 1047
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1048
			errors++;
1049
			rq->errors = -EIO;
1050
			blk_mq_end_request(rq, rq->errors);
1051 1052 1053 1054 1055
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1056
	} while (!list_empty(list));
1057

1058
	hctx->dispatched[queued_to_index(queued)]++;
1059 1060 1061 1062 1063

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1064
	if (!list_empty(list)) {
1065 1066 1067 1068 1069 1070 1071
		/*
		 * If we got a driver tag for the next request already,
		 * free it again.
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1072
		spin_lock(&hctx->lock);
1073
		list_splice_init(list, &hctx->dispatch);
1074
		spin_unlock(&hctx->lock);
1075

1076 1077 1078 1079 1080 1081 1082 1083
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1084
		 *
1085 1086
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1087
		 */
1088 1089
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1090
			blk_mq_run_hw_queue(hctx, true);
1091
	}
1092

1093
	return (queued + errors) != 0;
1094 1095
}

1096 1097 1098 1099 1100 1101 1102 1103 1104
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1105
		blk_mq_sched_dispatch_requests(hctx);
1106 1107
		rcu_read_unlock();
	} else {
1108 1109
		might_sleep();

1110
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1111
		blk_mq_sched_dispatch_requests(hctx);
1112 1113 1114 1115
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1116 1117 1118 1119 1120 1121 1122 1123
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1124 1125
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1126 1127

	if (--hctx->next_cpu_batch <= 0) {
1128
		int next_cpu;
1129 1130 1131 1132 1133 1134 1135 1136 1137

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1138
	return hctx->next_cpu;
1139 1140
}

1141 1142
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1143
{
1144 1145
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1146 1147
		return;

1148
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1149 1150
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1151
			__blk_mq_run_hw_queue(hctx);
1152
			put_cpu();
1153 1154
			return;
		}
1155

1156
		put_cpu();
1157
	}
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	if (msecs == 0)
		kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work);
	else
		kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
						 &hctx->delayed_run_work,
						 msecs_to_jiffies(msecs));
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1177 1178
}

1179
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1180 1181 1182 1183 1184
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1185
		if (!blk_mq_hctx_has_pending(hctx) ||
1186
		    blk_mq_hctx_stopped(hctx))
1187 1188
			continue;

1189
		blk_mq_run_hw_queue(hctx, async);
1190 1191
	}
}
1192
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1214 1215
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1216
	cancel_work(&hctx->run_work);
1217
	cancel_delayed_work(&hctx->delay_work);
1218 1219 1220 1221
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1232 1233 1234
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1235

1236
	blk_mq_run_hw_queue(hctx, false);
1237 1238 1239
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1260
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1261 1262 1263 1264
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1265 1266
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1267 1268 1269
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1270
static void blk_mq_run_work_fn(struct work_struct *work)
1271 1272 1273
{
	struct blk_mq_hw_ctx *hctx;

1274
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1275

1276 1277 1278
	__blk_mq_run_hw_queue(hctx);
}

1279 1280 1281 1282 1283 1284 1285 1286 1287
static void blk_mq_delayed_run_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);

	__blk_mq_run_hw_queue(hctx);
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1300 1301
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1302

1303
	blk_mq_stop_hw_queue(hctx);
1304 1305
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1306 1307 1308
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1309 1310 1311
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1312
{
J
Jens Axboe 已提交
1313 1314
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1315 1316
	trace_block_rq_insert(hctx->queue, rq);

1317 1318 1319 1320
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1321
}
1322

1323 1324
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1325 1326 1327
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1328
	__blk_mq_insert_req_list(hctx, rq, at_head);
1329 1330 1331
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1332 1333
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1345
		BUG_ON(rq->mq_ctx != ctx);
1346
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1347
		__blk_mq_insert_req_list(hctx, rq, false);
1348
	}
1349
	blk_mq_hctx_mark_pending(hctx, ctx);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1386 1387 1388 1389
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1406 1407 1408
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1409 1410 1411 1412 1413 1414
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1415

1416
	blk_account_io_start(rq, true);
1417 1418
}

1419 1420 1421 1422 1423 1424
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1425 1426 1427
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1428
{
1429
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1430 1431 1432 1433 1434 1435 1436
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1437 1438
		struct request_queue *q = hctx->queue;

1439 1440 1441 1442 1443
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1444

1445
		spin_unlock(&ctx->lock);
1446
		__blk_mq_finish_request(hctx, ctx, rq);
1447
		return true;
1448
	}
1449
}
1450

1451 1452
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1453 1454 1455 1456
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1457 1458
}

1459
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1460
				      bool may_sleep)
1461 1462 1463 1464 1465 1466
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.last = 1
	};
1467 1468 1469
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1470

1471
	if (q->elevator)
1472 1473
		goto insert;

1474 1475 1476 1477 1478
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1479 1480 1481 1482 1483 1484
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1485 1486
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1487
		return;
1488
	}
1489

1490 1491 1492 1493
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1494
		return;
1495
	}
1496

1497
	__blk_mq_requeue_request(rq);
1498
insert:
1499
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
1510 1511 1512 1513 1514
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1515 1516 1517 1518 1519
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1520
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1521
{
1522
	const int is_sync = op_is_sync(bio->bi_opf);
1523
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1524
	struct blk_mq_alloc_data data = { .flags = 0 };
1525
	struct request *rq;
1526
	unsigned int request_count = 0;
1527
	struct blk_plug *plug;
1528
	struct request *same_queue_rq = NULL;
1529
	blk_qc_t cookie;
J
Jens Axboe 已提交
1530
	unsigned int wb_acct;
1531 1532 1533 1534

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1535
		bio_io_error(bio);
1536
		return BLK_QC_T_NONE;
1537 1538
	}

1539 1540
	blk_queue_split(q, &bio, q->bio_split);

1541 1542 1543
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1544

1545 1546 1547
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1548 1549
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1550 1551 1552
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1553 1554
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1555
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1556 1557 1558
	}

	wbt_track(&rq->issue_stat, wb_acct);
1559

1560
	cookie = request_to_qc_t(data.hctx, rq);
1561

1562
	plug = current->plug;
1563 1564
	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1565 1566 1567 1568 1569 1570 1571 1572
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
		} else {
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
		}
	} else if (plug && q->nr_hw_queues == 1) {
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		struct request *last = NULL;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
1598
	} else if (plug && !blk_queue_nomerges(q)) {
1599 1600 1601
		blk_mq_bio_to_request(rq, bio);

		/*
1602
		 * We do limited plugging. If the bio can be merged, do that.
1603 1604
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1605 1606
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1607
		 */
1608 1609 1610 1611 1612 1613
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1614 1615
		blk_mq_put_ctx(data.ctx);

1616 1617 1618
		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1619 1620

		return cookie;
1621
	} else if (q->nr_hw_queues > 1 && is_sync) {
1622
		blk_mq_put_ctx(data.ctx);
1623 1624
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1625
		return cookie;
1626
	} else if (q->elevator) {
1627
		blk_mq_bio_to_request(rq, bio);
1628
		blk_mq_sched_insert_request(rq, false, true, true, true);
1629
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1630 1631
		blk_mq_run_hw_queue(data.hctx, true);

1632
	blk_mq_put_ctx(data.ctx);
1633
	return cookie;
1634 1635
}

1636 1637
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1638
{
1639
	struct page *page;
1640

1641
	if (tags->rqs && set->ops->exit_request) {
1642
		int i;
1643

1644
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1645 1646 1647
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1648
				continue;
J
Jens Axboe 已提交
1649
			set->ops->exit_request(set->driver_data, rq,
1650
						hctx_idx, i);
J
Jens Axboe 已提交
1651
			tags->static_rqs[i] = NULL;
1652
		}
1653 1654
	}

1655 1656
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1657
		list_del_init(&page->lru);
1658 1659 1660 1661 1662
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1663 1664
		__free_pages(page, page->private);
	}
1665
}
1666

1667 1668
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1669
	kfree(tags->rqs);
1670
	tags->rqs = NULL;
J
Jens Axboe 已提交
1671 1672
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1673

1674
	blk_mq_free_tags(tags);
1675 1676
}

1677 1678 1679 1680
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1681
{
1682
	struct blk_mq_tags *tags;
1683
	int node;
1684

1685 1686 1687 1688 1689
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1690
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1691 1692
	if (!tags)
		return NULL;
1693

1694
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1695
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1696
				 node);
1697 1698 1699 1700
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1701

J
Jens Axboe 已提交
1702 1703
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1704
				 node);
J
Jens Axboe 已提交
1705 1706 1707 1708 1709 1710
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1724 1725 1726 1727 1728
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1729 1730 1731

	INIT_LIST_HEAD(&tags->page_list);

1732 1733 1734 1735
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1736
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1737
				cache_line_size());
1738
	left = rq_size * depth;
1739

1740
	for (i = 0; i < depth; ) {
1741 1742 1743 1744 1745
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1746
		while (this_order && left < order_to_size(this_order - 1))
1747 1748 1749
			this_order--;

		do {
1750
			page = alloc_pages_node(node,
1751
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1752
				this_order);
1753 1754 1755 1756 1757 1758 1759 1760 1761
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1762
			goto fail;
1763 1764

		page->private = this_order;
1765
		list_add_tail(&page->lru, &tags->page_list);
1766 1767

		p = page_address(page);
1768 1769 1770 1771
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1772
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1773
		entries_per_page = order_to_size(this_order) / rq_size;
1774
		to_do = min(entries_per_page, depth - i);
1775 1776
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1777 1778 1779
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1780 1781
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1782
						rq, hctx_idx, i,
1783
						node)) {
J
Jens Axboe 已提交
1784
					tags->static_rqs[i] = NULL;
1785
					goto fail;
1786
				}
1787 1788
			}

1789 1790 1791 1792
			p += rq_size;
			i++;
		}
	}
1793
	return 0;
1794

1795
fail:
1796 1797
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1798 1799
}

J
Jens Axboe 已提交
1800 1801 1802 1803 1804
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1805
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1806
{
1807
	struct blk_mq_hw_ctx *hctx;
1808 1809 1810
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1811
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1812
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1813 1814 1815 1816 1817 1818 1819 1820 1821

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1822
		return 0;
1823

J
Jens Axboe 已提交
1824 1825 1826
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1827 1828

	blk_mq_run_hw_queue(hctx, true);
1829
	return 0;
1830 1831
}

1832
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1833
{
1834 1835
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1836 1837
}

1838
/* hctx->ctxs will be freed in queue's release handler */
1839 1840 1841 1842
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1843 1844
	unsigned flush_start_tag = set->queue_depth;

1845 1846
	blk_mq_tag_idle(hctx);

1847 1848 1849 1850 1851
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1852 1853
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1854 1855 1856
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1857 1858 1859
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1860
	blk_mq_remove_cpuhp(hctx);
1861
	blk_free_flush_queue(hctx->fq);
1862
	sbitmap_free(&hctx->ctx_map);
1863 1864
}

M
Ming Lei 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1874
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1875 1876 1877
	}
}

1878 1879 1880
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1881
{
1882
	int node;
1883
	unsigned flush_start_tag = set->queue_depth;
1884 1885 1886 1887 1888

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1889
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1890
	INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1891 1892 1893 1894 1895
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1896
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1897

1898
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1899 1900

	hctx->tags = set->tags[hctx_idx];
1901 1902

	/*
1903 1904
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1905
	 */
1906 1907 1908 1909
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1910

1911 1912
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1913
		goto free_ctxs;
1914

1915
	hctx->nr_ctx = 0;
1916

1917 1918 1919
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1920

1921 1922 1923
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1924 1925
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1926
		goto sched_exit_hctx;
1927

1928 1929 1930 1931 1932
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1933

1934 1935 1936
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1937
	return 0;
1938

1939 1940
 free_fq:
	kfree(hctx->fq);
1941 1942
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1943 1944 1945
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1946
 free_bitmap:
1947
	sbitmap_free(&hctx->ctx_map);
1948 1949 1950
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1951
	blk_mq_remove_cpuhp(hctx);
1952 1953
	return -1;
}
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1973
		hctx = blk_mq_map_queue(q, i);
1974

1975 1976 1977 1978 1979
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1980
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1981 1982 1983
	}
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2006 2007 2008 2009 2010
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2011 2012
}

2013 2014
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2015
{
2016
	unsigned int i, hctx_idx;
2017 2018
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2019
	struct blk_mq_tag_set *set = q->tag_set;
2020

2021 2022 2023 2024 2025
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2026
	queue_for_each_hw_ctx(q, hctx, i) {
2027
		cpumask_clear(hctx->cpumask);
2028 2029 2030 2031 2032 2033
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2034
	for_each_possible_cpu(i) {
2035
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2036
		if (!cpumask_test_cpu(i, online_mask))
2037 2038
			continue;

2039 2040
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2041 2042
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2043 2044 2045 2046 2047 2048
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2049
			q->mq_map[i] = 0;
2050 2051
		}

2052
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2053
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2054

2055
		cpumask_set_cpu(i, hctx->cpumask);
2056 2057 2058
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2059

2060 2061
	mutex_unlock(&q->sysfs_lock);

2062
	queue_for_each_hw_ctx(q, hctx, i) {
2063
		/*
2064 2065
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2066 2067
		 */
		if (!hctx->nr_ctx) {
2068 2069 2070 2071
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2072 2073 2074
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2075
			hctx->tags = NULL;
2076 2077 2078
			continue;
		}

M
Ming Lei 已提交
2079 2080 2081
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2082 2083 2084 2085 2086
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2087
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2088

2089 2090 2091
		/*
		 * Initialize batch roundrobin counts
		 */
2092 2093 2094
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2095 2096
}

2097
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2098 2099 2100 2101
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2113 2114 2115

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2116
		queue_set_hctx_shared(q, shared);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2127 2128 2129 2130 2131 2132
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2133 2134 2135 2136 2137 2138 2139 2140 2141
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2142 2143 2144 2145 2146 2147 2148 2149 2150

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2151
	list_add_tail(&q->tag_set_list, &set->tag_list);
2152

2153 2154 2155
	mutex_unlock(&set->tag_list_lock);
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2168 2169 2170
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2171
		kobject_put(&hctx->kobj);
2172
	}
2173

2174 2175
	q->mq_map = NULL;

2176 2177
	kfree(q->queue_hw_ctx);

2178 2179 2180 2181 2182 2183
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2184 2185 2186
	free_percpu(q->queue_ctx);
}

2187
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2203 2204
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2205
{
K
Keith Busch 已提交
2206 2207
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2208

K
Keith Busch 已提交
2209
	blk_mq_sysfs_unregister(q);
2210
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2211
		int node;
2212

K
Keith Busch 已提交
2213 2214 2215 2216
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2217 2218
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2219
		if (!hctxs[i])
K
Keith Busch 已提交
2220
			break;
2221

2222
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2223 2224 2225 2226 2227
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2228

2229
		atomic_set(&hctxs[i]->nr_active, 0);
2230
		hctxs[i]->numa_node = node;
2231
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2232 2233 2234 2235 2236 2237 2238 2239

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2240
	}
K
Keith Busch 已提交
2241 2242 2243 2244
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2245 2246
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2260 2261 2262
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2263 2264 2265 2266 2267
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
					     blk_stat_rq_ddir, 2, q);
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2268 2269
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2270
		goto err_exit;
K
Keith Busch 已提交
2271

2272 2273 2274
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2275 2276 2277 2278 2279
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2280
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2281 2282 2283 2284

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2285

2286
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2287
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2288 2289 2290

	q->nr_queues = nr_cpu_ids;

2291
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2292

2293 2294 2295
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2296 2297
	q->sg_reserved_size = INT_MAX;

2298
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2299 2300 2301
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2302
	blk_queue_make_request(q, blk_mq_make_request);
2303

2304 2305 2306 2307 2308
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2309 2310 2311 2312 2313
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2314 2315
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2316

2317
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2318

2319
	get_online_cpus();
2320 2321
	mutex_lock(&all_q_mutex);

2322
	list_add_tail(&q->all_q_node, &all_q_list);
2323
	blk_mq_add_queue_tag_set(set, q);
2324
	blk_mq_map_swqueue(q, cpu_online_mask);
2325

2326
	mutex_unlock(&all_q_mutex);
2327
	put_online_cpus();
2328

2329 2330 2331 2332 2333 2334 2335 2336
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2337
	return q;
2338

2339
err_hctxs:
K
Keith Busch 已提交
2340
	kfree(q->queue_hw_ctx);
2341
err_percpu:
K
Keith Busch 已提交
2342
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2343 2344
err_exit:
	q->mq_ops = NULL;
2345 2346
	return ERR_PTR(-ENOMEM);
}
2347
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2348 2349 2350

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2351
	struct blk_mq_tag_set	*set = q->tag_set;
2352

2353 2354 2355 2356
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2357 2358
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2359
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2360 2361 2362
}

/* Basically redo blk_mq_init_queue with queue frozen */
2363 2364
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2365
{
2366
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2367

2368 2369
	blk_mq_sysfs_unregister(q);

2370 2371 2372 2373 2374 2375
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2376
	blk_mq_map_swqueue(q, online_mask);
2377

2378
	blk_mq_sysfs_register(q);
2379 2380
}

2381 2382 2383 2384 2385 2386 2387 2388
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2389 2390 2391 2392
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2393 2394 2395 2396 2397 2398 2399 2400
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2401
		blk_freeze_queue_start(q);
2402
	list_for_each_entry(q, &all_q_list, all_q_node)
2403 2404
		blk_mq_freeze_queue_wait(q);

2405
	list_for_each_entry(q, &all_q_list, all_q_node)
2406
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2407 2408 2409 2410

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2411
	mutex_unlock(&all_q_mutex);
2412 2413 2414 2415
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2416
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2432 2433 2434 2435
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2436 2437 2438 2439 2440 2441 2442
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2443 2444
}

2445 2446 2447 2448
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2449 2450
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2451 2452 2453 2454 2455 2456
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2457
		blk_mq_free_rq_map(set->tags[i]);
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2497 2498 2499 2500 2501 2502 2503 2504
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2505 2506 2507 2508 2509 2510
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2511 2512
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2513 2514
	int ret;

B
Bart Van Assche 已提交
2515 2516
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2517 2518
	if (!set->nr_hw_queues)
		return -EINVAL;
2519
	if (!set->queue_depth)
2520 2521 2522 2523
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2524
	if (!set->ops->queue_rq)
2525 2526
		return -EINVAL;

2527 2528 2529 2530 2531
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2532

2533 2534 2535 2536 2537 2538 2539 2540 2541
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2542 2543 2544 2545 2546
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2547

K
Keith Busch 已提交
2548
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2549 2550
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2551
		return -ENOMEM;
2552

2553 2554 2555
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2556 2557 2558
	if (!set->mq_map)
		goto out_free_tags;

2559
	ret = blk_mq_update_queue_map(set);
2560 2561 2562 2563 2564
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2565
		goto out_free_mq_map;
2566

2567 2568 2569
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2570
	return 0;
2571 2572 2573 2574 2575

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2576 2577
	kfree(set->tags);
	set->tags = NULL;
2578
	return ret;
2579 2580 2581 2582 2583 2584 2585
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2586 2587
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2588

2589 2590 2591
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2592
	kfree(set->tags);
2593
	set->tags = NULL;
2594 2595 2596
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2597 2598 2599 2600 2601 2602
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2603
	if (!set)
2604 2605
		return -EINVAL;

2606 2607 2608
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2609 2610
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2611 2612
		if (!hctx->tags)
			continue;
2613 2614 2615 2616
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2617 2618 2619 2620 2621 2622 2623 2624
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2625 2626 2627 2628 2629 2630 2631
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2632 2633 2634
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2635 2636 2637
	return ret;
}

K
Keith Busch 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2651
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;

	if (cb->stat[READ].nr_samples)
		q->poll_stat[READ] = cb->stat[READ];
	if (cb->stat[WRITE].nr_samples)
		q->poll_stat[WRITE] = cb->stat[WRITE];
}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2705
	if (!blk_poll_stats_enable(q))
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
2716 2717 2718 2719
	if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
		ret = (q->poll_stat[READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
		ret = (q->poll_stat[WRITE].mean + 1) / 2;
2720 2721 2722 2723

	return ret;
}

2724
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2725
				     struct blk_mq_hw_ctx *hctx,
2726 2727 2728 2729
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2730
	unsigned int nsecs;
2731 2732
	ktime_t kt;

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2751 2752 2753 2754 2755 2756 2757 2758
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2759
	kt = nsecs;
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2782 2783 2784 2785 2786
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2787 2788 2789 2790 2791 2792 2793
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2794
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2795 2796
		return true;

J
Jens Axboe 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2840 2841 2842 2843
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2844 2845 2846 2847 2848

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2859 2860
static int __init blk_mq_init(void)
{
2861 2862
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2863

2864 2865 2866
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2867 2868 2869
	return 0;
}
subsys_initcall(blk_mq_init);