arm_arch_timer.c 39.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched/clock.h>
28
#include <linux/sched_clock.h>
29
#include <linux/acpi.h>
30 31

#include <asm/arch_timer.h>
32
#include <asm/virt.h>
33 34 35

#include <clocksource/arm_arch_timer.h>

36 37 38
#undef pr_fmt
#define pr_fmt(fmt) "arch_timer: " fmt

39 40 41
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

42 43 44 45 46 47 48 49
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

69
static u32 arch_timer_rate;
70
static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71 72 73

static struct clock_event_device __percpu *arch_timer_evt;

74
static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75
static bool arch_timer_c3stop;
76
static bool arch_timer_mem_use_virtual;
77
static bool arch_counter_suspend_stop;
78
static bool vdso_default = true;
79

80 81 82 83 84 85 86 87
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

88 89 90 91
/*
 * Architected system timer support.
 */

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
			  struct clock_event_device *clk)
{
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
			struct clock_event_device *clk)
{
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

static u64 arch_counter_read(struct clocksource *cs)
{
	return arch_timer_read_counter();
}

static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
	return arch_timer_read_counter();
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static struct cyclecounter cyclecounter __ro_after_init = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

185 186 187 188 189 190
struct ate_acpi_oem_info {
	char oem_id[ACPI_OEM_ID_SIZE + 1];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
	u32 oem_revision;
};

191
#ifdef CONFIG_FSL_ERRATUM_A008585
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/*
 * The number of retries is an arbitrary value well beyond the highest number
 * of iterations the loop has been observed to take.
 */
#define __fsl_a008585_read_reg(reg) ({			\
	u64 _old, _new;					\
	int _retries = 200;				\
							\
	do {						\
		_old = read_sysreg(reg);		\
		_new = read_sysreg(reg);		\
		_retries--;				\
	} while (unlikely(_old != _new) && _retries);	\
							\
	WARN_ON_ONCE(!_retries);			\
	_new;						\
})

static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
211 212 213 214
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

215
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
216 217 218 219
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

220
static u64 notrace fsl_a008585_read_cntvct_el0(void)
221 222 223
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
224 225
#endif

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
#ifdef CONFIG_HISILICON_ERRATUM_161010101
/*
 * Verify whether the value of the second read is larger than the first by
 * less than 32 is the only way to confirm the value is correct, so clear the
 * lower 5 bits to check whether the difference is greater than 32 or not.
 * Theoretically the erratum should not occur more than twice in succession
 * when reading the system counter, but it is possible that some interrupts
 * may lead to more than twice read errors, triggering the warning, so setting
 * the number of retries far beyond the number of iterations the loop has been
 * observed to take.
 */
#define __hisi_161010101_read_reg(reg) ({				\
	u64 _old, _new;						\
	int _retries = 50;					\
								\
	do {							\
		_old = read_sysreg(reg);			\
		_new = read_sysreg(reg);			\
		_retries--;					\
	} while (unlikely((_new - _old) >> 5) && _retries);	\
								\
	WARN_ON_ONCE(!_retries);				\
	_new;							\
})

static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntp_tval_el0);
}

static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntv_tval_el0);
}

static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
	return __hisi_161010101_read_reg(cntvct_el0);
}
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
	/*
	 * Note that trailing spaces are required to properly match
	 * the OEM table information.
	 */
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP05   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP06   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP07   ",
		.oem_revision	= 0,
	},
	{ /* Sentinel indicating the end of the OEM array */ },
};
288 289
#endif

290 291 292 293 294 295 296 297 298 299 300
#ifdef CONFIG_ARM64_ERRATUM_858921
static u64 notrace arm64_858921_read_cntvct_el0(void)
{
	u64 old, new;

	old = read_sysreg(cntvct_el0);
	new = read_sysreg(cntvct_el0);
	return (((old ^ new) >> 32) & 1) ? old : new;
}
#endif

301
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
302
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
303 304 305 306 307
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);

DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
						struct clock_event_device *clk)
{
	unsigned long ctrl;
	u64 cval = evt + arch_counter_get_cntvct();

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		write_sysreg(cval, cntp_cval_el0);
	else
		write_sysreg(cval, cntv_cval_el0);

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

326
static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
327 328 329 330 331 332
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
	return 0;
}

333
static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
334 335 336 337 338 339
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
	return 0;
}

340 341 342
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
	{
343
		.match_type = ate_match_dt,
344
		.id = "fsl,erratum-a008585",
345
		.desc = "Freescale erratum a005858",
346 347 348
		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
349 350
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
351 352
	},
#endif
353 354
#ifdef CONFIG_HISILICON_ERRATUM_161010101
	{
355
		.match_type = ate_match_dt,
356
		.id = "hisilicon,erratum-161010101",
357
		.desc = "HiSilicon erratum 161010101",
358 359 360
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
361 362
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
363 364 365 366 367 368 369 370 371 372
	},
	{
		.match_type = ate_match_acpi_oem_info,
		.id = hisi_161010101_oem_info,
		.desc = "HiSilicon erratum 161010101",
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
373 374
	},
#endif
375 376 377 378 379 380 381 382
#ifdef CONFIG_ARM64_ERRATUM_858921
	{
		.match_type = ate_match_local_cap_id,
		.id = (void *)ARM64_WORKAROUND_858921,
		.desc = "ARM erratum 858921",
		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
	},
#endif
383
};
384 385 386 387 388 389 390 391 392 393 394 395 396

typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
			       const void *);

static
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
				 const void *arg)
{
	const struct device_node *np = arg;

	return of_property_read_bool(np, wa->id);
}

397 398 399 400 401 402 403
static
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
					const void *arg)
{
	return this_cpu_has_cap((uintptr_t)wa->id);
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

static
bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
				       const void *arg)
{
	static const struct ate_acpi_oem_info empty_oem_info = {};
	const struct ate_acpi_oem_info *info = wa->id;
	const struct acpi_table_header *table = arg;

	/* Iterate over the ACPI OEM info array, looking for a match */
	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
		    info->oem_revision == table->oem_revision)
			return true;

		info++;
	}

	return false;
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
			  ate_match_fn_t match_fn,
			  void *arg)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
		if (ool_workarounds[i].match_type != type)
			continue;

		if (match_fn(&ool_workarounds[i], arg))
			return &ool_workarounds[i];
	}

	return NULL;
}

static
445 446
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
				  bool local)
447
{
448 449 450 451 452 453 454 455 456
	int i;

	if (local) {
		__this_cpu_write(timer_unstable_counter_workaround, wa);
	} else {
		for_each_possible_cpu(i)
			per_cpu(timer_unstable_counter_workaround, i) = wa;
	}

457 458 459 460 461
	/*
	 * Use the locked version, as we're called from the CPU
	 * hotplug framework. Otherwise, we end-up in deadlock-land.
	 */
	static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
462 463 464 465 466 467 468 469 470 471 472

	/*
	 * Don't use the vdso fastpath if errata require using the
	 * out-of-line counter accessor. We may change our mind pretty
	 * late in the game (with a per-CPU erratum, for example), so
	 * change both the default value and the vdso itself.
	 */
	if (wa->read_cntvct_el0) {
		clocksource_counter.archdata.vdso_direct = false;
		vdso_default = false;
	}
473 474 475 476 477 478 479
}

static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
					    void *arg)
{
	const struct arch_timer_erratum_workaround *wa;
	ate_match_fn_t match_fn = NULL;
480
	bool local = false;
481 482 483 484 485

	switch (type) {
	case ate_match_dt:
		match_fn = arch_timer_check_dt_erratum;
		break;
486 487 488 489
	case ate_match_local_cap_id:
		match_fn = arch_timer_check_local_cap_erratum;
		local = true;
		break;
490 491 492
	case ate_match_acpi_oem_info:
		match_fn = arch_timer_check_acpi_oem_erratum;
		break;
493 494 495 496 497 498 499 500 501
	default:
		WARN_ON(1);
		return;
	}

	wa = arch_timer_iterate_errata(type, match_fn, arg);
	if (!wa)
		return;

502
	if (needs_unstable_timer_counter_workaround()) {
503 504 505
		const struct arch_timer_erratum_workaround *__wa;
		__wa = __this_cpu_read(timer_unstable_counter_workaround);
		if (__wa && wa != __wa)
506
			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
507 508 509 510
				wa->desc, __wa->desc);

		if (__wa)
			return;
511 512
	}

513
	arch_timer_enable_workaround(wa, local);
514 515
	pr_info("Enabling %s workaround for %s\n",
		local ? "local" : "global", wa->desc);
516 517
}

518 519 520
#define erratum_handler(fn, r, ...)					\
({									\
	bool __val;							\
521 522 523 524 525 526 527 528 529
	if (needs_unstable_timer_counter_workaround()) {		\
		const struct arch_timer_erratum_workaround *__wa;	\
		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
		if (__wa && __wa->fn) {					\
			r = __wa->fn(__VA_ARGS__);			\
			__val = true;					\
		} else {						\
			__val = false;					\
		}							\
530 531 532 533 534 535
	} else {							\
		__val = false;						\
	}								\
	__val;								\
})

536 537 538 539 540 541 542
static bool arch_timer_this_cpu_has_cntvct_wa(void)
{
	const struct arch_timer_erratum_workaround *wa;

	wa = __this_cpu_read(timer_unstable_counter_workaround);
	return wa && wa->read_cntvct_el0;
}
543 544
#else
#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
545 546
#define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
#define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
547
#define erratum_handler(fn, r, ...)			({false;})
548
#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
549
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
550

551
static __always_inline irqreturn_t timer_handler(const int access,
552 553 554
					struct clock_event_device *evt)
{
	unsigned long ctrl;
555

556
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
557 558
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
559
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

595 596
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
597 598
{
	unsigned long ctrl;
599 600 601 602 603 604

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
605 606
}

607
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
608
{
609
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
610 611
}

612
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
613
{
614
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
615 616
}

617
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
618
{
619
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
620 621
}

622
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
623
{
624
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
625 626
}

627
static __always_inline void set_next_event(const int access, unsigned long evt,
628
					   struct clock_event_device *clk)
629 630
{
	unsigned long ctrl;
631
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
632 633
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
634 635
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
636 637 638
}

static int arch_timer_set_next_event_virt(unsigned long evt,
639
					  struct clock_event_device *clk)
640
{
641 642 643 644
	int ret;

	if (erratum_handler(set_next_event_virt, ret, evt, clk))
		return ret;
645

646
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
647 648 649 650
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
651
					  struct clock_event_device *clk)
652
{
653 654 655 656
	int ret;

	if (erratum_handler(set_next_event_phys, ret, evt, clk))
		return ret;
657

658
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
659 660 661
	return 0;
}

662 663
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
664
{
665 666 667 668 669 670 671 672 673 674 675
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

676 677
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
678 679 680
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

681
	if (type == ARCH_TIMER_TYPE_CP15) {
682 683
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
684 685 686
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
687 688
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
689
		case ARCH_TIMER_VIRT_PPI:
690
			clk->set_state_shutdown = arch_timer_shutdown_virt;
691
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
692
			clk->set_next_event = arch_timer_set_next_event_virt;
693
			break;
694 695 696
		case ARCH_TIMER_PHYS_SECURE_PPI:
		case ARCH_TIMER_PHYS_NONSECURE_PPI:
		case ARCH_TIMER_HYP_PPI:
697
			clk->set_state_shutdown = arch_timer_shutdown_phys;
698
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
699
			clk->set_next_event = arch_timer_set_next_event_phys;
700 701 702
			break;
		default:
			BUG();
703
		}
704

705
		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
706
	} else {
707
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
708 709 710 711
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
712
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
713
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
714 715 716
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
717
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
718
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
719 720 721
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
722 723
	}

724
	clk->set_state_shutdown(clk);
725

726 727
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

744 745 746 747 748 749 750 751 752 753 754 755 756
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

757 758 759 760
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

761
	/* Disable user access to the timers and both counters */
762 763 764
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
765
		        | ARCH_TIMER_USR_VCT_ACCESS_EN
766 767 768
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

769 770 771 772 773 774 775 776 777
	/*
	 * Enable user access to the virtual counter if it doesn't
	 * need to be workaround. The vdso may have been already
	 * disabled though.
	 */
	if (arch_timer_this_cpu_has_cntvct_wa())
		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
	else
		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
778 779 780 781

	arch_timer_set_cntkctl(cntkctl);
}

782 783
static bool arch_timer_has_nonsecure_ppi(void)
{
784 785
	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
786 787
}

788 789 790 791 792 793 794 795 796 797 798 799 800
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

801
static int arch_timer_starting_cpu(unsigned int cpu)
802
{
803
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
804
	u32 flags;
805

806
	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
807

808 809
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
810

811
	if (arch_timer_has_nonsecure_ppi()) {
812 813 814
		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
				  flags);
815
	}
816 817

	arch_counter_set_user_access();
818
	if (evtstrm_enable)
819
		arch_timer_configure_evtstream();
820 821 822 823

	return 0;
}

824 825 826 827 828 829
/*
 * For historical reasons, when probing with DT we use whichever (non-zero)
 * rate was probed first, and don't verify that others match. If the first node
 * probed has a clock-frequency property, this overrides the HW register.
 */
static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
830
{
831 832 833
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
834

835 836
	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
		arch_timer_rate = rate;
837

838 839
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
840
		pr_warn("frequency not available\n");
841 842 843 844
}

static void arch_timer_banner(unsigned type)
{
845
	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
846 847 848 849
		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
			" and " : "",
		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
850 851
		(unsigned long)arch_timer_rate / 1000000,
		(unsigned long)(arch_timer_rate / 10000) % 100,
852
		type & ARCH_TIMER_TYPE_CP15 ?
853
			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
854
			"",
855 856
		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
		type & ARCH_TIMER_TYPE_MEM ?
857 858
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
859 860 861 862 863 864 865
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

866
static u64 arch_counter_get_cntvct_mem(void)
867
{
868 869 870 871 872 873 874 875 876
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
877 878
}

879 880 881 882 883 884
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
885

886 887 888 889 890
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
891
	if (type & ARCH_TIMER_TYPE_CP15) {
892 893
		if (IS_ENABLED(CONFIG_ARM64) ||
		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
894 895 896
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
897

898
		clocksource_counter.archdata.vdso_direct = vdso_default;
899
	} else {
900
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
901 902
	}

903 904
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
905 906 907 908
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
909 910
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
911 912 913

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
914 915
}

916
static void arch_timer_stop(struct clock_event_device *clk)
917
{
918
	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
919

920 921
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
922
		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
923

924
	clk->set_state_shutdown(clk);
925 926
}

927
static int arch_timer_dying_cpu(unsigned int cpu)
928
{
929
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
930

931 932
	arch_timer_stop(clk);
	return 0;
933 934
}

935
#ifdef CONFIG_CPU_PM
936
static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
937 938 939 940
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
941
		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
942
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
943
		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
944 945 946 947 948 949 950 951 952 953 954
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
955 956 957 958 959 960

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

961 962 963 964 965
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
966 967 968 969

static void __init arch_timer_cpu_pm_deinit(void)
{
}
970 971
#endif

972 973 974 975 976 977 978 979 980 981 982
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

983 984
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
985
	case ARCH_TIMER_VIRT_PPI:
986 987
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
988
		break;
989 990
	case ARCH_TIMER_PHYS_SECURE_PPI:
	case ARCH_TIMER_PHYS_NONSECURE_PPI:
991 992
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
993
		if (!err && arch_timer_has_nonsecure_ppi()) {
994
			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
995 996 997
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
998
				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
999 1000
						arch_timer_evt);
		}
1001
		break;
1002
	case ARCH_TIMER_HYP_PPI:
1003 1004 1005 1006 1007
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
1008 1009 1010
	}

	if (err) {
1011
		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1012 1013 1014
		goto out_free;
	}

1015 1016 1017 1018
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

1019

1020 1021
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
T
Thomas Gleixner 已提交
1022
				"clockevents/arm/arch_timer:starting",
1023 1024 1025
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
1026 1027
	return 0;

1028 1029 1030
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

1031
out_unreg_notify:
1032 1033
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
1034
		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1035 1036 1037 1038 1039 1040 1041 1042
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
1055
	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1056 1057 1058 1059 1060 1061 1062 1063

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
1064
		pr_err("Failed to request mem timer irq\n");
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

1082
static bool __init arch_timer_needs_of_probing(void)
1083 1084
{
	struct device_node *dn;
1085
	bool needs_probing = false;
1086
	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	/* We have two timers, and both device-tree nodes are probed. */
	if ((arch_timers_present & mask) == mask)
		return false;

	/*
	 * Only one type of timer is probed,
	 * check if we have another type of timer node in device-tree.
	 */
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
	else
		dn = of_find_matching_node(NULL, arch_timer_of_match);

	if (dn && of_device_is_available(dn))
1102
		needs_probing = true;
1103

1104 1105
	of_node_put(dn);

1106
	return needs_probing;
1107 1108
}

1109
static int __init arch_timer_common_init(void)
1110 1111 1112
{
	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
1113
	return arch_timer_arch_init();
1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/**
 * arch_timer_select_ppi() - Select suitable PPI for the current system.
 *
 * If HYP mode is available, we know that the physical timer
 * has been configured to be accessible from PL1. Use it, so
 * that a guest can use the virtual timer instead.
 *
 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
 * accesses to CNTP_*_EL1 registers are silently redirected to
 * their CNTHP_*_EL2 counterparts, and use a different PPI
 * number.
 *
 * If no interrupt provided for virtual timer, we'll have to
 * stick to the physical timer. It'd better be accessible...
 * For arm64 we never use the secure interrupt.
 *
 * Return: a suitable PPI type for the current system.
 */
static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1135
{
1136 1137
	if (is_kernel_in_hyp_mode())
		return ARCH_TIMER_HYP_PPI;
1138

1139 1140
	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
		return ARCH_TIMER_VIRT_PPI;
1141

1142 1143 1144 1145 1146 1147
	if (IS_ENABLED(CONFIG_ARM64))
		return ARCH_TIMER_PHYS_NONSECURE_PPI;

	return ARCH_TIMER_PHYS_SECURE_PPI;
}

1148
static int __init arch_timer_of_init(struct device_node *np)
1149
{
1150
	int i, ret;
1151
	u32 rate;
1152

1153
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1154
		pr_warn("multiple nodes in dt, skipping\n");
1155
		return 0;
1156 1157
	}

1158
	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1159
	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1160 1161
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

1162 1163
	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];

1164
	rate = arch_timer_get_cntfrq();
1165
	arch_timer_of_configure_rate(rate, np);
1166 1167 1168

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

1169 1170
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_dt, np);
1171

1172 1173 1174 1175 1176 1177
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1178
		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1179 1180 1181 1182 1183 1184 1185
	else
		arch_timer_uses_ppi = arch_timer_select_ppi();

	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
		pr_err("No interrupt available, giving up\n");
		return -EINVAL;
	}
1186

1187 1188 1189 1190
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

1191 1192 1193 1194 1195 1196 1197 1198
	ret = arch_timer_register();
	if (ret)
		return ret;

	if (arch_timer_needs_of_probing())
		return 0;

	return arch_timer_common_init();
1199
}
1200 1201
TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1202

1203 1204
static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1205
{
1206 1207
	void __iomem *base;
	u32 rate;
1208

1209 1210 1211 1212 1213 1214
	base = ioremap(frame->cntbase, frame->size);
	if (!base) {
		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
		return 0;
	}

1215
	rate = readl_relaxed(base + CNTFRQ);
1216

1217
	iounmap(base);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

	return rate;
}

static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
{
	struct arch_timer_mem_frame *frame, *best_frame = NULL;
	void __iomem *cntctlbase;
	u32 cnttidr;
	int i;

	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1231
	if (!cntctlbase) {
1232 1233 1234
		pr_err("Can't map CNTCTLBase @ %pa\n",
			&timer_mem->cntctlbase);
		return NULL;
1235 1236 1237 1238 1239 1240 1241 1242
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
1243 1244 1245
	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1246

1247 1248 1249
		frame = &timer_mem->frame[i];
		if (!frame->valid)
			continue;
1250

1251
		/* Try enabling everything, and see what sticks */
1252 1253
		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1254

1255
		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1256
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1257 1258 1259 1260
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
1261 1262 1263 1264

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

1265
		best_frame = frame;
1266 1267
	}

1268 1269
	iounmap(cntctlbase);

1270
	return best_frame;
1271 1272 1273 1274 1275 1276 1277
}

static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
{
	void __iomem *base;
	int ret, irq = 0;
1278 1279

	if (arch_timer_mem_use_virtual)
1280
		irq = frame->virt_irq;
1281
	else
1282
		irq = frame->phys_irq;
1283

1284
	if (!irq) {
1285
		pr_err("Frame missing %s irq.\n",
1286
		       arch_timer_mem_use_virtual ? "virt" : "phys");
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		return -EINVAL;
	}

	if (!request_mem_region(frame->cntbase, frame->size,
				"arch_mem_timer"))
		return -EBUSY;

	base = ioremap(frame->cntbase, frame->size);
	if (!base) {
		pr_err("Can't map frame's registers\n");
		return -ENXIO;
1298 1299
	}

1300
	ret = arch_timer_mem_register(base, irq);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	if (ret) {
		iounmap(base);
		return ret;
	}

	arch_counter_base = base;
	arch_timers_present |= ARCH_TIMER_TYPE_MEM;

	return 0;
}

static int __init arch_timer_mem_of_init(struct device_node *np)
{
	struct arch_timer_mem *timer_mem;
	struct arch_timer_mem_frame *frame;
	struct device_node *frame_node;
	struct resource res;
	int ret = -EINVAL;
	u32 rate;

	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
	if (!timer_mem)
		return -ENOMEM;

	if (of_address_to_resource(np, 0, &res))
1326
		goto out;
1327 1328
	timer_mem->cntctlbase = res.start;
	timer_mem->size = resource_size(&res);
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	for_each_available_child_of_node(np, frame_node) {
		u32 n;
		struct arch_timer_mem_frame *frame;

		if (of_property_read_u32(frame_node, "frame-number", &n)) {
			pr_err(FW_BUG "Missing frame-number.\n");
			of_node_put(frame_node);
			goto out;
		}
		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
			of_node_put(frame_node);
			goto out;
		}
		frame = &timer_mem->frame[n];

		if (frame->valid) {
			pr_err(FW_BUG "Duplicated frame-number.\n");
			of_node_put(frame_node);
			goto out;
		}

		if (of_address_to_resource(frame_node, 0, &res)) {
			of_node_put(frame_node);
			goto out;
		}
		frame->cntbase = res.start;
		frame->size = resource_size(&res);

		frame->virt_irq = irq_of_parse_and_map(frame_node,
						       ARCH_TIMER_VIRT_SPI);
		frame->phys_irq = irq_of_parse_and_map(frame_node,
						       ARCH_TIMER_PHYS_SPI);

		frame->valid = true;
	}

	frame = arch_timer_mem_find_best_frame(timer_mem);
	if (!frame) {
1370 1371
		pr_err("Unable to find a suitable frame in timer @ %pa\n",
			&timer_mem->cntctlbase);
1372 1373 1374 1375 1376 1377 1378 1379 1380
		ret = -EINVAL;
		goto out;
	}

	rate = arch_timer_mem_frame_get_cntfrq(frame);
	arch_timer_of_configure_rate(rate, np);

	ret = arch_timer_mem_frame_register(frame);
	if (!ret && !arch_timer_needs_of_probing())
1381
		ret = arch_timer_common_init();
1382
out:
1383
	kfree(timer_mem);
1384
	return ret;
1385
}
1386
TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1387
		       arch_timer_mem_of_init);
1388

1389
#ifdef CONFIG_ACPI_GTDT
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
{
	struct arch_timer_mem_frame *frame;
	u32 rate;
	int i;

	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
		frame = &timer_mem->frame[i];

		if (!frame->valid)
			continue;

		rate = arch_timer_mem_frame_get_cntfrq(frame);
		if (rate == arch_timer_rate)
			continue;

		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
			&frame->cntbase,
			(unsigned long)rate, (unsigned long)arch_timer_rate);

		return -EINVAL;
	}

	return 0;
}

static int __init arch_timer_mem_acpi_init(int platform_timer_count)
{
	struct arch_timer_mem *timers, *timer;
1420
	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	int timer_count, i, ret = 0;

	timers = kcalloc(platform_timer_count, sizeof(*timers),
			    GFP_KERNEL);
	if (!timers)
		return -ENOMEM;

	ret = acpi_arch_timer_mem_init(timers, &timer_count);
	if (ret || !timer_count)
		goto out;

	/*
	 * While unlikely, it's theoretically possible that none of the frames
	 * in a timer expose the combination of feature we want.
	 */
1436
	for (i = 0; i < timer_count; i++) {
1437 1438 1439
		timer = &timers[i];

		frame = arch_timer_mem_find_best_frame(timer);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
		if (!best_frame)
			best_frame = frame;

		ret = arch_timer_mem_verify_cntfrq(timer);
		if (ret) {
			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
			goto out;
		}

		if (!best_frame) /* implies !frame */
			/*
			 * Only complain about missing suitable frames if we
			 * haven't already found one in a previous iteration.
			 */
			pr_err("Unable to find a suitable frame in timer @ %pa\n",
				&timer->cntctlbase);
1456 1457
	}

1458 1459
	if (best_frame)
		ret = arch_timer_mem_frame_register(best_frame);
1460 1461 1462 1463 1464 1465
out:
	kfree(timers);
	return ret;
}

/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1466 1467
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
1468
	int ret, platform_timer_count;
1469

1470
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1471
		pr_warn("already initialized, skipping\n");
1472 1473 1474
		return -EINVAL;
	}

1475
	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1476

1477
	ret = acpi_gtdt_init(table, &platform_timer_count);
1478 1479 1480 1481
	if (ret) {
		pr_err("Failed to init GTDT table.\n");
		return ret;
	}
1482

1483
	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1484
		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1485

1486
	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1487
		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1488

1489
	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1490
		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1491

1492 1493
	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];

1494 1495 1496 1497 1498 1499 1500 1501 1502
	/*
	 * When probing via ACPI, we have no mechanism to override the sysreg
	 * CNTFRQ value. This *must* be correct.
	 */
	arch_timer_rate = arch_timer_get_cntfrq();
	if (!arch_timer_rate) {
		pr_err(FW_BUG "frequency not available.\n");
		return -EINVAL;
	}
1503

1504 1505 1506 1507 1508 1509
	arch_timer_uses_ppi = arch_timer_select_ppi();
	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
		pr_err("No interrupt available, giving up\n");
		return -EINVAL;
	}

1510
	/* Always-on capability */
1511
	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1512

1513 1514 1515
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);

1516 1517 1518 1519
	ret = arch_timer_register();
	if (ret)
		return ret;

1520 1521 1522 1523
	if (platform_timer_count &&
	    arch_timer_mem_acpi_init(platform_timer_count))
		pr_err("Failed to initialize memory-mapped timer.\n");

1524
	return arch_timer_common_init();
1525
}
1526
TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1527
#endif